铁电陶瓷

铁电陶瓷
铁电陶瓷

铁电陶瓷材料的研究现状

尤欣欣

(渭南师范学院化学与生命科学学院,08级材料化学1班)摘要:本文论述了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。

关键词:铁电陶瓷;铁电性;钙钛矿;研究

0前言

铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;

(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。

铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。

目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。

为此,本文对层状铁电陶瓷、弛豫型铁电陶瓷、含铅型铁电陶瓷、无铅型铁电陶瓷以及反铁电陶瓷材料的研究现状和应用情况进行了综述,为未来的新型铁电陶瓷的研究提供参考。

1层状铁电陶瓷

1.1 Bi系

目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。该材料通式是(Bi2O2) 2+(A n-1B n O3n+1)2-,其中A 为+1、+2或+3价离子,B 为+ 3、+ 4 或+ 5价离子,n 为类钙钛矿层中氧八面体BO6层数,其中类钙钛矿层(A n-1B n O3n+1)2-与铋氧层(Bi2O2)2+交替排列。SrBi4Ti4O15(简称SBTi)(n=4 、n = 5或n = 7)陶瓷是铋系层状钙钛矿结构铁电陶瓷材料。研究发现:其剩余极化较大,单晶极化强度方向沿a 或b轴时,(2Pr=58μC/cm2)[1],热稳定性能也比较好(居里温度为520℃)[2],另外,SBTi 陶瓷又是非铅系列材料,是一种比较有前途的铁电陶瓷材料。但是由于Bi容易挥发,在材料制备和使用过程中容易成铋空位,从而形成氧空位,影响材料的抗疲劳性能和铁电性能。为了满足实际应用的需要,需要提高和改进该系列材料的铁电性能,因此,国内外研究者在改变制备途径、制备方法以及调整材料的组分等方面作了不少研究。

共生结构铁电材料(IBLSFs)是利用两种钙钛矿层数只相差一层的Bi系层状钙钛矿结构铁电材料(BLSFs)组成。BLSFs的通式也是:(Bi2O2)2 +(A m-1B m O3m+1)2-,其中A为Bi、Ba、Sr、Nd 等,B为Ti、V、Nb、W 等。IBLSFs整个结构可以看作是半个层数为m和m+1的单元沿c轴方向交替排列而成。由于其相对复杂的晶体结构和介电特性受到广泛的关注。其Bi5TiNbWO15(BW-BTN,m=1+2)是由Bi2WO6(BW,m=1)和Bi3TiNbO9(BTN,m=2)组构而成,在c轴方向上,(A m-1B m O3m+1)2-与(Bi2O2)2+层交替排列顺序为:…(Bi2O2)2+—(WO4)2-—(Bi2O2)2 +—(BiTiNbO7)2-—(Bi2O2)2+…..。在共生结构中,由于(Bi2O2)2+层两侧的类钙钛矿层不一样,(Bi2O2)2+层受到的作用力也必然不同于层状钙钛矿结构,材料微观结构的复杂性大大提高。BW-BTN 中,(Bi2O2)2+层两侧的类钙钛矿层分别是WO6氧八面体和(Ti,Nb)O6氧八面体,WO6氧八面体中不存在单独的A 位Bi3+离子,2个Bi3+离子都和(Bi2O2)2+层共用。(Ti,Nb)O6氧八面体中,1 个Bi3+占据了A 位,剩下2个Bi3+与(Bi2O2)2+层相连。所以,真正意义上的A 位Bi3+离子实际上只存在于(Ti,Nb)O6氧八面体中,这是BW-BTN共生结构不同于其他共生的一个显著特点。目前的研究表明该共生结构具有很高的电导率和明显的介电弛豫行为,但铁电和介电性能不够理想,这可

能与材料内部复杂的缺陷机制有关[3]。

1.2(Pb,Ba)(Zr,Ti)O3系

(Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。通过加入第二相,如:金属颗粒和晶须,可以达到增韧和增强压电陶瓷的目的。人们通过在PBZT中添加Ag颗粒,发现当加入15%(体积分数)的Ag时,其弯曲强度(σb)从69MPa 提高到129MP a,断裂韧性(K I c)从1.0MPa·m1/2提高到2.4 MPa·m1/2。在P ZT 中添加S iC颗粒,则可使P ZT的σb从65.2MPa 增加到75.6MPa,而相对介电常数(εr)从1589下降到1528,压电常数(d33)从347×10–12m/V下降到330×10–12m/V。在PZT中添加ZnO晶须,当ZnO含量为1%(质量分数)时,P ZT 的σb可从69 MPa 增加到98MPa,K I c从1.02 MPa·m1/2增加到1.31 MPa·m1/2,d33从500 × 10–12 m/V下降到485 × 10–12 m/V。第二相的引入,虽使材料的机械性能得到提高,但由于在压电/铁电陶瓷内形成两相界面,降低了主相的连续性,因而导致其功能性大幅度降低。相比加入第二相,采用A 位、B位施、受主掺杂改善陶瓷的机械性能的方法可以减小对其功能特性的不良影响。人们通过研究稀土和Bi掺杂对PZT陶瓷的机械性能和压电性能的影响,发现稀土离子掺杂可改善PZT 的机械性能,但表现出不同的行为;而Bi掺杂几乎不影响其机械性能,但d33增加了约50%。因此,近年来,研究改善PBZT 陶瓷介电性能和弛豫性能的方法主要是通过掺杂。然而,对其机械性能的影响研究报道很少。为此,应加大实验研究Bi2O3 掺杂对Sr优化的PBZT压电–铁电陶瓷的结构、机械性能及其电性能的影响。

2弛豫型铁电陶瓷

2.1弛豫型铁电体

弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) ?ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度T m随ω的增加而向高温移动。该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的

热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。因此,对现有弛豫铁电体性能的优化以及新型弛豫铁电体的合成,将具有重要的潜在应用价值,同时也是该领域的另一热点问题。SrTiO3是一种无污染的功能陶瓷材料,因此以SrTiO3为基础合成的新材料有产业的优势。研究发现在SrTiO3中引入Bi离子产生了典型的铁电弛豫行为,并对其进行了介电谱测量,但是最低测量频率为100Hz,而一般认为,玻璃化转变的特征时间50~102s,所以在更低的频率范围内对极性玻璃体的介电谱测量,无疑对理解其玻璃化转变机制是有价值的。

3含铅型铁电陶瓷

3.1 铌镁酸铅

铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。铁电材料的研究主要集中在新材料体系的开发、现有材料的改性(主要是掺杂改性)以提高其使用性能。晶界的控制是调节和改善铁电陶瓷材料性能的关键所在。PMN基铁电陶瓷通过掺杂,可改变内部的晶界结构,解决其烧结温度过高(大约在1200℃左右)、居里温度较低、负温损耗较大、工艺复杂以及难以工业化生产等缺陷。掺杂改性技术的应用,无疑会对这类陶瓷材料的研究、开发应用和生产起积极的推动作用。PMN早期的掺杂改性剂主要有Si、Ge等,其效果不是很明显。后来逐渐集中在非铁电性改性剂或非铁电性和铁电性改性剂的复合体系上。已有不少学者研究过PMN的稀土、碱土、过渡金属等掺杂。

通过选择合适的掺杂剂、掺杂方式可以改变PMN系铁电陶瓷的介电性能、压电性能、热释电性能、显微结构和烧结温度。稀土元素、碱土元素的掺杂主要是提高介电稳定性并降低烧结温度,某些单一掺杂对陶瓷介电性能与温度稳定性的改善效果不一致,可通过多组分掺杂同时提高PMN铁电陶瓷的介电常数、降低烧结温度;过渡金属(如Cr、Mn)对PMN铁电陶瓷的烧结温度、畸态影响很明显,且兼具“软掺杂”和“硬掺杂”双重特性。PMN掺杂机理遵循缺陷化学原则,离子掺入时可能会完全进入晶格,也可能会滞留在晶界。由于离子掺入时伴随着铅空位浓度、Mg2+和Nb5+离子比的变化,相应的有序化过程的缺陷化学和动力学机理尚需深入研究。目前,PMN铁电陶瓷掺杂主要是单一掺杂,存在介电性能、频率色散、弥散相变、居里温度以及烧结温度之间改善效果的不一致,今后可向多组分掺杂转变,以此弥补单一掺杂所存在的不足。

4无铅型铁电陶瓷

4.1 BaTi2O5

BaTi2O5(简称BT2)粉体不含铅,是一种新型绿色环保的铁电材料,近几十年来,人们一直认为BT2是一种顺电材料,其热稳定性差,高温易分解,当温度高于1150℃时分解为BaTiO3(BT)和Ba6Ti17O40(B6T17)。直到2003年人们才发现了合成的BT2单晶具有优异的铁电性[4]。而采用浮区- 熔融法和淬火法合成的多晶体在475℃时,沿 b 轴方向也显示出较高的介电性能。但利用这些方法难以获得大尺寸的晶体,故很难在实际中应用。因而,有必要采用常规的烧结方法来制备多晶BT2。由于BT 2的热稳定性差,所以不能采用固相合成法获得单相的BT2粉体,只能采用液相合成法合成单相BT2粉体[5]。通常制备BT2 的方法有化学共沉淀法、熔融固化法、无压烧结法、硬脂酸凝胶法、水热反应法、Sol-gel 法等。Sol-gel 法因其能实现原料均匀混合,化学反应较易进行,合成温度低,合成的粉体粒径均匀等优点而在BT2的制备中备受青睐,但现在常用的Sol-gel 法存在着原料多为有毒物,有机成分复杂,制备工艺条件要求较高等问题,故需对现有的Sol-gel 法进行改进。

5反铁电陶瓷

5.1 锆锡钛酸铅

锆锡钛酸铅Pb(Zr,Sn,Ti)O3(简称PZST)是一种反铁电陶瓷。上世纪60年代末,美国Clevite 实验室在其开发的具有高压电性能的锆钛酸铅Pb(Zr,Ti)O3(简称PZT)压电材料基础上,针对PZT压电陶瓷机电转换能力不足的问题,研制出了一种具有大机电转换能力的新型有源材料—PZST 反铁电相变陶瓷,即通过对PZT基铁电材料掺杂改性得到能够在室温条件下由反铁电相被电场诱导转变成铁电相的PZST反铁电陶瓷,相变过程会产生大的体积应变量。

上世纪80 年代后期,具有大电致应变和大机电转换能力的PZST 反铁电陶瓷作为换能器或大位移致动器有源材料方面的研究工作逐步出现。美国Pennsylvania 大学材料研究所开展了PZST反铁电陶瓷作为大位移致动器有源材料应用的可行性研究工作,针对“方宽”型电滞回线的PZST 反铁电陶瓷进行了一系列改性优化,降低相变场强,增大纵向应变量,最大纵向应变量达到0.85%(相变场强为48 kV/cm,电滞宽度为20 kV/cm),指出“方宽”型电滞回线的反铁电陶瓷在交变电场下表现出严重的电滞损耗,因而不适于交变状态下应用[6]。

此后,西安交通大学开展了反铁电材料的研究和应用工作。研究了化学组份和不同外场对反铁电陶瓷相变性能的影响和变化规律,针对该类材料丰富的相变性能在不同应用领域开展工作,给出了性能优化途径,比如,利用压致相变制作

大功率脉冲爆电电源[7],利用场诱相变制作电压调节器[8]等。在利用其大电致应变特性方面,也开展了系统的研究工作,通过掺杂改性和优化制备工艺,重点解决PZST反铁电陶瓷相变场强较高和电滞损耗偏大等问题,得到了具有大电致应变量、低相变场强和小电滞损耗的“细长”型电滞回线的PbLa(Zr,Sn,Ti)O3(简称PLZST)反铁电陶瓷,这种材料的电致应变量比PZT 压电陶瓷高出10倍以上,其杨氏模量在100~110GPa之间,应变能是PZT压电陶瓷的100倍以上。考虑到材料电滞损耗因素,要尽量工作在低频状态,以减小交流电场下的热损耗,使器件稳定工作。

6其它研究进展

近年来,铁电材料的研究在其它方面也取得不少新的进展,其中最重要的有以下几个方面:1、第一性原理的计算。现代能带结构方法和高速计算机的发展使得对铁电性起因的研究变为可能。通过第一性原理的计算,对铁电体材料,得出了电子密度分布,软模位移和自发极化等重要结果,对阐明铁电性的微观机制有重要作用;2、尺寸效应的研究。随着铁电薄膜和铁电超微粉的发展,铁电尺寸效应成为一个迫切需要研究的实际问题。近年来,人们从理论上预言了自发极化、相变温度和介电极化率等随尺寸变化的规律,并计算了典型铁电体的铁电临界尺寸。这些结果不但对集成铁电器件和精细复合材料的设计有指导作用,而且是铁电理论在有限尺寸条件下的发展;3、集成铁电体的研究。铁电薄膜与半导体的集成构成集成铁电体。当前的材料和技术使集成铁电体出现新特点:一是采用薄膜,使极化反转电压易于降低,可以和标准的硅或电路集成。二是在提高电滞回线矩形度的同时,在电路设计上采取措施,可以防止信息输出与输入出错。三是疲劳特性大有改善,已制出反转次数达数亿次仍不显示任何疲劳的铁电薄膜。

7展望

高性能的铁电陶瓷材料是一类具有广泛应用前景的功能材料,从目前的研究现状来看,对于具有高性能的铁电陶瓷材料的研究和开发应用仍然处于发展阶段。研究者们选用不同的铁电陶瓷材料进行研究,并不断探索制备工艺,只是到目前为止对于铁电陶瓷材料的一些性能的研究还没有达到令人满意的地步。比如,用于制备铁电复合材料的陶瓷粉体和聚合物的种类还很单一,对其复合界面的理论研究也刚刚开始,铁电记忆器件抗疲劳特性的研究还有待发展。总之,铁电陶瓷材料是一类具有广阔发展前景的重要功能材料,对于其特性的研究与应用还需要我们不断的探索,并给予足够的重视。

(指导教师:卢国锋) 参考文献:

[1] H. K. V arma, S. Sureshbabu. Oriented growth of surface grains in sintered β tricalcium

phosphate bioceramics[J]. Materials Letters., 2001, 49(2): 83-85.

[2] 联邦德国H·萨尔满H·舒尔兹著, 黄照柏译, 陶瓷学(下册). 陶瓷材料[M]. 北京, 轻工

业出版社, 2007, (2): 61-65.

[3] X. J. Wang, Z. Q. Gong, Y. F. Qian, et al. Oxygen-vacancy-related dielectric relaxation and

conduction mechanisms in Bi5TiNbWO15ceramics[J]. Chinese Physics., 2007, 16(3): 2131-2134.

[4] A. T. Kashi, I. H. Wata, G. Toto. Nanocomposite ceramics based on La- doped BaTi2O5 and

BaTiO3with high temperature independent permittivity and low dielectric loss[J]. Mater.

Trans., 2003, 44(5): 802-804.

[5] A. Y. Kishige, K. Fukano, H. Shigematsu. New ferroelectric BaTi2O5[J]. Jpn. Appl. Phys.,

2003, 42(5): L946-L949.

[6] 王栋, 徐卓, 冯玉军, 等. 用于电压调节器的PZST 反铁电陶瓷研究[J]. 压电与声光,

2005, 27(5): 532-534.

[7] 冯玉军, 徐卓, 郑曙光, 等. 反铁电爆电换能电源研究[J]. 西安交通大学学报, 2002,

36(6): 584-587.

[8] W. Y. Pan, Q. M. Zhang, A. S. Bhalla, and L. E. Cross. Field-forced

antiferroelectric-to-ferroelectric switching inmodified lead zirconate titanate stannate ceramics[J]. J. Am. Ceram. Soc., 2005, 72(6): 571-578.

Research Status of Ferroelectric Ceramics

YOU Xin-xin

(Class of Material Chemistry, Grade 2008, College of Chemistry and Life Science, Weinan Normal University)

Abstract:This paper discusses the research status of several typical ferroelectric ceramics, and new problems in research work. These ferroelectric ceramics materials mainly include layer ferroelectric ceramics, relaxation type ferroelectric ceramics, leaded ferroelectric ceramics, lead-free ferroelectric ceramics, and the antiferroelectric ceramics. Finally, the future research and application prospect of ferroelectric ceramics was introduced.

Keywords: Ferroelectric ceramics; Iron electrical; calcium titanium mine; research.

铁电陶瓷材料的应用以及生产工艺之七

铁电陶瓷材料的应用以及生产工艺之七 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可制作红外探测器等。也用于制造光阀、光调制器、激光防护镜和热电探测器等。 广泛应用于航天、军工、新能源产品。 这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。另一方面是顺便了解一下这特种陶瓷的用途。 室温研磨法固相反应制备铁电陶瓷粉末: ――机械合金化制备的铁电体:锆钛酸铅 锆钛酸铅(Pb(ZrxTi1-X)O,或PZT)是PT和锆酸铅(PbZrO3或PZ)的 固溶体,具有杰出的铁电、压电、热电和光电性能,广泛应用于传感器、声纳、微动台、旋转式激励器和热电传感器中。 有专家研究了用具有碳化钨筒和球的行星高能球磨机对(PbO、ZrO2和TiO2)混合物球磨不同时间后PZT相的形成情况。球磨4h没有形成PZT,但PbO衍射峰大大变宽并弱化,球磨15和24h后,PZT成为主要相。球磨过程中,相变会导致不同程度的体积膨胀。研究表明,延长球磨时间,体积膨胀程度减小,意味着未反应的氧化物数量减少。球磨24 h的混合物反应完全,故几乎没有观察到体积膨胀。 有专家通过行星球磨机对PbO、ZrO2、TiO2氧化物强化粉碎(高的 球磨速度和大的球料比)5—480min后发现,球磨lh便得到PZT相及少量未反应的ZrO2,球磨2h时后相组成相同,未反应的ZrO2量达到最少。对球磨粉末做比表面积测试后发现,球磨30min后其比表面积达到最大,并促进了初始氧化物间的反应,以致球磨1h后几乎得到纯PZT相,

简析生物陶瓷材料

简析生物陶瓷材料 姓名: 班级: 学号:

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统陶瓷材料的新型材料,有着传统陶瓷所不具备的特殊功能。随着材料科学的发展,生物陶瓷材料越来越为人们所重视和关注,应用也越来越广泛,成为生物医学材料中不可或缺的一部分。本文将回顾生物陶瓷材料的发展,介绍生物陶瓷材料的分类、性能和优点,并展望其发展热点。 关键词:生物陶瓷材料种类性能应用发展热点 现代医学中,人们对生物医学材料的需求越来越大,而在这众多生物材料中,目前应用比较广泛且生产工艺比较成熟的是生物陶瓷材料。它是指与生物体或生物化学有关的新型陶瓷。它能同人体骨骼起生物化学作用,导致成骨过程,使移植体或骨骼修补物能于人体组织长合在一起,从而达到治疗目的。 生物陶瓷材料的发展备受关注也越发迅速,本文将回顾生物陶瓷材料的发展,对其分类、性能、优点以及发展前景等作简要介绍。 1生物陶瓷材料的发展简史 当今人类社会使用的材料可分为三大类:金属及其合金材料、有机材料、无机非金属材料。这些材料都曾先后被用作人工硬组织的代替物, 并在应用中取得了宝贵的经验、教训。回顾历史, 可分为以下几个阶段。 1.1人工骨研究的启蒙阶段 18世纪前, 主要采用天然材料作为骨修复材料, 如柳枝、木、麻、象牙及贵金属等。 1.2自然发展阶段 约19世纪前, 由于冶金技术和陶瓷制备工艺的发展, 开始用纯金、纯银、铂等贵金属。 1.3探索阶段 20世纪中叶以前, 由于冶金的进步, 纯钦和钦合金年等被应用到人工骨领域, 开始有目的地探索新材料, 有机玻璃等高分子材料年也开始应用临床, 并在医学种植技术与病例选择方面积累了丰富经验,但基础理论的研究还很不深人。1.4迅速发展阶段 20世纪60年代初, 在新技术革命浪潮推动下, 材料科学迅速发展。人们开始有目的、有计划地探索、发现和合成新材料, 其中最有代表性的生物陶瓷的研究和应用获得了突飞猛进的发展。生物陶瓷的发展虽然还不到几十年, 但也同样经历了上述时期。起初以单晶氧化铝陶瓷为先导, 随后是多晶氧化铝、表面呈珊瑚状的氧化铝等。其后是生物活性陶瓷, 包括生物玻璃, 经基磷灰石和玻璃陶瓷类。 自20世纪70年代起, 生物陶瓷显露头角, 世界各国相继开展了理论和应用研究, 并且不断取得突破性进展。 2生物陶瓷材料的分类 2.1 根据其用途分类 根据用途,广义的生物陶瓷可以分为以下两大类: (1)植入陶瓷:又称生物体陶瓷,主要有人造牙、人造骨、人造心脏瓣膜、人

铁电陶瓷的制备及其研究

铁电陶瓷的制备及其研究 姓名:刘飞班级:无机普08-01 学号:2008440551 摘要:铁电陶瓷主晶相为铁电体的陶瓷材料。 关键词:钛酸钡;铁电粉体;溶胶-凝胶法;研究进展 0前言 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当 高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外 加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电 容器;利用其压电性可制作各种压电器件;利用其热释电性可制作红外探 测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作 存贮,显示或开关用的电控光特性,其具有很高的应用前景。 1 铁电陶瓷制备及实验方法 1.1固相反应法制备铁电陶瓷材料的原理及工艺流程 (1)固相反应法是制备功能陶瓷最成熟的方法,主要依靠固相扩散传质进行反应,通常具有以下特点:固相反应一般包括物质在相面上的反映和物质迁移两个过程;一般需要在高温下进行;整个固相反应速度由最慢的速度所控制。 (2)固相反应法制备铁电陶瓷的工艺流程: 1.2 实验方法及过程 (1)配料按制备0.1moL钛酸钡陶瓷计算原料的质量。按照以上计算值,用电子天平称取所需原料,实际称量时应记录实际称量值。 (2)一次球磨将配料所得的混合物,加入氧化锆球和去离子水进行球磨,将得浆料;球磨参数500转/分钟,球磨2小时; (3)一次烘干球磨后用去离子水清洗,将清洗后的浆料放入干燥箱中鼓风干燥,温度:95℃;时间:12小时;待配料干燥到恒重后取出用研钵进行研磨; (4)预烧将研磨后的混合物在1000-1200℃下保温4小时预烧

(5)二次球磨将预烧后的混合物加入氧化锆球和去离子水进行球磨,球磨参数500转/分钟,球磨2小时。 (6)二次烘干将我二次球磨后的浆料用去离子水清洗,将清洗后的浆料放入干燥箱中鼓风干燥,温度:95℃;时间:12小时;待配料干燥到恒重后取出用研钵进行研磨; (7)造粒向烘干后的粉体中加入液体石蜡(6%)完成造粒; (8)成型在15 MPa压力下将粉体压制成φ10mm×1mm 生坯片,用游标卡尺测量生坯片的直径。 (9)排胶和烧结采用适当的排胶制度以去除生坯片中的有机物,将排胶后的生坯片在1300-1350℃下保温2-6h烧结成瓷。 (10)性能测试用游标卡尺测量烧结得到的钛酸钡陶瓷的直径,并计算收缩率。用光学显微镜观察钛酸钡陶瓷的表面形貌,并用X射线衍射仪对陶瓷的晶体结构进行测量。 2 性能测试及分析 2.1普通烧成BT铁电陶瓷的物相分析 01-02组的BT铁电陶瓷的XRD图谱: 分析及说明:

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

铁电陶瓷

第四章铁电陶瓷 一、教学内容及要求 掌握铁电体的基本概念,理解电滞回线的形成,理解BaTiO3的结构与自发极化特性以及其介电性能的特点,掌握电畴的基本概念,电畴的成核与生长过程,180°畴和90°畴的异同。理解居里温区的相变扩张的机理,几种相变扩散的异同。掌握展宽效应,移动效应,重叠效应的作用机制。掌握铁电老化,铁电疲劳,去老化的概念。 二、基本内容概述 4.1概述 重点掌握的几个概念:自发极化、、剩余极化、、矫顽场、铁电体、电滞回线、电畴、铁电陶瓷 1、感应式极化:离子晶体中最主要的极化形式是电子位移极化和离子位移极化,这两种极化都属于感应式极化,极化强度大小依赖于外施电场。线性关系,E=0,P=0。 2、自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 3、铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。 4、电滞回线(hysteresis curve):铁电体在铁电态下极化对电场关系的典型回线。 5、电畴(domain):在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 6、畴壁(domain wall):畴的间界。 7、铁电相变:铁电相与顺电相之间的转变。当温度超过某一值时,自发极化消失,铁电体变为顺电体。 8、居里温度(Curie temperature or Curie point):铁电相变的温度。 9、铁电体的分类:1)按结晶化学;2)按力学性质;3)按相转变的微观机构;4)按极化轴多少。

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。也可用于制造光阀、光调制器、激光防护镜和热电探测器等。广泛应用于航天、军工、新能源产品。 这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。另一方面是顺便了解一下这特种陶瓷的用途。 一般性描述: 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热

释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 细分的品种有⑴层状铁电陶瓷,⑵弛豫型铁电陶瓷,⑶含铅型铁电陶瓷,⑷无铅型铁电陶瓷,⑸反铁电陶瓷材料,⑹可能的新型铁电陶瓷材料。

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

铁电陶瓷材料的研究现状和应用

铁电陶瓷材料的研究现状和应用 1、层状铁电陶瓷 (1)Bi系 目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。 (2)(Pb,Ba)(Zr,Ti)O3系 (Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。 2、弛豫型铁电陶瓷 弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) ?ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度Tm随ω的增加而向高温移动。该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。 3、含铅型铁电陶瓷 铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。

生物陶瓷材料的分类

惰性生物陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。 早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。 氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。 目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。 近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。 但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。 2 生物活性陶瓷材料 生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。 2.1 羟基磷灰石陶瓷 羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

铁电材料及其在存储器领域的应用

目录 摘要 (1) Abstract (1) 1 前言 (1) 2 压电材料 (2) 3 储能用铁电介质材料 (3) 3.1 BaTiO3基陶瓷 (3) 3.2 SrTiO3基陶瓷 (4) 3.3 TiO2陶瓷 (4) 3.4 PMN 基陶瓷以铌镁酸铅 (4) 4 有机铁电薄膜材料 (4) 5 铁电阻变材料 (5) 6 多铁性材料 (5) 7 铁电材料的应用 (5) 7.1 铁电存储器(MFSFET) (6) 7.2 铁电存储器的应用 (8) 8 结语 (9) 参考文献 (10)

铁电材料及其在存储器领域的应用 摘要:铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的应用概况。 关键词:铁电材料;铁电性;存储器;应用 Application of ferroelectric materials and in the area of memory Abstract:Ferroelectric materials, one of the current research focuses with numbers of physical advantages such as high integration, low energy consumption and fast response, has broad application prospects in many aspects.Being combined with other physical technologies,the properties of ferroelectric materials can be significantly improved.Describes the historical development of ferroelectric materials and current applications. Keywords:ferroelectric materials;Iron electrical;memorizer ;development 1前言 铁电材料,是指具有铁电效应的一类材料,最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的,这一发现揭开了研究铁电材料的序幕。在1935 年Busch发现了磷酸二氢钾KH2PO4——简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后,以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。集成铁电体是凝聚态物理和固体电子学领域的热门课题之一。铁电材料有着

铁电陶瓷材料

材料工程基础课程铁电陶瓷材料 院系:材料与冶金 专业:金属材料工程 班级:10-材料-1 学号:1061107127 姓名:周联邦 日期:2012-12-3

摘要:本文论述了铁电陶瓷的性质、原理、效应。着重介绍了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。 关键词:铁电陶瓷;铁电性;性质;效应;钙钛矿;应用;研究 铁电陶瓷是指具有铁电性的陶瓷。材料在一定温度范围内能够自发极化,且自发极化能随外电场取向的性质。 铁电陶瓷特性 铁电陶瓷,主晶相为铁电体的陶瓷材料。 它的主要特性为: (1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相; (2)存在电畴; (3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律; (4)极化强度随外加电场强度而变化,形成电滞回线; (5)介电常数随外加电场呈非线性变化; (6)在电场作用下产生电致伸缩或电致应变。 (7)电性能:高的抗电压强度和介电常数。低的老化率。在一定温度范围内介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。铁电陶瓷原理 某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。具有这种性能的陶瓷称铁电陶瓷。铁电陶瓷具有电滞回线和居里温度。在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。1941年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。 主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。 铁电陶瓷材料确定原则 铁电陶瓷配方的确定原则:先移后展,有所侧重;单独考虑,综合调整。 铁电陶瓷的三大效应 展宽效应、移动效应和重叠效应是铁电陶瓷改性的三大效应。 (1)铁电陶瓷居里峰的展宽效应 展宽效应:指铁电陶瓷的ε与温度关系中的峰值扩张得尽可能的宽旷平坦,即不仅使居里峰压低,而且要使峰的肩部上举,从而使材料既具有较小的温度系

【CN110002875A】一种利用钽改性铌酸钠锆酸钙基反铁电陶瓷储能的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910382737.7 (22)申请日 2019.05.09 (71)申请人 南昌航空大学 地址 330000 江西省南昌市丰和南大道696 号 (72)发明人 刘智勇 耿欣辉 张安 卢金山  (74)专利代理机构 南昌洪达专利事务所 36111 代理人 刘凌峰 (51)Int.Cl. C04B 35/495(2006.01) C04B 35/622(2006.01) C04B 35/626(2006.01) (54)发明名称一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法(57)摘要本发明公开了一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法,其特征在于:所述方法包括以下步骤,1)、称量一定量的ZrO 2、Ta 2O 5、CaCO 3、Na 2CO 3、Nb 2O 5进行混合后得到铌酸钠基体,然后往铌酸钠基体中添加摩尔百分数为0~70%的钽;2)、将混合后的粉料放入球磨罐中进行两次湿法球磨、干燥、过筛,并将压成坯体进行预烧;3)、完成后倒入球磨罐中进行第三次湿法球磨,干燥,过筛,完成后将粉体用模具压成圆片;4)、将圆片进行冷等静压,随后进行烧结;5)、烧结样品进行测试分析。本发明采用固相合成法,在一定乙醇溶液中进行湿法球磨,获得颗粒微细、粒径均匀原粉;采用热处理烧结工艺,制备 出高性能反铁电储能陶瓷。权利要求书1页 说明书3页 附图2页CN 110002875 A 2019.07.12 C N 110002875 A

权 利 要 求 书1/1页CN 110002875 A 1.一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法,其特征在于:所述方法包括以下步骤, 1)、称量一定量的ZrO2、Ta2O5、CaCO3、Na2CO3、Nb2O5进行混合后得到铌酸钠基体,然后往铌酸钠基体中添加摩尔百分数为0~70%的钽; 2)、将混合后的粉料放入球磨罐中进行两次湿法球磨、干燥、过筛,并将压成坯体进行预烧; 3)、完成后倒入球磨罐中进行第三次湿法球磨,干燥,过筛,完成后将粉体用模具压成圆片; 4)、将圆片进行冷等静压,随后进行烧结; 5)、烧结样品进行测试分析。 2.根据权利要求1所述的一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法,其特征在于:所述步骤2)和步骤3)中湿法球磨中粉、球磨球和球磨介质的质量比例为1:0.8: 2,球磨时间为4~30h。 3.根据权利要求1所述的一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法,其特征在于:所述步骤4)中烧结工艺的温度为1100℃~1500℃,烧结时间为1~24h。 4.根据权利要求1所述的一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法,其特征在于:所述步骤4)中冷等静压的条件:压力为180Mpa,静压3min。 2

铁电陶瓷

铁电陶瓷材料的研究现状 尤欣欣 (渭南师范学院化学与生命科学学院,08级材料化学1班)摘要:本文论述了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。 关键词:铁电陶瓷;铁电性;钙钛矿;研究 0前言 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线; (5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 为此,本文对层状铁电陶瓷、弛豫型铁电陶瓷、含铅型铁电陶瓷、无铅型铁电陶瓷以及反铁电陶瓷材料的研究现状和应用情况进行了综述,为未来的新型铁电陶瓷的研究提供参考。 1层状铁电陶瓷

铁电陶瓷材料工艺

样品的制备及测试仪器(钛酸锶钡) 本实验采用传统的固相反应法制备铁电陶瓷材料,具体工艺流程如下:1 原料选择与处理 实验所用的原料纯度和特性如下表所示。其中BaCO 3、TiO 2 在配方中所占的 比例较大,Na 2CO 3 吸湿性较强,为保证化学计量比精确,称量前将这些粉料应先 放在烘箱中烘干。 表2-1 原料的相关特性 这些原料有如下特性[29][30] 在1450 ℃时,BaCO 3分解为BaO,CO 2 ,在TiO 2 参与下,BaCO 3 在650 ℃时就 开始分解,至1020 -1060℃时分解结束。TiO 2 俗称钛白粉,是细分散的白色到浅黄色粉末,它有三种晶型:四方晶系(650℃以下)、斜方晶系(650-915℃)、 三方晶系(915℃以上)。Na 2CO 3 俗称苏打、纯碱,稳定性较强,在高温下分解

成氧化钠和二氧化碳。 本实验反应方程式为: 2x )1(x )1(325223CO )2 1(Nb Ti Na Ba CO Na 2O Nb 2TiO )1(BaCO )1(x x x x x x x -+→++ -+--- (2-1) 2.配料 按化学计量式计算出配方中的各个物质所需的质量,再用德国A210P 电子天平仪(精度为0.1mg)称量原料。先称量量较多的BaCO 3,再称量微量原料Na 2CO 3和Nb 2O 5,最后称量量较多的TiO 2,按顺序依次加入球磨罐中。这样,可以防止微量原料沾在罐壁或玛瑙球上,造成坯料混合不均匀,影响实验精确度。 3. 混合球磨 采用XQM-L 变频行星球磨机进行混合球磨。加入相当于总粉料质量60%的超纯水湿磨混合,这样分散性、均匀性都较好。球磨机的转速为200转/分钟,球磨时间为4h 4. 预 烧 用蒸馏水将球磨后粉料洗出,放入干燥箱中烘干,并将烘干后的粉末放入玛瑙钵中研磨均匀,再倒入坩埚,压紧,置于预烧炉中,进行预烧,预烧气氛为空气。预烧结束后粉末随炉温自然冷却。依据主要原料的分解温度和相关文献的报道,以及烧结炉的条件,本实验的预烧温度设定为1050-1100℃,升温速率为200℃/h ,保温2小时。粉料预烧的目的是使混合料部分经过煅烧预先合成主晶相,获得高活性粉体,并使原料中易挥发物排除,减小陶瓷烧成时的收缩率。预烧温度和保温时间是预烧过程中最重要的两个工艺参数,两者可以互相补充,相互制约。可以根据预烧粉料的XRD 图以及陶瓷最终的烧结特性和性能来确定预烧温度,升温曲线以及保温时间。一般说来,如果预烧后不结块,不过硬,便于粉粹,则比较合适, 5. 精 磨 将预烧好的粉料再次放入玛瑙球磨罐中加入一定量的蒸馏水球磨。球磨转速

生物活性陶瓷材料

生物活性陶瓷材料 生物活性陶瓷包括表面活性玻璃、表面活性玻璃陶瓷和羟基磷灰石3种类型。它们的共同特点是:它们与原骨相结合时,在界面处无纤维状的组织,它们的表面可与生理换进发生选择性的化学反应,所形成的界面能保护移植物而防止降解。特别要指出的是它们的化学成分与动物的骨头和牙齿等硬组织相似,这类材料的组成中含有能够通过人体正常的新陈代谢途径进行置换的钙、磷等元素,或含有能与人体组织发生键合的羟基等基团。它们的表面同人体组织可通过键的结合达到完全的亲和;它们之间具有良好的化学亲和性。这类材料对动物体无毒、无害、无致癌作用,生物相容性极佳。 1 生物活性玻璃 玻璃是熔融、冷却、固化的非晶态无机物,具有良好的耐腐蚀、耐热和电学、光学性质,能够用多种成型和加工方法制成各种形状和大小的制品,亦可调整化学组成改变其性能,以适应不同的使用要求。作为生物活性玻璃,主要是指含有氧化钙和五氧化二磷的磷酸盐玻璃。 Hench研制的Na2O-CaO-SiO2-P2O5系生物玻璃组成及其与骨结合过程。 CaO-SiO2-P2O5系玻璃水泥硬化及羟基磷灰石的形成机理。 生物玻璃的活性控制 Kokubo研制的A-W生物活性玻璃陶瓷具有较高的力学强度,其与骨键合的界面结合强度均高于材料本身或者骨组织的强度。 表 1 生物活性玻璃陶瓷的应用

2 磷灰石 磷灰石是骨骼、牙本质和牙釉质等硬组织的主要成分。骨的成分中约65%是羟基磷灰石,其余成分为纤维蛋白胶原。研究表明,骨的纳米结构的主要基本单元是针状和柱状的磷灰石晶体,它们或定向和卷曲排列,或相互缠结,构成多种织构,不同的织构形成了骨在纳米尺寸上的功能单元,如束状结构和团聚结构适合于承受高强度,而卷曲和疏状交织结构具有很好的韧性,并有利于营养物的传递。 磷灰石的结构 可将磷灰石归为一大类,磷灰石所代表的物质具有广泛的化学组成,用化学分子式可以表示为:A10(MO4)6X2,A是1价、2价、3价的阳离子,如Ca、Ba、Mg、Sr、Pb、Cd、Zn、Ni、Fe、Al、La等M是P、As、V、S、Si等;X是F、OH、Cl、O、CO3等。 羟基磷灰石HA是磷灰石的一种,其分子式为Ca10(PO4)6(OH)2,Ca/P=1.67。HA晶体为六方晶系,属L6PC对称型和P63空间群,其结构为六角柱体,与c 轴垂直的面是一个六边形,a、b轴夹角120°。 以莫氏硬度计测得羟基磷灰石硬度为5,介于最硬的金刚石硬度10与最软的滑骨硬度1之间,与窗玻璃大致相同。 表 2 弯曲强度比较

生物陶瓷材料的研究进展

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统材料的新型材料,生物陶瓷有着传统陶瓷所不具备的优异性能。生物陶瓷在医学上的应用将极大的促进生物陶瓷的发展。与有机高分子材料相比生物体陶瓷耐热性好,便于进行高压灭菌等。本文通过大量的文献阅读介绍了生物陶瓷的分类,生物陶瓷的物理化学性质以及生物陶瓷的应用前景。此外本文还对一些生物陶瓷生产工艺做了简单介绍,并对生物陶瓷未来的发展做了合理展望。 关键词:特殊功能,纳米生物医用,生产工艺 1.生物陶瓷的分类及应用 生物陶瓷材料根据其在生物体内的活性可分为惰性生物陶瓷材料和活性生物陶瓷材料。 1.1惰性生物用瓷 生物惰性陶瓷主要是指化学性能稳定, 生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定, 分子中的键力较强, 而且都具有较高的机械强度, 耐磨性以及化学稳定性, 它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等, 又分为以下几种: 1.1.1单晶、多晶和多孔氧化铝 单晶氧化铝:具有相当高的抗弯强度,耐磨性能好, 耐热性好, 可以直接与骨固定。已被用作人工骨、牙根、关节、螺栓。并且该螺栓不生锈, 也不会溶解出有害离子, 与金属螺栓不同, 勿需取出体外。60 年代后期, 广泛用作硬组织修复。多晶化学性能十分稳定, 几乎不与组织液发生任何化学反应, 硬度高,机械强度高。总之氧化铝陶瓷具有良好的组织亲和性, 这是因为其表面具有亲水性, 即氧化铝结晶表面氧原子能捕获水分子而产生极化现象, 结果在其表面覆盖一层羟基, 它能吸附水分子, 在表面形成亲水层, 使表面呈强极性, 易被组织液浸润。在极性层外间构成水——金属离子——蛋白质的“三明治”式结构, 形成周期的氧化铝生物相容性。 氧化铝陶瓷和单晶氧化铝。氧化铝陶瓷由氧化铝粉料烧结制成, 单晶氧化铝可用引上法或火焰熔融法制取。氧化铝陶瓷表面为亲水性, 与生物体组织有良好的生物亲合性。目前, 在临床实用中除做人造骨、人造关节外, 还可制接骨用螺钉。 1.1.2氧化锆陶瓷 部分稳定的氧化锆和氧化铝一样, 生物相容性良好, 在人体内稳定性高, 且比氧化铝断裂韧性、耐磨性更高, 有利减少植入物尺寸和实现低摩擦、磨损, 用以制造牙根、骨、股关节、复合陶瓷人工骨、瓣膜等。 1.1.3碳素类陶瓷 包括碳素、玻璃碳、碳纤维及热解石墨等, 其成分是碳元素, 玻璃碳的强度差, 在1300~ 1500℃加热分解碳氢化合物得到的热解石墨微粒, 质地致密 坚硬; 碳纤维强度大, 挠性好。在20 世纪60 年代人们发现它们具有血液相容

相关文档
最新文档