R-支持向量机笔记

R-支持向量机笔记
R-支持向量机笔记

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

【原创】R语言支持向量机svm实践案例报告附代码数据

支持向量机(support vector machine)第一次见到这个词可能难以理解这个奇怪的名字,这是一个90年代产生在深度学习出来之前逼格满满的算法,被认为是适应性最广的分类器之一。SVM是一个基于严格的数学推导的算法(但本文不推导),本文只大概介绍基本思想和简单原理及实践过程。 最大间隔分类器 在二维平面上,一条直线可以把平面分成两边;在三维空间中,一个平面可以把空间分成两块……那么同理,在p+1的高维空间中,一个p维的超平面也可以将其成本两部分,超平面的定义: 超平面的定义 根据高中空间几何的知识可知,把一个点代入上式,如果等于0说明正好在超平面上;大于0在其上方,小于0在其下方。 那么就可以根据这个特点来映射二分类问题。只要我们可以构建出超平面方程,再把样本点代入,根据结果的正负就可以进行分类。 超平面分隔 实际上,能把不同类别样本分隔开来的超平面并不止一个,有无数个。如图中蓝色和橙色虚线都能把两类样本分开,那么你认为这两个哪一个分隔效果更好? 如果用蓝色分隔超平面,那上面的白球就被分成橙色,下面的白球则被分成蓝色;如果用橙色分隔超平面,则结果完全相反。可是根据KNN的思想,很容易看出上面的白球应该被分成蓝色,下面的白球应该被分成橙色。

可以观察到,橙色超平面总体上距离两边的球都比蓝色的远,这就是涉及到最大间隔超平面的概念。对于任一个超平面(以实线表示),把它往两边平移,直至与两边的样本相交(以虚线表示,相交点就叫支持向量,现在知道支持向量机这个名字的由来了吧~),如果两边的虚线的距离最大,这个超平面就是最大间隔超平面。因为最大间隔超平面总体上把不同类别的样本分得最大,所以泛化性能最好。 最大间隔超平面 那么SVM算法的优化实际上就是对超平面间距的最大值优化,以数字公式来表达是这样的: SVM的约束条件及优化目标 其中M是超平面间隔,也是优化目标。β是归一化参数,y取1或-1表示二分类。 优化过程涉及到复杂的数学推导就不细说了。 线性不可分情况 上面的例子中,不同样本之间本来就分隔得挺好,所以很容易被线性超平面分隔开来。但现实中的数据往往不太可能自动地分离得这么好,甚至存在着线性不可分,比如请用一条直线把下面两种类别的点完全区分开来:

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

机器学习算法优缺点改进总结

Lecture 1 Introduction to Supervised Learning (1)Expectatin Maximization(EM) Algorithm (期望值最大) (2)Linear Regression Algorithm(线性回归) (3)Local Weighted Regression(局部加权回归) (4)k-Nearest Neighbor Algorithm for Regression(回归k近邻) (5)Linear Classifier(线性分类) (6)Perceptron Algorithm (线性分类) (7)Fisher Discriminant Analysis or Linear Discriminant Analysis(LDA) (8)k-NN Algorithm for Classifier(分类k近邻) (9)Bayesian Decision Method(贝叶斯决策方法) Lecture 2 Feed-forward Neural Networks and BP Algorithm (1)Multilayer Perceptron(多层感知器) (2)BP Algorithm Lecture 3 Rudiments of Support Vector Machine (1)Support Vector Machine(支持向量机) (此算法是重点,必考题) 此处有一道必考题 Lecture 4 Introduction to Decision Rule Mining (1)Decision Tree Algorithm (2)ID3 Algorithm (3)C4.5 Algorithm (4)粗糙集…… Lecture 5 Classifier Assessment and Ensemble Methods (1)Bagging (2)Booting (3)Adaboosting Lecture 6 Introduction to Association Rule Mining (1)Apriori Algorithms (2)FP-tree Algorithms Lecture 7 Introduction to Custering Analysis (1)k-means Algorithms (2)fuzzy c-means Algorithms (3)k-mode Algorithms (4)DBSCAN Algorithms Lecture 8 Basics of Feature Selection (1)Relief Algorithms (2)ReliefF Algorithms

R语言-支持向量机

支持向量机 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢? 在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

所以“他们离分割面尽可能的远”这个要求就十分重要了,他告诉我们一个稳健的超平面是红线而不是看上去也能分离数据的黄线。 这样就解决了我们一开始提出的如何减少储存量的问题,我们只要存储虚线划过的点即可(因为在w x+b=-1左侧,w x+b=1右侧的点无论有多少都不会影响决策)。像图中虚线划过的,距离分割直线(比较专业的术语是超平面)最近的点,我们称之为支持向量。这也就是为什么我们这种分类方法叫做支持向量机的原因。 至此,我们支持向量机的分类问题转化为了如何寻找最大间隔的优化问题。 二、SVM的一些细节 支持向量机的实现涉及许多有趣的细节:如何最大化间隔,存在“噪声”的数据集怎么办,对于线性不可分的数据集怎么办等。 我这里不打算讨论具体的算法,因为这些东西完全可以参阅july大神的《支持向量机通俗导论》,我们这里只是介绍遇到问题时的想法,以便分析数据时合理调用R中的函数。 几乎所有的机器学习问题基本都可以写成这样的数学表达式: 给定条件:n个独立同分布观测样本(x1 , y1 ), (x2 , y2 ),……,(xn , yn )

支持向量机概述

支持向量机(Support Vector Machine,SVM)概述 支持向量机(Support Vector Machine,SVM)是基于统计学习理论发展起来的新一代机器学习算法,由Vapnik于1992年介绍进入机器学习领域,之后受到广泛关注。支持向量机理论处理的是两类分类问题,对于多类分类问题,通过多个二分类模型组合构成。SVM的基本原理是将样本映射到高维空间,然后在高维空间中构建线性分类器,寻找使分类间隔最大的最优超平面,这个特点在保证分类器在具有较好的泛化能力的同时解决了维数灾难问题。SVM的目标是在有限样本信息下寻求学习精度和学习能力的最优解,该问题最终转化成为一个二次型寻优问题,从理论上来看,将得到全局最优解,解决了神经网络中无法避免的局部极值问题。由于SVM具有以上多个优点,使得该算法在众多领域获得较好应用,包括图像分类,生物信息学,病虫害识别等。下面将具体介绍SVM的原理和求解过程。 (1)线性可分的情况 给定一些样本数据,分别属于两个不同的类,标记为:{x i,y i},x i∈R d y i∈{1,?1},i=1,2,…,n。由于这些样本数据是线性可分的,因此,存在一个超平面H:w T?x+b=0,可以把这两类数据正确分开。同时存在两个平行于H的超平面H1:w T?x+b=1和H2:w T?x+b=?1,使得距离超平面H最近的样本分别位于H1和H2之上,这些样本称为支持向量。而剩余其他样本都将位于H1和H2之外,即满足式(1)或式(2)的约束条件。 w T?x i+b≥1 y i=1(1) w T?x i+b≤?1 y i=?1(2) 在两类分类问题中,由于表示分类标记的y i只有1和-1两个值,因此可将式(1)和式(2)合并得到式(3) y i(w T?x i+b)?1≥0(3) 由两个平行平面之间的距离公式可得超平面H1和H2之间的间隔为 f(w)=2 (4) ‖w‖ SVM的目标就是寻找在满足式(3)约束的同时能够把样本准确分开,并

SVM支持向量机白话入门

(一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。 所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC 维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

支持向量机优缺点

SVM有如下主要几个特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 (4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。 (5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。 (6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在: ①增、删非支持向量样本对模型没有影响; ②支持向量样本集具有一定的鲁棒性; ③有些成功的应用中,SVM 方法对核的选取不敏感 两个不足: (1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法 (2) 用SVM解决多分类问题存在困难 经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点

5-1简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。 1)C4.5算法: ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。 C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2)在树构造过程中进行剪枝 3)能处理非离散的数据 4)能处理不完整的数据 C4.5算法优点:产生的分类规则易于理解,准确率较高。 缺点: 1)在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算 法的低效。 2)C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程 序无法运行。 2)K means 算法: 是一个简单的聚类算法,把n的对象根据他们的属性分为k个分割,k < n。算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。 ,其中N为样本数,K是簇数,r nk b表示n属于第k个 簇,u k是第k个中心点的值。

然后求出最优的u k 优点:算法速度很快 缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。 3)朴素贝叶斯算法: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。 在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。 4)K最近邻分类算法(KNN) 分类思想比较简单,从训练样本中找出K个与其最相近的样本,然后看这k个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。 缺点: 1)K值需要预先设定,而不能自适应 2)当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法适用于对样本容量比较大的类域进行自动分类。 5)EM最大期望算法 EM算法是基于模型的聚类方法,是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。E步估计隐含变量,M步估计其他参数,交替将极值推向最大。 EM算法比K-means算法计算复杂,收敛也较慢,不适于大规模数据集和高维数据,但比K-means算法计算结果稳定、准确。EM经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6)PageRank算法 是google的页面排序算法,是基于从许多优质的网页链接过来的网页,必定还是优质网页的回归关系,来判定所有网页的重要性。(也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。) 优点: 完全独立于查询,只依赖于网页链接结构,可以离线计算。 缺点: 1)PageRank算法忽略了网页搜索的时效性。 2)旧网页排序很高,存在时间长,积累了大量的in-links,拥有最新资讯的新网页排名却很低,因为它们几乎没有in-links。

R语言与机器学习(4)支持向量机

算法四:支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道不得”。不过我还是打算写写SVM的基本想法与libSVM中R的接口。 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 要回答这个问题,我们首先必须思考如何确定点的代表性?我想关于代表性至少满足这样一个条件:无论非代表性点存在多少,存在与否都不会影响我们的决策结果。显然如果仍旧使用KNN算法的话,是不会存在训练集的点不是代表点的情况。那么我们应该选择一个怎样的“距离”满足仅依靠代表点就能得到全体点一致的结果? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢?

在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

【原创】r语言SVM-in-R代码

> ## SVM in R > ## classify cats into male / female by heart and body weight > library(e1071) > data(cats, package="MASS") > inputData <- data.frame(cats[, c (2,3)], + response = as.factor(cats$Sex)) > ## linear kernel > svmfit <- svm(response ~ ., data = inputData, kernel = "linear", + cost = 10, scale = FALSE) > plot(svmfit, inputData) > compareTable <- table (inputData$response, predict(svmfit)) > mean(inputData$response != predict(svmfit)) [1] 0.1944444 > compareTable F M F 33 14 M 14 83 > ## radial kernel > svmfit <- svm(response ~ ., data = inputData, kernel = "radial", + cost = 10, scale = FALSE) > plot(svmfit, inputData) > compareTable <- table (inputData$response, predict(svmfit)) > mean(inputData$response != predict(svmfit)) [1] 0.1875 > ## radial kernel > svmfit <- svm(response ~ ., data = inputData, kernel = "radial", + cost = 10, scale = FALSE) > plot(svmfit, inputData) > compareTable <- table (inputData$response, predict(svmfit)) > mean(inputData$response != predict(svmfit)) [1] 0.1875 > > ## Prepare training and test data > set.seed(100) > rowIndices <- 1 : nrow(inputData) > sampleSize <- 0.8 * length(rowIndices) > trainingRows <- sample (rowIndices, sampleSize) > trainingData <- inputData[trainingRows, ] > testData <- inputData[-trainingRows, ] > ## tune to select best gamma and cost > tuned <- tune.svm(response ~., data = trainingData, + gamma = 10^(-6:1), cost = 10^(-1:2)) > summary(tuned) Parameter tuning of 'svm': - sampling method: 10-fold cross validation - best parameters: gamma cost 0.01 100 - best performance: 0.2439394 - Detailed performance results: gamma cost error dispersion 1 0.000001 0.1 0.3325758 0.16269565 2 0.000010 0.1 0.3325758 0.16269565 3 0.000100 0.1 0.3325758 0.16269565 4 0.001000 0.1 0.3325758 0.16269565 5 0.010000 0.1 0.3325758 0.16269565 6 0.100000 0.1 0.3325758 0.16269565

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

回归分析的优缺点等

21、回归分析法有何优点在使用该法时,应注意哪些问题 答:优点:1、回归分析法在分析多因素模型时,更加简单和方便; 2、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果,但在图和表的形式中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的;3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。 缺点: 有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。

支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科.目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段 两个不足: (1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有的SMO算法、的SVM、等的PCGC、张学工的CSVM以及等的SOR算法 (2) 用SVM解决多分类问题存在困难 经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/f43844198.html,.

相关文档
最新文档