上海海事大学2013年1月离散数学期末考试题

上海海事大学2013年1月离散数学期末考试题
上海海事大学2013年1月离散数学期末考试题

第 1 页 共 3 页

上 海 海 事 大 学 试 卷

2012 — 2013 学年第一学期期末考试

《 离散数学 》(A 卷)

班级 学号 姓名 总分

1. (4分) 给定下列命题:

P : 天下雪 Q : 我进城 R : 我有时间 使用逻辑联结词将下列命题符号化

(1) 如果天不下雪且我有时间, 我就进城 (2) 我进城的必要条件是我有时间 (3) 天不在下雪

(4) 我进城当且仅当我有时间且天不下雪

2. (4分) 一个命题公式A (P ,Q ,R )的成真指派为FFF, FFT, FTF, TFF, TTF, 求该公式的主

合取范式 3. (6分) 构造下面推理的证明:

(1) 前提: ))()()((x H x F x ∧??, ))()()((x H x G x →? 结论: ))()()((x F x G x ?→?

(2) 前提: )))()(()()((x R x Q x P x ∧→?, )()(x P x ? 结论: ))()()((x R x P x ∧? 4. (4分) 设解释I 如下:

D ={a ,b }; P (a ,a )=1; P (a ,b )=0; P (b ,b )=1; P (b ,a )=0 确定下列公式在I 下的真值 (1) ),())((y x P y x ?? (2) ),())((y x P y x ??

5. (5分) 一个体育团共25人, 其中14人会踢足球, 12人会打乒乓球, 6人既会踢足球又会

打乒乓球, 5人既会打篮球又会踢足球, 还有2人这三种球都会打, 而6个会打篮球的人都会打另一种球. 求不会打球的人数.

6. (4分) 设集合A ={1, 2, 3, 4}, R 和S 均为A 上的二元关系, 且 R ={<1,2>, <3,4>},

S ={<2,3>, <4,1>}, 求S R , R S , R S R , S R S

--------------------------------------------------------------------------------------

线------------------------------------------------------------------------------------

第 2 页 共 3 页

7. (6分) 设A ={1, 2, 3, 4}, 在A 的幂集P (A )上定义二元关系R 如下:

|}|||)(,|,{t s A P t s t s R =∈><=且

证明: R 是P (A )上的等价关系并给出商集P (A )/R 8. (8分) 设A ={1, 2, …, 12}, R 是A 上的整除关系.

(1) 给出该整除关系的哈斯图

(2) 子集B ={2, 4, 6}, 给出B 的最大元、最小元、极大元、极小元、上界、下界、上确界、下确界

9. (4分)如下给出四个函数, 判断哪些是入射?哪些是满射?哪些是双射?

R R f →:1,2

1

)(2

21++=x x x f R I f →+:2, x f ln 2=,其中,I +是正整数集合

I R f →:3, []x f =3, 其中[]x 是不大于x 的最大整数 R R f →:4,14+=x f

10. (4分) 区间[2, 3]的基数是什么?证明你的结论

11. (6分) 代数系统>+=<331,N V , >+=<222,N V , 其中3+和2+分别为模3和模2加法。定

义V 1和V 2积代数上的运算⊕如下:>++>=<<⊕><2212312211,,,y y x x y x y x (1) 给出运算⊕的运算表

(2) 求出积代数的幺元和每个可逆元素的逆元 12. (9分) 设Z 是整数集,定义Z 上的运算*如下:a *b =a +b -2, 这里的+和-是普通加法和减

(1) 代数系统是半群吗?为什么? (2) 它有没有幺元?有的话请指出

(3) Z 中的每个整数都有逆元吗?如果有的, 请给出 13. (4分) 设是代数系统,其中,+, ×是数的加法和乘法,R +是正实数集,

R 是实数集。f :R +→R ,定义为:?x ∈R +, f (x )=log 2x . 证明:f 是从的同构映射

14. (8分) 下图给出了一些偏序集的哈斯图

(1) 指出哪些不是格?为什么

?

第 3 页 共 3 页

(2) 给每个格指出一个子格

(3) 在上述第一个格上计算)(c b f ∨∧和)()(c f b f ∧∨∧, 你能得到什么结论? 15. (8分) 给出如下一个无向简单图

(1) 给出上图的一个平面图像 (2) 给出(1)中平面图像的对偶图 (3) 用韦尔奇鲍威尔法给出该图的一种正常着色 (4) 给出该图的着色数并做适当解释

(回路)有多少条? (2) 给出该图的可达性矩阵

(3) 给出该图的弱分图、单侧分图、强分图 17. (8分) 已知如下一个带权图

(1) 该图有没有欧拉回路、欧拉路?如果有, 请给出

(2) 用Kruskal 算法求出该图的一个最小生成树 (3) 说明该图没有哈密尔顿回路但存在哈密尔顿路

E

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

《 离散数学》期中考试试卷(2006—2007学年第2学期)

《离散数学J》考试试卷(期中) 课程代码143140320命题单位学院:计算机学院信息教研室 学院:_______________班级:_____________姓名:_______________学号:____________ 1.将下列命题将其符号化。(4分) ①.李平不是不聪明,而是不用功。 假设p:李平聪明,q:李平用功 ②.如果只有懂得希腊文才能了解柏拉图,那么我不了解柏拉图。 假设p:我懂得希腊文,q:我了解柏拉图 2.在一阶逻辑中将下列命题符号化。(9分) ①.整数都是有理数,并不是每个有理数一定是整数,有些有理数不是整数。 假设I(x):x是整数,Q(x):x是有理数。 ②.某些汽车比所有的火车慢。 假设F(x):x是火车。G(x):y是汽车。H(x,y):x比y快 ③.谁要是游戏人生,他就一事无成;谁不能主宰自己,他就是一个奴隶。 假设:M(x)表示“x是人”,K(x)表示“x游戏人生”,L(x)表示“x 一事无成”,H(x,y)表示“x主宰y”,N(x)表示“x是奴隶”。 3.试证明: (┐P∧(┐Q∧R))∨((Q∧R)∨(P∧R))=R(10分) 4.求公式G=(P→Q)∧R的主析取范式和主合取范式。(12分) 5.先将些列论断符号化,再证明论断的正确性。(15分) 所有的大一学生都要学习英语;并非所有的大一学生都要学习离散数学;故有些学习英语的不学习离散数学。 假设谓词如下:P(x):x是大一学生;Q(x):x要学习英语; R(x):x要学习离散数学。 6.某班学生50人,会排球的有40人,会篮球的35人,会足球的10人,以上三种运动都会的5人,都不会的没有,问只会两种运动的有几人?

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

08计算机《离散数学》期中试卷答案

系 专业 年级 班级 学号 姓名 ……………………装……………………订……………………线…………………… 泉州师院2009-2010学年度第一学期 2008级计算机《离散数学》期中试卷 题 序 一 二 三 四 五 总分 成 绩 签 名 一、单项选择题:(20%,每空2分) 1.设A={a,{a}},下列命题错误的是( B )。 A .{a}P(A) B .{a}P(A) C .{{a}}P(A) D .{{a}}P(A) 2、假定全集E ={1,2,3,4,5,6,7,8,9,10},A={3,4,5},B ={2,3,4,7,8,9},则A ∪B 的位串是( D )。 A .01 B .0011100000 C .00 D .00 3、下列文氏图阴影部分所表示的集合是( A )。 A. (A-(B ∪C))∪((B ∪C)-A) B. (A-(B ∩C))∪((B ∩C)-A) C. (A-(B ∩C))∪((B ∪C)-A) D. (A-(B ∪C))∪((B ∩C)-A) 4.设p :你主修计算机科学,q :你是新生, r :你可以从校园网访问因特网。只有你主修计算机科学或不是新生,你才可以从校园网访问因特网。可符号化为( C )。 A .r →p ∨q B .r →p ∧q C .r →p ∨q D .r →p ∨q 5.下列是两个命题变元p ,q 的极小项是( A ) A .┐p ∧q B .┐p ∨q C .p ∧┐p ∧q D .┐p ∨p ∨q 6、下列等值式不正确的是( C ) A .┐(x)A(x)┐A B .(x)(B →A(x))B →(x)A(x) C .(x)(A(x)∧B(x))(x)A(x)∧(x)B(x) D .(x)(y)(A(x)→B(y))( x)A(x)→(y)B(y) 7、若s={1,2,3,4},S 上关系R 的关系图为: 则R 具有( B )性质。 A 、自反性 B 、自反性、对称性 C 、反自反性、反对称性 D 、自反性、对称性、传递性 8.设A={a,b,c,d},A 上的等价关系R={,,,}∪I A ,则对应于R 的A 的划分是( D ) A .{{a},{b,c},{d}} B .{{a,b},{c},{d}} C .{{a},{b},{c},{d}} D .{{a,b},{c,d}} 9、设A={1,2,3},则A 上的二元关系有( C )个。 A. 2 3 B. 3 2 C. D. 10.下列函数是双射的为( A ),其中:I —整数集,E —偶数集, N —自然数集,R —实数集。 A. f : IE , f (x) = 2x B. f : NNN, f (n) = C. f : RI , f (x) = [x] D. f :IN, f (x) = | x | 二.填空题(20%,每题2分) 1.集合的表示法有 列举法、描述法 。 。则设、 } {0 A 1 ==??????=∞ =I i i i A i i ,...,,,,,3211023.令p :今天下雪了,q :路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为 p →q 。 4.复合命题(p →q)∨(p → q)是___ 永真____式(永真式或永假式或可满足 式)。 5.令谓词P(x,y)表示”x 爱y ”,个体域是全世界所有人的集合,用P(x,y)、量词 得 分 评卷人 得 分 评卷人

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

2014-2017年上海海事大学考研试题825海事法

2014年上海海事大学攻读硕士学位研究生入学考试试题(重要提示:答案必须做在答题纸上,做在试题上不给分) 考试科目代码824 考试科目名称海事法 一、术语/条款英汉互译(每小题2分,共12分) 1. 净吨 2. 强制出售 3. 港口国控制 4. New Jason Clause 5. the party salved 6. Rule Paramount 二、单项选择(每小题2分,共30分) 1. 按照我国《海商法》,关于责任人丧失限制其赔偿责任的权利,下列说法正确的是______。 A. 责任人故意或明知可能造成损失而轻率地作为或不作为,责任人丧失该项权利 B. 在A的情况下,索赔人负有举证责任 C. 请求人向责任人的受雇人或代理人提出赔偿请求时,受雇人或代理人丧失责任限制的权利 D. 以上全对 2. 与1976年《责任限制公约》不同的是,我国《海商法》未将______列入限制性债权。 A. 船上货物的清除、或使之无害的请求 B. 对港口工程、港池、航道等设施造成的损害赔偿请求 C. 侵犯非合同权利的行为造成的赔偿请求 D. 以上全是 3. 我国海商法有关拖航合同的规定,适用于在下列______区域提供的拖航服务。 A.. 我国沿海 B. 我国内河 C. 我国沿海港区内 D. 以上三项均是 4. 关于海难救助,下列说法错误的是______。 1)无论危险发生在何处,只要有救助效果,都有报酬请求权 2)即使救助无效果,强制救助的船舶亦有权请求被救方支付所消耗的费用 3)在任何情况下事先约定的救助报酬,一旦救助有效果,被救方都应支付 4)海难救助的方式不一定是直接参与,提供船员、提供船用燃料物料等亦可 A.1)和3)B.2)和4)C.2)和3)D.1)和4) 5. 关于同一船舶所有人的船舶之间进行救助,下列哪种说法是错误的?______ A.请求救助报酬毫无意义,因为船舶所有人不能对自己的财产请求救助报酬 B.可以获得报酬,因为船员从事了额外的工作 C.可以获得报酬,否则免除了保险人应承担的赔偿责任 D.可以获得报酬,否则他人可能不当得利,因为救助船舶的同时通常还救助了属于他人的财产或货物 6. 下列哪些是请求海难救助报酬的条件?______ A.海难救助的对象必须是遭遇危险的海上财产,且此种危险必须是真实存在或不可避免的B.救助行为是自愿的C.有效果的救助行为D.以上全对 7. 根据救助公约的规定和习惯做法,______救助行为,有救助报酬请求权。

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

河海大学文天学院09级离散数学期中考试试卷答案

2010-2011学年第一学期离散数学期中考试试卷答案 一、(本题满分12分)在命题逻辑中将下列命题符号化。 (1)小王边走路边听音乐。(2)除非a能被2整除,a才能被4整除。 (3)派小张、小李中的一人去开会。(4)小张和小李是同学。 (5)今天是星期一仅当明天是星期二。(6)若2+2≠4,则3+3≠6;反之亦然。 解:(1)令p:小王走路;q:小王听音乐。符号化为p∧q (2)令p:a能被2整除;q:a能被4。符号化为q→p (3)令p:派小张去开会;q:派小李去开会。符号化为(p∧┐q)∨(┐p∧q) (4)令p:小张和小李是同学。符号化为p (5)令p:今天是星期一;q:明天是星期二。符号化为p→q (6)令p:2+2=4;q:3+3=6。符号化为┐p?┐q 二、(本题满分12分)在一阶逻辑中将下列命题符号化。 (1)有的有理数能被2整除。(2)没有不犯错误的人。 (3)人都不一样高。(4)说火车比汽车跑的快是不对的。 (5)4>2与3≥1互为充要条件。(6)除非李键是东北人,否则他一定怕冷。解:(1)令F(x):x为有理数;G(x):x能被2整除。符号化为?x(F(x)∧G(x)) (2)令F(x):x是人,G(x):x犯错误,则命题符号化为:?x(F(x)→G(x)) (3)令F(x):x是人;H(x,y):x与y一样高。符号化为?x?y(F(x)∧F(y)→┐H(x,y))(4)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y快,┐?x?y(F(x)∧G(y)→H(x,y))(5)令F(x,y):x>y,G(x,y):x≥y,a:4,b:2,c:3,d:1。符号化为F(a,b)?G(c,d) (6)令F(x):x是东北人,G(x):x怕冷,a:李键,符号化为┐G(a)→F(a) 三、(本题满分8分)给出公式(q →r) ∧ ( p→p)的真值表并求出成真赋值和成假赋值。解:真值表如下 成真赋值:000、001、011、100、101、111;成假赋值:010、110 四、(本题满分10分)设p:2能整除5,q:太阳从西方升起,r:一年分四季。求下列复合命题的真值: (1)((p ∨q) → r)∧(r→ (p ∧q)) (2)((┐q ?p) → (r ∨p)) ∨ ((┐p ∧┐q) ∧r) 解:由题意,p、q、r的真值分别为0、0、1。(1)的真值为0;(2)的真值为1。 五、(本题满分12分)使用等值演算法判断公式下列公式的类型。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

厦门大学离散数学2015-2016期末考试试题答案年

一(6%)选择填空题。 (1) 设S = {1,2,3},R 为S 上的二元关系,其关系图如右图所示,则R 具有( )的性质。 A. 自反、对称、传递; B. 反自反、反对称; C. 自反、传递; D. 自反。 (2) 设A = {1, 2, 3, 4}, A 上的等价关系 R = {, , , } A I , 则对应于R 的A 的划分是( )。 A. {{a }, {b , c }, {d }}; B. {{a , b }, {c }, {d }}; C. {{a }, {b }, {c }, {d }}; D. {{a , b }, {c , d }}。 二(10%)计算题。 (1) 求包含35条边,顶点的最小度至少为3的图的最大顶点数。 (2) 求如下图所示的有向图中,长度为4的通路的数目,并指出这些通路中有几条回路,几条由3v 到4v 的通路。 23 三 (14%) (1) 求 )()(p r q p →→∨ 的主析取范式,主合取范式及真值表; (2) 求 )()),(),((x xH y x yG y x xF ?→?→??的前束范式。 四 (8%) 将下列命题符号化:其中 (1), (2) 在命题逻辑中,(3), (4) 在一阶逻辑中。 (1) 除非天下雨,否则他不乘公共汽车上班; (2) 我不能一边听课,一边看小说; (3) 有些人喜欢所有的花; 厦门大学《离散数学》课程试卷 学院 系 年级 专业 主考教师: 张莲珠,杨维玲 试卷类型:(A 卷)

(4)没有不犯错的人。 五(10%)在自然推理系统P中构造下面推理的证明: 如果他是计算机系本科生或者是计算机系研究生,则他一定学过DELPHI语言且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。 六(10%)在自然推理系统中构造下面推理的证明(个体域:人类): 每个喜欢步行的人都不喜欢坐汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。 七(14%)下图给出了一些偏序集的哈斯图,判断其是否为格,对于不是格的说明理由,对于是格的说明它们是否为分配格、有补格和布尔格(布尔代数)。 八(12%)设S = {1, 2, 3, 4, 6, 8, 12, 24},“ ”为S上整除关系, (1)画出偏序集> ,S的哈斯图; < (2)设B = { 2, 3, 4, 6, 12},求B的极小元、最小元、极大元、最大元,下界,上界。 九(8%)画一个无向图,使它是: (1)是欧拉图,不是哈密尔顿图; (2)是哈密尔顿图,不是欧拉图; (3)既不是欧拉图,也不是哈密尔顿图; 并且对欧拉图或哈密尔顿图,指出欧拉回路或哈密尔顿回路,对于即不是欧拉图也不是哈密尔顿图的说明理由。 十(8%)设6个字母在通信中出现的频率如下: 12 13 :c :b% 45 :a% % :e% :f 9 5 : d% % 16 用Huffman算法求传输它们的最佳前缀码。要求画出最优树,指出每个字母对应的编码,n个按上述频率出现的字母需要多少个二进制数字。 并指出传输)2 ( n 10≥

相关文档
最新文档