常微分方程-第四章习题解答

常微分方程四、五章作业答案 (1)

《常微分方程》第四、五章作业答案 第四章 1.证明:由题可知()t x 1,()t x 2分别是方程(1),(2)的解 则:()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 111 1111=+++--Λ (3) ()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 221 2112=+++--Λ (4) 那么由(3)+(4)得: ()()()()()()() ()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211 211121Λ()t f 1+()t f 2 即()t x 1+()t x 2是方程是()()=+++--x t a dt x d t a dt x d n n n n n Λ111()t f 1+()t f 2的解。 2.(1)特征方程为:42540λλ-+= 特征根为12341,1,2,2λλλλ==-==- 原方程通解为:221234()t t t t x t c e c e c e c e --=+++ (2)特征方程为:5340λλ-= 特征根为1230,2,2λλλ===-,其中10λ=是三重根 原方程通解为:22212345()t t x t c c t c t c e c e -=++++ (3)特征方程为: 22100λλ++= 特征根为:1,213i λ=-± 通解为:12()(cos3sin 3)t x t c t c t e -=+ (4)原方程对应的齐线性方程的通解为: 123456*()()cos ()sin t t x t c e c e c c t t c c t t -=+++++ 下求原方程的特解. 设原方程的特解为:2()x t At Bt C =++ 代入方程有: 2243A At Bt C t -+++=- 故1,0A C B ===

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

高一直线与方程练习题及答案详解

直线与方程练习题 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足() A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为() A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过() A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是() A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足() A .0≠m B .2 3-≠m C .1≠m D .1≠m ,2 3-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是() A .524=+y x B .524=-y x C .52=+y x D .52=-y x 8.若1(2,3),(3,2),(,)2 A B C m --三点共线 则m 的值为( ) A.21 B.2 1- C.2- D.2

9.直线x a y b 22 1-=在y 轴上的截距是() A .b B .2b - C .b 2 D .±b 4.直线13kx y k -+=,当k 变动时,所有直线都通过定点() A .(0,0) B .(0,1) C .(3,1) D .(2,1) 10.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关() A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 二、填空题 1.点(1,1)P -到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 4.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。 三、解答题 1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。 2.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.

常微分方程第5章答案

1.给定方程组 x = x x= (*) a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解. b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= = u (t)= = u(t) 又v(0)= = v (t)= = = v(t) 因此u(t),v(t)分别是给定初值问题的解. b) w(0)= u(0)+ u(0)= + = w (t)= u (t)+ v (t) = + = = = w(t) 因此w(t)是给定方程初值问题的解. 2. 将下面的初值问题化为与之等价的一阶方程组的初值问题: a) x +2x +7tx=e ,x(1)=7, x (1)=-2 b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0 c) x(0)=1, x (0)=0,y(0)=0,y (0)=1 解:a)令x =x, x = x , 得 即 又x =x(1)=7 x (1)= x (1)=-2 于是把原初值问题化成了与之等价的一阶方程的初值问题: x =x(1)= 其中x=. b) 令=x ===则得: 且(0)=x(0)=1, = (0)=-1, (0)= (0)=2, (0)= (0)=0 于是把原初值问题化成了与之等价的一阶方程的初值问题: = x(0)= , 其中x= . c) 令w =x,w =,w =y,w =y ,则原初值问题可化为: 且 即w w(0)= 其中w= 3. 试用逐步逼近法求方程组 =x x= 满足初始条件 x(0)= 的第三次近似解.

常微分方程第一章

第一章一阶微分方程 1、1学习目标: 1、理解微分方程有关得基本概念,如微分方程、方程阶数、解、通解、初始条件、初值问题等得定义与提法、掌握处理微分方程得三种主要方法: 解析方法, 定性方法与数值方法、 2、掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程得猜测检验法, 常数变易法与积分因子法, 灵活运用这些方法求解相应方程, 理解与掌握一阶线性方程得通解结构与性质、 3、能够大致描述给定一阶微分方程得斜率场, 通过给定得斜率场描述方程解得定性性质; 理解与掌握欧拉方法, 能够利用欧拉方法做简单得近似计算、 4、理解与掌握一阶微分方程初值问题解得存在唯一性定理, 能够利用存在唯一性定理判别方程解得存在性与唯一性并解决与之相关得问题, 了解解对初值得连续相依性与解对初值得连续性定理, 理解适定性得概念、 5、理解自治方程平衡点, 平衡解, 相线得概念, 能够画出给定自治方程得相线, 判断平衡点类型进而定性分析满足不同初始条件解得渐近行为、 6、理解与掌握一阶单参数微分方程族得分歧概念, 掌握发生分歧得条件, 理解与掌握各种分歧类型与相应得分歧图解, 能够画出给定单参数微分方程族得分歧图解, 利用分歧图解分析解得渐近行为随参数变化得状况、 7、掌握在给定得假设条件下, 建立与实际问题相应得常微分方程模型, 并能够灵活运用本章知识进行模型得各种分析、 1、2基本知识: (一)基本概念 1.什么就是微分方程: 联系着自变量、未知函数及它们得导数(或微分)间得关系式(一般就是 指等式),称之为微分方程、 2.常微分方程与偏微分方程: (1)如果在微分方程中,自变量得个数只有一个,则称这种微分方程为常微分方程,例 如, 、 (2)如果在微分方程中,自变量得个数为两个或两个以上,则称这种微分方程为偏微 分方程、例如, 、 本书在不特别指明得情况下, 所说得方程或微分方程均指常微分方程、 3.微分方程得阶数: 微分方程中出现得未知函数最高阶导数得阶数、例如, 就是二阶常微分方程; 与就是二阶偏微分方程、 4.n阶常微分方程得一般形式: , 这里就是得已知函数,而且一定含有得项;就是未知函数,就是自变量、 5.线性与非线性: (1) 如果方程得左端就是及得一次有理式,则称为n阶线性微分方程、

常微分方程第四章考试卷

常微分方程第四章测试试卷(3) 班级 姓名 学号 得分 一、 填空(20分) 1.——————称为n 阶齐线性微分方程。 2.1x )(t 非零为二阶齐线性方程''x 1a +)(t 2'a x +x t )(≡0的解,这里 ()t a 1 和()t a 2于区间[]b a ,上连续,则()t x 2 是方程解的冲要条件是― ——————。 3.常系数非齐线性方程中,若()()t m m m m e b t b t b t b t f λ++++=--1110 , 其中λ与i b 为实常数,那么方程有形如————的特解。 4.在n 阶常系数齐线性方程中,n a a a ,2,1 为常数,则它的特征方程为——————。 5.若方程()()022=++y x q dx dy x p dx y d 中满足————条件,则方程有形 如∑∞ ==0 n n n x a y 的特解。 6.微分方程03'2'''4=++y y xy 的阶数为——。 7.设()01≠t x 是二阶齐线性方程()()0'''21=++x t a x t a x 的一个解,则方程的通解可表为________ 8.解线性方程的常用方法有____、_____、_____、_____ 9.若())2,1,0(n i t x i =为齐线性方程的n 个线性无关解,则这一齐线性方程的通解可表为__________. 10.若()),,2,1(n i t x i =为齐线性方程的一个基本解组,()t x 为非齐线性方程的一个特解,则非齐线性方程的所有解可表___.

二. 计算(30分) 1. 求通解y y y 2'1''2 += 2. 求特解x x e xe y y y -=+-'2'',()()11'1==y y 3. 设二阶非齐线性方程的三个特解为 x x y x x y x y cos ,sin ,321+=+== 求其通解 4. 求解方程()()o y x y x xy =+++-2'12'' ()0≠x 5. 求方程2233'4'''''x xy y x y x =-+的通解 6. 求方程0'''=--y xy y 的解、 三.设可导函数()x φ满足()()1sin 2cos 0+=+?x tdt t x x x φφ,求()x φ 四.证明题(20分) 1.若函数()()()t x t x t x n ,,,21 为n 阶齐线性方程的n 个线性相关解,则它们的伏朗斯基行列式()0=t w 2.试证n 阶非齐线性方程存在且最多存在n+1个线性无关解。

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

常微分方程第五章微分方程组总结

一.线性微分方程组的一般理论 1. 线性微分方程组一般形式为: 1111122112211222221122()()()(),()()()(), 1 , ()()()(),n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++??????'=++++? () 记: 1112121 22212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ??????=?????? '????????????'??????'===????????????'?????? 非齐次线性方程组表示为: ()() x A t x f t '=+ 齐次线性方程组表示为: ()x A t x '= 2.齐次线性方程组的一般理论 (1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ? 是齐次方程组()x A t x '= 的k 个 解,则它们的线性组合1212()()()n n c x t c x t c x t ++?+ 也是齐次方程组的解,这里 12,,,n c c c ?是任意常数 (2)向量函数线性相关性 定义在区间],[b a 上的函数12(),(),,()n x t x t x t ? ,如果存在不全为零的常数

常微分方程第4章习题答案

习 题 4—1 1.求解下列微分方程 1) 22242x px p y ++= )(dx dy p = 解 利用微分法得 0)1)( 2(=++dx dp p x 当 10dp dx +=时,得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解 22 242y p px x p x c ?=++?=-+? 或消参数P ,得通解 )2(2 122x cx c y -+= 当 20x p +=时,则消去P ,得特解 2x y -= 2)2()y pxlnx xp =+; ??? ? ?=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ??++= ??? 当0=+p dx dp x 时,得 c px = 从而可得原方程以p 为参数的参数形式通解: 2 ()y pxln xp px c ?=+?=? 或消p 得通解 2y Clnx C =+ 当20lnx xp +=时,消去p 得特解 21()4 y lnx =- 3)() 21p p x y ++= ??? ??=cx dy p 解 利用微分法,得 x dx p p p - =+++22 11 两边积分得 () c x P P P =+++2211

由此得原方程以P 为参数形式的通解: 21(p p x y ++= ,() .11222c x p p p =+++ 或消去P 得通解 222)(C C X y =-+ 1. 用参数法求解下列微分方程 1)45222=?? ? ??+dx dy y 解 将方程化为 2215 42=??? ??+dx dy y 令2sin y t = 2cos 5 dy t dx = 由此可推出 1 515(2sin )22cos 2 cos 5dx dy d t dt t t ===从而得 c t x +=25 因此方程的通解为 52x t c = + ,2sin y t = 消去参数t ,得通解 22sin ()5 y x C =- 对于方程除了上述通解,还有2±=y , 0=dx dy ,显然 2=y 和2-=y 是方程的两个解。 2)223()1dy x dx -= 解:令u x csc =, u dx dy cot 31-= 又令tan 2 u t = 则t t u x 21sin 12+==

必修二《直线与方程》单元测试题(含详细答案)之欧阳学创编

第三章《直线与方程》单元检测 试题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.已知点A(1,3),B(-1,33),则直线AB的倾斜角是() A.60°B.30° C.120°D.150° [答案]C 2.直线l过点P(-1,2),倾斜角为45°,则直线l的方程为() A.x-y+1=0 B.x-y-1=0 C.x-y-3=0 D.x-y+3=0 [答案]D 3.如果直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为() A.-3 B.-6

C.3 2D.2 3 [答案]B 4.直线x a2- y b2=1在y轴上的截距为() A.|b| B.-b2 C.b2D.±b [答案]B 5.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是() A.0 B.-4 C.-8 D.4 [答案]C 6.如果AB<0,BC<0,那么直线Ax+By+C=0不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]D 7.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是() A.-2 B.-7 C.3 D.1 [答案]C 8.经过直线l1:x-3y+4=0和l2:2x+y=5=0的

交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0 D .19x -3y =0 [答案] C 9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27) C .(27,17) D .(17,114) [答案] C 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D 11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2 [答案] B 12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )

第五章常微分方程习题

第五章 常微分方程 §1 常微分方程的基本概念与分离变量法 1. xy dx dy 2=,并求满足初始条件:0,1x y ==的特解. 2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5. x y dy e dx -= 答案 1.通解2 x y ce =;特解2 x y e = 2.通解1ln 1y c x = ++;另有解0y =;特解11ln 1y x = ++ 3.ln ;0x y xy c y -+== 4.1ln y cy x += 5.y x e e c =+ §2 一阶线性微分方程 1.(1)( )是微分方程。 (A ) (B ) (C ) (D ) (2)( )不是微分方程。 (A ) (B ) (C ) (D )

2.求微分方程的通解 ;(2)。 (1) 3.求微分方程的特解 (1);(2) 4.解下列微分方程 ;(2); (1) 答案1.(1)B;(2)C 2.(1)y=cx;(2)y4-x4=C。 3.(1)2/x3;(2)。 4.(1); (2)y=Csinx; §3 二阶常系数线性微分方程 1.求下列微分方程的通解 ;(2); (1) (3) (5) 2.求微分方程的特解 3.求下列微分方程的通解

(1) ; (2) ; (3) ; (4) 。 4.求方程2100y y y '''++=满足初始条件0 2x y ==和01x y ='=的特解 5.求方程221y y y x '''+-=+的一个特解 6.求方程22x y y y xe '''+-=的一个特解 7.求方程32(41)x y y y x e '''-+=-的一个特解 答案 1.(1) ; (2) ; (3) ; (4) ; (5) ; (6) 。 2. 3.(1) ; (2) ; (3) ; (4) 。

常微分方程第四章考试卷1

常微分方程第四章测验试卷(1) 班级 姓名 学号 得分 一、 填空(30分) 1、如果),...,2,1)((n i t x i =为齐线性方程的n 个线性无关解,则这 一齐线性方程的所有解可表为————————————————。 2、形如————————————————的方程称为欧拉 方程。 3、如果),...,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x i 为非齐线性方程的一个特解,则非齐线性方程的所有解可表为————————————。 4、设0)(1≠t x 是二阶齐线性方程021=+'+''x a x a x 的一个解,则方程的通解可表为—————————————————————。 5、微分方程t x x 3 sin 1 = +''的基本解组为——————————。 6、函数组t t t e e e 2,,-的伏朗基行列式为—————————。 7、若),...,2,1)((n i t x i =b t a ≤≤上线性相关,则伏朗基行列式满足——————。 8、解线性方程的常用方法有————、————、————、————。 9、n 阶齐线性方程的线性无关解的最大个数为————。 二、 计算(50分) 1、 求32254+=-'+''-'''t x x x x 的通解。 2、 求方程0)()(32='+'-''x x x x

3已知。的解,试求方程的通解是0sin 2=+'+''= x x x t t x t 4、求方程t t x x t x t ln 22=+'-''的通解。 5、的解。求方程1)0()0()0()0(,2)4(='''=''='==+x x x x e x x t 三、 证明题(20分) 1、 ),...,2,1)((n i t x i =是齐次线性方程组的n 个解,则有:当 )()......,(1t x t x n 在[a,b]上线性无关时,伏朗斯基行列式w(t)≠0, t ],[b a ∈. 2、若()(1,2)i x t i =是非齐次线性方程43sin x x x x ''''''++=的2个解,则 有:当12lim ()()n x t x t →∞ -存在。

高中数学直线与方程习题及解析

1.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意, 由光的反射定律得k P A =-k PB , 即3x +1=13-x ,解得x =2,即P (2,0). 2.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上, 求边AB 与AC 所在直线的斜率. 解 如右图,由题意知∠BAO =∠OAC =30°, ∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°, ∴k AB =tan 150°=-33 , k AC =tan 30°=33 . 3.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c 的大小. 解 画出函数的草图如图,f (x )x 可视为过原点直线的斜率. 由图象可知:f (c )c >f (b )b >f (a )a . 4.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD . (2)已知直线l 1的斜率k 1=34 ,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值. (1)证明 由斜率公式得: k AB =6-310-5=35 , k CD =11-(-4)-6-3=-53, 则k AB ·k CD =-1,∴AB ⊥CD . (2)解 ∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1,解得a =1或a =3. 5. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状. 解 由斜率公式得k OP =t -01-0 =t ,

常微分方程第1章教案

第一章 绪论 定义:指含有未知量的等式. 代数方程:2210x x -+ = 1=,3121x x x --=+ 超越方程:sin cos 1x x +=,221x e x x =+- 以上都是一元方程,一般形式可以写成()0F x = 二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210 x y z ++-=等等 根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算 一、引例 例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程. 解:设所求曲线的方程为()y f x =,由题意 1d 2(1)d 2(2)x y x x y =?=???=? 由(1)得2d y x x =?,即2y x C =+ (3) 把条件“1x =时,2y =,”代入上式(3)得221 C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+ 例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式 00 220d 0.4(4) d d 20(5)d 0*t t t s t s v t s ===?=-???==???=??() 把式(4)两端积分一次,得1d 0.4d s v t C t = =-+ (6)

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(222222222 2)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++-=?++-+=?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++= =++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+=?=?=+-=+-=?-+-=?-=?-=?=+=++?++++==+=(特解)解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32323232sin 2cos 231313322323232 2sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=?=?=?=-+=?=?-=?=+=-+?=+-+?=-++?-(通解) 2.用参数法求解下列微分方程:、接口不严等问题,合电气设备进行调试工作案。高中资料试卷保护装置调

完整高中数学直线与方程习题及解析

点的P反射后通过点B(3,1),求射向(-1,3)x轴,经过x轴上的点P1.一条光线从点A坐标.0013--13 k=-=,,依题意,=,则k=0)设解P(x,PBAP x--1x3x-+3-1x由光的反射定律得k=-k,PBAP31即=,解得x=2,即P(2,0).x+13-x2.△ABC为正三角形,顶点A在x 轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜 率. 解如右图,由题意知∠BAO=∠OAC=30°, ∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°, 3,=-tan 150°∴k=AB33. ==tan 30°k AC3f?a?f?b?f?c?3.已知函数f(x)=log(x+1),a>b>c>0,试比较,,的大小.2abcf?x? 可视为过原点直线的斜率.画出函数的草图如图,解xf?c?f?b?f?a?由图象可知:>>. cba 4.(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11),求证:AB⊥CD. 32+1)且l,a⊥l,求实数(3,直线l经过点Aa,-2),B(0k(2)已知直线l的斜率=211124a的值.(1)证明由斜率公式得: 6-33 =,=k AB55-1011-?-4?5=-,=k CD3-6-3则k·k=-1,∴AB⊥CD. CDAB(2)解∵l ⊥l,∴k·k=-1,2121+1-?-2?2a3即=-1,解得a=1或a=3. ×40-3a 5. 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0)、的形状.OPQR试判断四边形>0.t,其中2)t,2-(R、)t+2t,2-(1Q、)t,(1P. 0t-,t==由斜率公式得k解OP01-t-0-2-?2+t?21==t,k=-,==k ORQR t-2t-?1-2t?-1-2t-02+t-t12=-=. =k PQ tt-212t-1-. PQ,OR∥OP∴k=k,k=k,从而∥QR PQQROPOR为平行四边形.∴四边形

常微分方程第一章初等积分法

第一章 初等积分法 方程对于学过中学数学的人来说是比较熟悉的,在初等数学中就有各种各样的方程,比如线性方程、二次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知量和未知量之间的关系找出来,列出包含一个未知量或几个未知量的一个或者多个方程式,然后求取方程(组)的解.这里,方程(组)的解为常数. 然而在实际生活中,常常出现一些特点和以上方程完全不同的问题.比如:求物体在一定条件下运动的规律(比如某物体做匀速直线运动,速度为5,求其位移变化的规律);求满足一定条件(比如在某曲线任意点处的斜率为该点横坐标的2倍)的曲线的方程等等. 物体运动规律、曲线方程在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求出一个或者几个未知的函数. 在数学上,解决上述问题也需要建立方程,不过建立的是含有未知函数自变量、未知函数及未知函数的导数的方程(比如上述两个问题建立的方程为: 5=dt ds ,x dx dy 2=) ,这类方程就叫做微分方程. 本章主要介绍微分方程的基本概念及几类简单的微分方程的解法. 1.1 微分方程的基本概念 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现.而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为:微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系.而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一

常微分方程考研讲义第四章 高阶微分方程

第四章高阶微分方程 [教学目标] 1. 理解高阶线性微分方程的一般理论,n阶齐次(非齐次)线性微分方程解的性质与 结构,熟练掌握n阶常系数齐次线性微分方程的待定指数函数解法。 2.掌握n阶非齐次线性微分方程的常数变易法,理解n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。 3.熟练欧拉方程与高阶方程的降阶法和幂级数解法。 4.掌握高阶方程的应用。 [教学重难点]重点是线性微分方程解的性质与结构,高阶方程的各种解法。难点是待 定系数法求特解。 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容]线性微分方程的一般理论,齐次(非齐次)线性微分方程解的性质与结构,非齐次线性微分方程的常数变量易法;常系数线性方程与欧拉方程的解法,非齐线性 方程的比较系数法与拉氏变换法;高阶方程的降阶法和幂级数解法及高阶方程的应用。[考核目标] 1.理解高阶线性微分方程的一般理论,能够求解高阶常系数线性微分方程。 2.掌握n阶非齐次线性微分方程的常数变易法。 3.n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。 4.熟练高阶方程的降阶法和幂级数解法及高阶方程的应用。 §4.1线性微分方程的一般理论 4.1.1引言 讨论n阶线性微分方程

1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (4.1) 其中()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数 如果()0f t ≡,则方程(4.1)变为: 1111()() ()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (4.2) 称它为n 阶齐线性微分方程,而称一般的方程(4.1)为n 阶非齐线性微分方程,并且通常把方程(4.2)叫对应于方程(4.1)的齐线性方程。 定理1 如果()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数,则对于任一 []0,t a b ∈ (1)(1) 000 ,,,n x x x - ,方程(4.1)存在唯一解()x t ?=,定义于区间a t b ≤≤上,且满足初始条件: 1(1)(1)0000001 ()()(),,,n n n d t d t t x x x dt dt ???---=== (4.3) 从这个定理可以看出,初始条件唯一地确定了方程(4.1)的解,而且这个解在所有()(1,2,,)i a t i n = 及()f t 连续的整个区间a t b ≤≤上有定义。 4.1.2 齐线性方程的解的性质与结构 讨论齐线性方程 1111()() ()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (4.2) 定理2(叠加原理)如果12(),(),,()k x t x t x t 是方程(4.2)的k 个解,则它们的线性组合1122()()()k k c x t c x t c x t +++ 也是(4.2)的解,这里12,,,k c c c 是任意常数。 特别地,当k n =时,即方程(4.2)有解 1122()()()n n x c x t c x t c x t =+++ (4.4) 它含有n 个任意常数。在什么条件下,表达式(4.4)能够成为n 阶齐线性方程(4.2)的通解?为了讨论的需要,引进函数线性相关与线性无关及伏朗斯基()Wronsky 行列式等概念。 设12(),(),,()k x t x t x t 是定义在区间a t b ≤≤上的函数,如果存在不全为零的常数 12,,,k c c c ,使得恒等式 1122()()()0k k c x t c x t c x t +++≡

相关文档
最新文档