求幂级数的和函数步骤

求幂级数的和函数步骤
求幂级数的和函数步骤

一、函数项级数的基本概念与收敛域的求解方法

1、函数项级数相关的基本概念

设函数u n(x)在集合D?R上有定义,称

为D上的函数序列(或函数列). 称

为定义在集合D上的函数项级数.

如果对于任意一点x∈I?D,均存在u(x),使得

则称函数序列{ u n(x)}在点x处收敛,u(x)称为函数序列{ u n(x)}的极限函数,I称为函数序列{ u n(x)}收敛域.

如果对于任一点x∈I?D,均存在S(x),使得

则称x为函数项级数的收敛点,I称为该函数项级数的收敛域,并且称函数S(x)为I上的函数项级数的和函数.

若用S n(x)表示函数项级数前n项的和,即

则称S n(x)为函数项级数前n项部分和函数. 并称

为收敛域上的余项函数,并且有

如果对于任一点x∈I?D,级数

发散,则为函数项级数的发散点,I称为该函数项级数的发散域.

2、函数项级数收敛域求解思路与步骤

因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于每个收敛点对应的函数项级数的收敛性的判定,其实对应的就

发散区间+发散的端点=发散域 .

二、幂级数的基本概念与收敛域的求解方法

1、幂级数相关的基本概念

幂级数是形式最简单,应用最广泛的一类函数项级数,是各项由幂函数组成的函数项级数. 幂级数的一般形式为

特别令,则有

其中a0,a1,…,a k,…都是实常数,称之为幂级数的系数.通过简单的变换x-x0=t,可以将幂级数的一般形式(1)转换为形式(2).因此只需要讨论幂级数(2)的形式. 对于该级数也称为麦克劳林级数.

2、求一般幂级数收敛域的基本步骤

幂级数作为一类特殊的函数项级数,也适用于函数项级数收敛域的计算方法与步骤.一般的幂级数的收敛域的计算步骤为:第一步:借助于正项级数的比值审敛法或根值审敛法求收敛区间,即由

令ρ(x)<1,解不等式求得幂级数的收敛区间。

第二步:借助于常值级数收敛性的判定方法判定幂级数在区间端点对应的常值级数的收敛性。

第三步:收敛区间加上收敛的端点构成幂级数的收敛域:

收敛区间+收敛的端点=收敛域

3、阿贝尔定理

基于常值级数收敛性判定的比较审敛法,容易得到如下结论:定理1:(1) 若幂级数(1)在点x=a(a≠0)处收敛,则它对于满足不等式|x|<|a|的一切x都绝对收敛;

(2) 若幂级数(1)在点x=a处发散,则它对于满足不等式|x|>|a|的一切x都发散.

定理2:如果幂级数(1)既有不等于零的收敛点,又有发散点,则必存在唯一的正数R(0|R|时,该幂级数发散.

并称正数R称为幂级数(1)的收敛半径,而以原点为中心的对称区间(-R,R)称为幂级数(1)的收敛区间.通过判定收敛区间端点x=±R处的敛散性,容易计算得到幂级数(1)收敛域与发散域.

规定:当幂级数(1)只在x=0处收敛时,规定其收敛半径R=0;当它在整个数轴上都收敛时,规定其收敛半径R=+∞.

4、求标准幂级数收敛域的一般步骤

标准幂级数是指幂级数项的指数是连续增长的正整数的级数,即展开后

形式的级数,对于这样的级数由如下直接的收敛半径、收敛区间和收敛域计算方法与步骤:

(1) 收敛半径:

(2) 收敛区间即为(-R,R).

(3) 判断端点x=±R的收敛性,

收敛区间+收敛的端点=收敛域,

发散区间+发散的端点=发散域 .

【注】该步骤不适用于缺项的幂级数,如只有奇次幂或只有偶次幂的幂级数. 它们收敛域的计算适用于一般幂级数收敛域的计算方法与步骤,即函数项级数的判定方法.

三、幂级数的运算性质

1、幂级数的加减运算性质

2、幂级数逐项可导,逐项可积

性质(幂级数的和函数的连续性)幂级数的和函数S(x)在其收敛域上连续.

反复应用上述结论可得:幂级数的和函数S(x)在其收敛区间(-R,R)内具有任意阶导数.

3、三个最基本函数的麦克劳林级数及其收敛域

四、求幂级数和函数的基本步骤

第一步:求收敛域.

【注1】这一步也可以放在第二步后.

第二步:通过换元,将幂级数转换为具有麦克劳林级数结构的级数表达式,即

第三步:借助收敛域内幂级数的加减运算、逐项求导、逐项积分的解析性质,通过设幂级数和函数,对其两端分别进行求导、或积分运算将其转换为已知和函数的幂级数表达式。

【注2】这个步骤可多次进行,一般分母有n可以考虑直接对项求导,分子有n可以考虑对项求积分,每次只能消去n的一次项,所以考虑消去n时,应该将包含n的乘项分解为一次项的乘积。如果求导、求积分不能消去,可以考虑乘以或者除以x^m的方式,通过凑幂来实现.

第四步:对已有的幂级数及和函数等式,两端执行第二步的逆运算,即求导的求积分,求积分的求导;并经过换元的逆代换,得到原幂级数的和函数。

【注3】最终的和函数记得带上收敛域,对于端点可以考虑和函数的连续性确定。

【注4】相关的典型习题与步骤具体实现方法参见后面发布的《幂级数的收敛性与和函数》典型题与参考课件节选

求幂级数的和函数步骤

通常求幂级数的收敛半径和收敛区间 如果幂级数有n,(n+1)和其他系数,则必须先逐项积分级数,将这些系数约化,然后将它们转换为几何级数,然后计算和。当然,对于积分,你必须记住在将来计算级数和的导数。 同理,如果幂级数有1/N,1/(N+1)等系数,则必须先逐项导出级数项,这还需要将这些系数减去并转换成几何级数,然后用计算。只有在将来,我们将对级数的和进行积分。 简言之,如果有导数,它将对应于将来的积分,反之亦然。因为我们可以用微分和积分作为逆运算,这是为了恢复级数。 幂级数及其函数的计算是幂级数运算的重点和难点,具有一定的技巧。结合多年的教学实践,介绍了求幂级数和函数的最基本方法。关键词:幂级数;和函数积分;逐项推导收敛面积。中图分类号:o173文献号:文献号:1008-6714(2009)02-0005-02受理日期:2008年11月27日河南内黄,讲师,高等数学及其在各专业的应用。幂级数与函数的基本思想是:通过加、减、乘、逐项求导或逐项积分运算,将幂级数转化为已知幂级数(如几何级数求原

幂级数)和函数。下面的例子说明了求幂级数和函数的最基本方法。首先需要求和函数的域,即幂级数的收敛区域。很容易得到幂级数的收敛面积[这是X的公比,散度的几何级数。注:逐项扣除后,收敛区间终点的收敛性可能发生变化。终点需要讨论。注:逐项积分后,收敛区间结束时的收敛性可能会发生变化。目前,它们是发散的,因此收敛区域与收敛区间相同。导言:这个问题可以得到一个想法。这是串联连接。利用几何级数的求和公式,可以求出原始幂级数的和。当输入1时,级数是发散的,因此幂级数的收敛区域是(-上一个幂级数。如果你想使它成为一个与X有关的常数,你可以用项积分法。设s11如果幂级数发散,则幂级数的收敛区域为(-2n)X2N-2nx2n-

求幂级数的和函数

幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题。求解幂级数的和函数时,常通过幂级数的有关运算(恒等变形或分析运算)把待求级数化为易求和的级数(即常用级数,特别是几何级数),求出转化后的幂级数和函数后,再利用上述运算的逆运算,求出待求幂级数的和函数。以下总结了幂级数求和函数问题的四种常见类型:一、通过恒等变形化为常用级数的幂级数求和函数S(x) 计算幂级数的和函数,首先要记牢常用级数的和函数,再次基础上借助四则运算、变量代换、拆项、分解、标号代换等恒等变形手段将待求级数化为常用级数的标准形式来求和函数。二、求通项为P(n)x^n的和函数,其中P(n)为n的多项式解法1、用先逐项积分,再逐项求导的方法求其和函数。积分总是从收敛中心到x积分。解法2、也可化为几何级数的和函数的导数而求之,这是不必再积分。三、求通项为x^n/P(n)的和函数,其中P(n)为n的多项式解法1、对级数先逐项求导,再逐项积分求其和函数,积分时不要漏掉S(0)的值。解法2、也可化为几何级数的和函数的积分求之。四、含阶乘因子的幂级数(1)分解法:将幂级数一般项进行分解等恒等变形,利用e^x、sinx、cosx的幂级数展开式求其和函数。一般分母的阶乘为n!的幂级数常用e^x的展开式来求其和函数,分母的阶乘为(2n+1)!或(2n)!的幂级数常用sinx、cosx的展开式来求其和函数(2)逐项求导、逐项积分法(3)微分方程发:含阶乘因子的幂级数的和函数常用解S(x)满足的微分方程的处之问题而求之。因此先求收敛域,求出和函数的各阶导数以及在点0处的值,建立S(x)的长微分方程的初值问题,求解即得所求和函数题中的类型为第二种类型 求幂级数的和函数的方法,通常是:

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

求幂级数的和函数

求幂级数的和函数 求幂级数的和函数 幂级数的和函数一、幂级数的运算:∞∞∑∑设an?xn与bn?xn两个幂级数,收敛半径分别为R1,R2,则在它们n=0n=0的公共收敛域内可以进行如下的四则运算:i加法和减法:∞∞∞∑∑∑λan?xn±μbn?xn=(λan±μbn)xnn=0n=0n=0其中λ、μ为常数。当R1≠R2时,上式的收敛半径为R=min{R1,R2ii乘法和除法:∞∞∞∑∑∑anxn?bnxn=c0xnn=0n=0n=0其中cn=a0bn+a1bn?1+???+anb1二、和函数:∞∑∑设∞anxn的收敛半径为R(R>0),S(x)=anxn为和函数,则有以下性质n=0n=0成立i和函数在(-R,+R)内可导,并且有逐项求导同时求导之后,幂级数的收敛半径不变。ii由此,和函数S(x)在(-R,+R)内任意次可导,并有逐项求导公式:∞∑S(k)(x)=(anxn)(k)n=0∞∑=n(n?1)(n?2)???(n?k+1)anxn?kn=0它的收敛半径仍然为R。iii在(-R,+R)内逐项积分公式成立∫∑∫∑x∞xS(t)dt=0n=00antndt=∞n=0anxn+1n+1并且,逐项积分后收敛半径也不变∞∑iv若幂级数anxn在X=R(-R)出收敛,则该幂级数:n=0(A)∞∑limx→R?S(x)=n=0anRn∞∑limx→R+S(x)=n=0 求幂级数的和函数的方法,通常是: 1、或者先定积分后求导,或先求导后定积分,或求导定积分多次联合并用;2113 2、运用公比小于1的无穷等比数列求和公式。 需要注意的是:运用定积分时,要特别注意积分的下限,否则将一定

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

求下列幂级数的和函数(同时指出它们的定义域)解读

.设,0,)(1 >= ∑∞ =-x ne x S n nx 计算?x dt t S 0 )(=__ 1 1 --x e ________ 求下列幂级数的和函数(同时指出它们的定义域); +++++++1 2531 232n x x x x n =_x x -+11ln 21_____ ,定义域为__(-1,1)_______. 求下列各函数的定义域. 11),(22-+-=y x y x f 定义域是_{ 11,11),(-≤≥≤≤-y y x y x 或}________ )sin(),(22y x y x f +=定义域是_{ ππ)12(2),(22+≤+≤n y x n y x }________ )(1),(2 2 2 2 2222r R r z y x z y x R y x f >-+++ ---=定义域是__ {22222 ),,(R z y x r z y x ≤++≤}_______ 在下列积分中改变累次积分的顺序: ? ? ----2 21111),(x x dy y x f dx =__?? ? ?-------+10 11110 1 ),(),(2 2 y y y y dx y x f dy dx y x f dy ________ dy y x f dx dy y x f dx x x ? ?? ? -+)3(21 3 10 1 ),(),(2 =__? ?-y y dx y x f dy 2310 ),(______________ ?? ---x x dy y x f dx 21 4 1 2 6 2),( 求 ??-D dxdy y x xy )(,其中D 由直线围成及10,0==+=-x y x y x 求 ?? D dxdy y x 22 ,其中D 由直线围成及1,2===xy x y x 利用极坐标计算下列积分: ??D xdxdy ax y x D ≤+22 为其中 ??+D dxdy y x 22sin ,其中D 为22224ππ≤+≤y x 证明下列级数的收敛性,并求其和数: (1) ∑∞ =++1 )2)(1(1 n n n n (2) ∑∞ =++-+1 )122( n n n n 利用已知函数的幂级数展开式求下列函数在处的幂级数展开,并确定它收敛于该函数的区间:

幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

求幂级数的和函数

在高等数学中,求幂级数的和函数的一般步骤是什么?_ :通常,首先求出幂级数的收敛半径,收敛区间如果幂级数有n、(n+1)等系数时,需要先将级数逐项积分,约掉这些系数,就可能化为几何级数了,然后求其和.当然,与积分对应的,一定记得将来对这个级数的和再求导数.同理,如果幂级数有1/n、1/(n+1)等系数时,需要先将级数逐项求导,也是为了约掉这些系数,化为几何级数,然后求其和.只是将来对这个级数的和再求积分.总之,有一次求导,将来就要对应一次积分,反之也一样.因为我们可以把求导和积分看成逆运算,这样做的目的是要将级数还原. 【幂级数和函数求法的和函数怎么求?】:答案是1/[(1-x)^2] 采用先逐项求积分,再求导数即可解决. 具体过程见我刚做的图片: 【什么叫函数展开成幂级数以及计算方法】:当x=0 时,S(0)=0.当x≠0 时,S(x) = ∑ n^2*x^n = x∑ [(n+1)n-n]*x^(n-1),S(x)/x = ∑ (n+1)n*x^(n-1) - ∑ n*x^(n-1)= [∑ x^(n+1)]'' - [∑ x^n]'= [x^2/(1-x)]'' - [x/(1-x)]' = 2/(1-x)^3- 1/(1-x^2) = (1+x)/(1-x)^3,得S(x) = x(1+x)/(1-x)^3,已包含了x=0 的情况. 求幂级数和函数具体步骤!_ :解:设S=∑[(-1)^n][x^(n+1)]/[(n+1)2^(n+1)],两边对x求导,有S'=∑[(-1)^n][x^n]/2^(n+1)=(1/2)∑[(-1)^n][(x/2)^n,而在丨x/2丨<1

求幂级数的和函数步骤

一、函数项级数的基本概念与收敛域的求解方法 1、函数项级数相关的基本概念 设函数u n(x)在集合D?R上有定义,称 为D上的函数序列(或函数列). 称 为定义在集合D上的函数项级数. 如果对于任意一点x∈I?D,均存在u(x),使得 则称函数序列{ u n(x)}在点x处收敛,u(x)称为函数序列{ u n(x)}的极限函数,I称为函数序列{ u n(x)}收敛域. 如果对于任一点x∈I?D,均存在S(x),使得 则称x为函数项级数的收敛点,I称为该函数项级数的收敛域,并且称函数S(x)为I上的函数项级数的和函数. 若用S n(x)表示函数项级数前n项的和,即 则称S n(x)为函数项级数前n项部分和函数. 并称 为收敛域上的余项函数,并且有 如果对于任一点x∈I?D,级数 发散,则为函数项级数的发散点,I称为该函数项级数的发散域. 2、函数项级数收敛域求解思路与步骤 因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于每个收敛点对应的函数项级数的收敛性的判定,其实对应的就

发散区间+发散的端点=发散域 . 二、幂级数的基本概念与收敛域的求解方法 1、幂级数相关的基本概念 幂级数是形式最简单,应用最广泛的一类函数项级数,是各项由幂函数组成的函数项级数. 幂级数的一般形式为 特别令,则有 其中a0,a1,…,a k,…都是实常数,称之为幂级数的系数.通过简单的变换x-x0=t,可以将幂级数的一般形式(1)转换为形式(2).因此只需要讨论幂级数(2)的形式. 对于该级数也称为麦克劳林级数. 2、求一般幂级数收敛域的基本步骤 幂级数作为一类特殊的函数项级数,也适用于函数项级数收敛域的计算方法与步骤.一般的幂级数的收敛域的计算步骤为:第一步:借助于正项级数的比值审敛法或根值审敛法求收敛区间,即由 令ρ(x)<1,解不等式求得幂级数的收敛区间。

求幂级数的和函数

幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。 函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。[1] 函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。 首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。 函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示[2] 。

概念 在一个变化过程中,发生变化的量叫变量(数学中,常量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。 自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。 函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

相关文档
最新文档