基本初等函数(整理).doc

基本初等函数(整理).doc
基本初等函数(整理).doc

1.1 初等函数图象及性质

1.1.1 幂函数

1函数(μ是常数)叫做幂函数。

2幂函数的定义域,要看μ是什么数而定。

但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。

3最常见的幂函数图象如下图所示:[如图]

4

2

-551015

-2

-4

-6

4①α>0时,图像都过(0,0)、(1,1

注意α>1与0<α<1的图像与性质的区别.

②α<0时,图像都过(1,1)点,在区间(0

上无限接近y轴,向右无限接近x轴.

③当x>1时,指数大的图像在上方.

1.1.2 指数函数与对数函数

1

.指数函数

1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。

2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上

方,且通过点(0,1)。

若a>1,指数函数是单调增加的。若0

是单调减少的。

a >1

0<a <1

图 象

性 质

(1)定义域:R (2)值域:(0,+∞) (3)过点(0,1) (4)在R 上增函数

(4)在R 上减函数

有理指数幂的意义、幂的运算法则:

①m

n

m n

a a a

+?=;②()m n mn

a a

=;③()n n n

ab a b =(这时m,n 是有理数)

分数指数幂:n

m

n m

n n

n m n

m n

n

a

a a

a

a a a a 1

,1,,1====

-

-。

2.对数函数

由此可知,今后常用关系式,如:

指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。

对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。

的图形总在y轴上方,且通过点(1,0)。

若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。

若0

对数函数的图象和性质

a>1 0

图象

3

2.5

2

1.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-112345678

1

1

3

2.5

2

1.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-112345678

1

1

性质定义域:(0,+∞)

值域:R

过点(1,0),即当x=1时,y=0

x∈(0,1)时y<0

x∈(1,+∞)时y>0

x∈(0,1)时y>0

x∈(1,+∞)时y<0 在(0,+∞)上是增函数在(0,+∞)上是减函数

重要公式:

⑴负数与零没有对数; ⑵log a 1=0,log a a =1

⑶对数恒等式N a

N

a =log

(4) log a a b =b 运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log a (MN )=log a M +log a N ;

(2)log a M

N =log a M -log a N ;

(3)1

log log ;log log n

n a a a a M n M M M n

==

对数换底公式:

log a N =log m N

log m a (a >0,a ≠1,m >0 ,m ≠1,N >0)

1.1.3 三角函数与反三角函数 1.三角函数

,奇函数、有界函数、周期函数 ;

,偶函数、有界函数、周期函数 ;

的一切实数,奇函数、

周期函数

的一切实数,奇函数、

周期函数

;;

正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞ ),值域都是必区间[-1,1]。

正弦函数是奇函数,余弦函数是偶函数。

正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。[如图]

;。

双曲函数与反双曲函数

双曲正弦:,奇函数,单调增函数;

双曲余弦:,偶函数,时,单调减,时,单调增;

双曲正切:,奇函数,单调增函数。

函数的图形见书P27~P28。

下面公式成立

反双曲正弦

反双曲余弦,

反双曲正切

函数图形的变换

平移

①由的图形,作的图形。图形右移,,图形左移。如:由图形作的图形。由的图形作的图形。

②由的图形作的图形。,图形上移,,图形下移。如:由的图形作的图形。

翻转

①由图形作的图形。(以轴为对称轴翻)如:由的图形作的图形。

②由图形作的图形。(以轴为对称轴翻)如:由的图形作的图形。

迭加与放缩(略)

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

基本初等函数知识点(一轮复习)

基本初等函数 中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。 一、一次函数 初中的一个函数,Primary基本、简单而又很重要。解析式:y=kx+b或y=ax+b,通常我们会这样设。那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下…… 画出以下解析式的图像:要求快 (1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x 根据以下条件,设出一次函数的解析式: (1)直线经过(1,2)点 (2)直线的斜率是2 总结:两个参数主宰斜率和与y轴的交点位置。因为两个参数,所以要有两个条件才能解得解析式。 二、二次函数 二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。十分重要的内容,属于幂函数中最重要的一类。二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质. 1、二次函数的三种表示形式 (1)一般式:y=ax2+bx+c,(a≠0); (2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k)); (3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0)) 求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已 Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式. Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1. ∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a. ∵x21+x22=7 即(x1+x2)2-2x1x2=7

(推荐)高中数学必修1基本初等函数常考题型:幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x 是自变量,α是常数. 2.常见幂函数的图象与性质 解析式 y =x y =x 2 y =x 3 y =1x y =12 x 图象 定义域 R R R {x|x≠0} [0,+∞) 值域 R [0,+∞) R {y|y≠0} [0,+∞) 奇偶性 奇函数 偶函数 奇函数 奇函数 非奇非偶函数 单调性 在(-∞,+ ∞)上单调递增 在(-∞,0]上单调递减,在(0,+∞)上单调递增 在(-∞,+∞)上单调递增 在(-∞,0)上单调递减,在(0,+∞)上单调递减 在[0,+∞)上单调递增 定点 (1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念

【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ??? ;③y=4x 2;④y=x 5+1;⑤y=(x -1)2 ; ⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=( ) 22 23 1m m m m x ----为幂函数, ∴m 2 -m -1=1,解得m =2或m =-1. 当m =2时,m 2 -2m -3=-3,则y =x -3 ,且有x≠0; 当m =-1时,m 2 -2m -3=0,则y =x 0 ,且有x≠0. 故所求幂函数的解析式为y =x -3 ,{x|x≠0}或y =x 0 ,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x) 的解析式. 解:根据幂函数的定义得 m 2 -m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3 在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3 . 题型二、幂函数的图象

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

基本初等函数经典复习题+问题详解

()) 1,,,0(.4*>∈>=n N n m a a a n m n m x N N a a x =?=log 必修1基本初等函数 复习题 1、幂的运算性质 (1)s r s r a a a +=?),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =?)(R r ∈ 2、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1()N M N M a a a log log log +=?; ○2 N M N M a a a log log log -=; ○ 3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a 换底公式:a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m n b a n a m log log = ;(2)a b b a log 1log =. 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

基本初等函数讲义(超级全)

一、一次函数 一次 函数 k kx b k0 k0k0 k, b 符号b0b0b0b0b0b0 y y y y y y 图象 O x O O x x O x O x O x 性质y随x的增大而增大y随x的增大而减小 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2 f(x)ax bx c(a0) ②顶点式:2 f(x)a(x h)k(a0) ③两根式:f(x)a(x x1)(x x2)(a0) (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便. (3)二次函数图象的性质 20 f x ax bx c a a0a0 图像 x b 2a x b 2a 定义域, 对称轴x b 2a 顶点坐标 2 b4ac b , 2a4a 文档

值域 2 4ac b 4a ,, 2 4ac b 4a , b 2a 递减, b 2a 递增 单调区间 b 2a , 递增 b 2a ,递减 ①.二次函数 b 2 f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x, 2a 顶 点坐标是 2 b4ac b (,) 2a4a b ②当a0时,抛物线开口向上,函数在(,] 2a b 上递减,在[,) 2a 上递增,当 x b 2a 时,f(x) min 2 4ac b 4a b ;当a0时,抛物线开口向下,函数在(,] 2a 上递b 增,在[,) 2a 上递减,当x b 2a 时,f(x) max 2 4ac b 4a . 三、幂函数 (1)幂函数的定义 一般地,函数y x叫做幂函数,其中x为自变量,是常数. (2)幂函数的图象 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).文档

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

二次函数的性质

20.4二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a 1 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而增大;在侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 2. 探索填空::据上边已画好的函数图象填空:抛物线y= 2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而减少;在侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0

3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

基本初等函数讲义

一、一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 四、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

高中数学-基本初等函数图像及性质小结

基本初等函数 1?函数的五个要素:自变量,因变量,定义域,值域,对应法则 2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这四个方面去研究函数。 3.每个函数的图像很重要 O.幕函数(a为实数) 定义域:随a的不同而不同,但无论a取什么值,x A a在「’内总有定义值域:随a的不同而不同有界性: 单调性:若a>0,函数在;…内单调增加;若a<0,函数在人-内单调减少。 奇偶性: - 「要知道这些函数那 些事奇函数,那些是偶函数 周期性:

0.指数函数 八 定义域:.,■‘ I 有界性: 单调性: 若a>1函数单调增加;若0

O.对数函数"司唯口几3>0卫圧1) 1、定义域::? r值域:'」‘) 有界性: 单调性:a>1时,函数单调增加;0

?. 三角函数强调:图像 (―巩+ 正弦函数: j/ = sin 定义域: (-0D,十8) 有界性:[-1,1]有界函数 单调性:(-T/2,T/2)单调递增 奇偶性:奇函数 周期性:以心巧为周期的周期函数; 值域:[-1,1] 余弦函数:兀(一叫十 00) 定义域:I ■" 1值域:[-1,1] 有界性:[-1,1]有界函数 单调性: 奇偶性:偶函数 周期性:(腕)

【浙教版初中数学】《二次函数的性质》综合练习

1.3 二次函数的性质 一、基础训练 1.若抛物线y=x2-2x+m与x轴只有一个公共点,则m=______. 2.如图所示的抛物线是二次函数y=ax2-3x+a-1的图象,那么a的值是_____. 3.若抛物线y=x2+(m-2)x-m与x轴的两个交点关于y轴对称,则m=______.4.二次函数y=-x2+4x+m的值恒小于0,则m的取值范围是______.5.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上 6.已知抛物线y=ax2+bx+c上的两点(2,0),(4,0),那么它的对称轴是直线() A.x=-3 B.x=1 C.x=2 D.x=3 7.已知直角三角形的两直角边之和为4,求斜边长的最小值及当斜边长达到最小值时的两条直角边长. 1

8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强. (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第几分钟,学生的接受能力最强? 二、提高训练 9.已知二次函数y=x2-4x-a,下列说法正确的是() A.当x<0时,y随x的增大而减小 B.若图象与x轴有交点,则a≤4 2

C.当a=3时,不等式x2-4x+a>0的解集是1

基本初等函数题型总结

基本初等函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23 lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+????1252log . 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27 . (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 题型2指数与对数函数的概念 【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. (2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (3)函数y =a x -5+1(a ≠0)的图象必经过点________. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =2x +1的图象是( )

【例3】函数y =|2x -2|的图象是( ) 【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________. 【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________. 变式: 1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110 ,则相应于 c 1,c 2,c 3,c 4的a 值依次为( ) A.3,43,35,110 B.3,43,110,35 C.43,3,35,110 D.43,3,110,35 2.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 4.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .0 B .1 C .2 D .3 5.函数y =x 3 3x -1 的图象大致是( ) 题型4指数与对数型函数的定义域、值域、单调性、奇偶性 例 1函数f (x )=1-2x +1x +3的定义域为____________. 2判断f (x )= x -x )(2231的单调性,并求其值域.

二次函数y=ax^2+bx+c(a≠0)的图象与性质—知识讲解(基础)

二次函数y=ax 2 +bx+c(a ≠0)的图象与性质—知识讲解(基础) 撰稿:张晓新 审稿:杜少波 【学习目标】 1. 会用描点法画二次函数2 (0)y ax bx c a =++≠的图象;会用配方法将二次函数2 y ax bx c =++的解析式写成2 ()y a x h k =-+的形式; 2.通过图象能熟练地掌握二次函数2 y ax bx c =++的性质; 3.经历探索2 y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】 要点一、二次函数2 (0)y ax bx c a =++≠与=-+≠2 ()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式 从函数解析式2 ()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称 2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22 2 2222b b b b y ax bx c a x x c a x x c a a a a ?? ??????=++=++=++-+?? ? ? ?????????? ? 2 2424b ac b a x a a -? ?=++ ?? ?. 对照2 ()y a x h k =-+,可知2b h a =-,244ac b k a -=. ∴ 抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ??? . 要点诠释: 1.抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ???,可以当作公 式加以记忆和运用. 2.求抛物线2 y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

基本初等函数图像及性质大全(初中高中)

基本初等函数图像及性 质大全(初中高中) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、一次函数与二次函数 (二)二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

顶点坐标 2 4 , 24 b a c b a a ? ? - - ? ? ? 值域 2 4 , 4 ac b a ?? - +∞ ? ?? 2 4 , 4 ac b a ?? - -∞ ? ?? 单调区间 , 2 b a ?? -∞- ? ?? 递减 , 2 b a ?? -+∞ ? ?? 递增 , 2 b a ?? -∞- ? ?? 递增 , 2 b a ?? -+∞ ? ?? 递减 ①.二次函数2 ()(0) f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为, 2 x a =- 顶点坐标是 2 4 (,) 24 b a c b a a - - ②当0 a>时,抛物线开口向上,函数在(,] 2 b a -∞-上递减,在[,) 2 b a -+∞上递增,当2 b x a =-时, 2 min 4 () 4 ac b f x a - =;当0 a<时,抛物线开口向下,函数在(,] 2 b a -∞-上 递增,在[,) 2 b a -+∞上递减,当 2 b x a =-时, 2 max 4 () 4 ac b f x a - =. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x为自变量,α是常数.

相关文档
最新文档