对数与对数知识点

对数与对数知识点
对数与对数知识点

对数与对数运算

(1)对数的定义

①若(0,1)x

a

N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x

N =,其中a 叫做底数,

N

叫做真数.

②负数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x a

x N a N a a N =?=>≠>.

(2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =.

(3)常用对数与自然对数:常用对数:lg N ,即10

log N ;自然对数:ln N

,即log e

N (其中

2.71828e =…).

(4)对数的运算性质 如果0,1,0,0a

a M N >≠>>,那么

①加法:log log log ()a

a a M N MN +=

②减法:log log log a a a

M

M N N

-=

③数乘:

log log ()n a a n M M n R =∈

log a N a N = ⑤log log (0,)b

n a a n

M M b n R b

=

≠∈ ⑥换底公式:log log (0,1)log b a b N

N b b a

=

>≠且

对数函数及其性质

(5)对数函数 函数名称 对数函数

定义

函数

log (0a y x a =>且1)a ≠叫做对数函数

图象

1a >

01a <<

定义域

(0,)+∞

x

y

O

(1,0)

1

x =log a y x

=x

y

O (1,0)

1

x =log a y x

=

值域 R

过定点 图象过定点(1,0),即当1x

=时,0y =.

奇偶性 非奇非偶

单调性

在(0,)+∞上是增函数

在(0,)+∞上是减函数

函数值的 变化情况

log 0(1)

log 0(1)log 0(01)

a a a x x x x x x >>==<<<

log 0(1)

log 0(1)log 0(01)

a a a x x x x x x <>==><<

a 变化对 图

象的影响

在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴

基础练习:

1.将下列指数式与对数式互化:

(1)2-

2=14; (2)102=100; (3)e a =16; (4)64-13=14;

2. 若log 3x =3,则x =_________

3.计算:2lg 25lg 2lg50(lg 2)++=

4.(1)

log 29

log 23

=________. 5. 设a =log 310,b =log 37,则3a -

b =_________.

6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________.

7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,1

10,则图象C 1,

C 2,C 3,C 4相应的a 值依次是______________

(2)函数y =lg(x +1)的图象大致是( )

4. 求下列各式中的x 的值: (1)log 8x =-23;(2)log x 27=3

4;

8.已知函数f (x )=1+log 2x ,则f (1

2)的值为__________.

9. 在同一坐标系中,函数y =log 3x 与y =lg 13

x 的图象之间的关系是_______________

10. 已知函数f (x )=?

????3x (x ≤0),log 2x (x >0),那么f (f (1

8))的值为___________.

例题精析:

例1.求下列各式中的x 值:

(1)log 3x =3; (2)log x 4=2; (3)log 28=x ; (4)lg(ln x )=0.

变式突破:

求下列各式中的x 的值:

(1)log 8x =-23; (2)log x 27=3

4; (3)log 2(log 5x )=0; (4)log 3(lg

x )=1.

例2.计算下列各式的值:

(1)2log 510+log 50.25; (2)12lg 3249-43lg 8+lg 245 (3)lg 25+2

3lg 8+lg 5×lg 20+(lg

2)2.

变式突破:

计算下列各式的值:

(1)312

log

34;

(2)32+log 35; (3)71-log 75; (4)41

2

(log 29

-log 25).

例3.求下列函数的定义域:

(1)y =lg (2-x ); (2)y =1

log 3(3x -2); (3)y =log (2x -1)(-4x +8).

变式突破:

求下列函数的定义域:

(1)y =

log 12

(2-x );

例4.比较下列各组中两个值的大小:

(1)ln 0.3,ln 2; (2)log a 3.1,log a 5.2(a >0,且a ≠1); (3)log 30.2,log 40.2; (4)log 3π,log π3.

变式突破:

若a =log 0.20.3,b =log 26,c =log 0.24,则a ,b ,c 的大小关系为________.

2设y 1=40.9,y 2=80.48,y 3=(1

2)-1.5,则( )

A .y 3>y 1>y 2

B .y 2>y 1>y 3

C .y 1>y 2>y 3

D .y 1>y 3>y 2

3.已知0

2log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .z >y >x C .y >x >z D .z >x >y

4.下列四个数(ln2)2,ln(ln2),ln 2,ln2中最大的为________. 5.已知log m 7

6.函数y =log 1

3(-x 2+4x +12)的单调递减区间是________. 7.若log a 2<1,则实数a 的取值范围是( )

A .(1,2)

B .(0,1)∪(2,+∞)

C .(0,1)∪(1,2)

D .(0,1

2) 8.下列不等式成立的是( )

A .log 32

B .log 32

C .log 23

D .log 23

例5.解对数不等式

(1)解不等式log 2(x +1)>log 2(1-x );(2)若log a 2

3<1,求实数a 的取值范围.

变式突破:

解不等式:(1)log 3(2x +1)>log 3(3-x ).(2)若log a 2>1,求实数a 的取值范围.

课后作业:

1. 已知log x 16=2,则x 等于___________.

2. 方程2log 3x =1

4

的解是__________.

3. 有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是_____________.

4.函数y =log a (x +2)+1的图象过定点___________.

5. 设a =log 310,b =log 37,则3a -

b =( )

6. 若log 12

a =-2,log

b 9=2,

c =log 327,则a +b +c 等于___________.

7.. 设3x =4y =36,则2x +1

y =___________.

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

人教A版必修1对数与对数运算知识点总结与例题讲解

对数与对数运算知识点总结与例题讲解 本节知识点 (1)对数的概念. (2)对数式与指数式的互化. (3)对数的性质. (4)对数的运算性质. (5)对数的换底公式. 知识点一 对数的概念 一般地,如果N a x =(0>a 且1≠a ),那么数x 叫做以a 为底N 的对数,记作 N x a log =.其中a 叫做对数的底数,N 叫做真数. 例如,因为4162 1=,所以 21就是以16为底4的对数,记作2 14log 16=. 对对数概念的理解: (1)底数a 必须满足0>a 且1≠a ; (2)真数N 大于0(负数和0没有对数). 规定底数0>a 且1≠a 的原因: 当0a 且1≠a . 常用对数与自然对数 将以10为底的对数叫做常用对数,记作N lg ;将以无理数e ( 71828.2≈e )为底的对数叫做自然对数,记作N ln .

根据对数概念,可以求参数的取值范围 例1. 求下列各式中x 的取值范围. (1)()3log 5.0-x ; (2)()()x x --2log 1. 分析:对数的概念,对底数和真数都作出了规定,要使对数式有意义,必须满足: (1)底数0>a 且1≠a ; (2)真数0>N . 解:(1)由题意可知:03>-x ,解之得:3>x . ∴x 的取值范围是()+∞,3; (2)由题意可知:??? ??>-≠->-021101x x x ,解之得:21<-x ,解之得:5-120 2x x ,解之得:2a 且1≠a )有意义的x 的取值范围是【 】 (A )[)+∞-,1 (B )()+∞-,1 (C )[)+∞,0 (D )()+∞,0 解:由题意可知:01>+x ,解之得:1->x . ∴x 的取值范围是()+∞-,1.选择【 B 】. 例4. 求()()x x --4log 3中x 的取值范围. 解:由题意可知:

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

对数知识点整理

1对数的概念 如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b =,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a ≠1,N>0; ③01log =a , 1log =a a , b a b a =log ,b a b a =log 特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…) 为底的对数叫做自然对数,记作N e log ,简记为N ln 2对数式与指数式的互化 式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数) 3对数的运算性质 如果a>0,a ≠1,M>0,N>0,那么 (1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log = 问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0? ②=n a a log ______ (n ∈R) ③对数式与指数式的比较.(学生填表) 运算性质 n m n m a a a +=?,n m n m a a a -=÷ mn n m a a =)((a>0且a ≠1,n ∈R) N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a >0,,且a ≠1? 理由如下: ①若a <0,则N 的某些值不存在,例如log-28 ②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数 ③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

对数与对数运算知识点

对数与对数运算 1. 对数:如果a x =N(a>0,且az 1),那么数 x=log a N ,其中a 叫做对数的底数, 2. 对数的性质:(1)1的对数等于 有对数 3. 以10为底的对数叫做常用对数 x 叫做以a 为底N 的对数,记作 N 叫做真数. 0 ;(2)底数的对数等于1;(3)零和负数没 ,log io N 记作 lg N . 4. 以无理数e=2.718 28…为底的对数称为自然对数, logeN 记作ln N 5. 对数的运算性质:如果 a>0,且a 工1 , M>0;N>0,那么: (MN) . M . N N1N …Nk N1 . N2 . N3 (1) log a =log a +log a ; log a ( )=log a +log a + …log a ; (M / N) M N (2) log a =log a -log a ; (3) log a M i =nlog a M N I N 6.对数换底公式:log - =log N a ; log 7. 对数运算中的三个常用结论: a logaN N ,log a a =1,log a 1=0 8. 两个常用的推论:a , b >0且均不为1,m,n,为正整数 (1) log a b x log b a =1; log a b x log b C x log c a =1; b n n b (2) log a m m"og a ; log m a 9. 指数和对数的关系:a x =N a ‘ b lo g a N n b m log a b ; 1 =1 n log a N =x 比较指数式、根式、对数式:

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1)(2)(3) 知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 2.指数函数函数性质: 函数名称指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数

函数值的变化情况 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小. 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中…). 4.对数的运算性质 如果,那么①加法:②减法:③数乘: ④⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2.对数函数性质: 函数名称对数函数 定义函数且叫做对数函数图象

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

《对数与对数运算》教学设计

2.2.1 对数与对数运算(一) 教学目标 (一) 教学知识点 1. 对数的概念; 2.对数式与指数式的互化. (二) 能力训练要求 1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用. 教学重点 对数的定义. 教学难点 对数概念的理解. 教学过程 一、复习引入: 假设 20XX 年我国国民生产总值为 a 亿元,如果每年平均增长 8%,那么经过多少年国民生产总值是 20XX 年的 2 倍? 1 8% = 2 x=? 也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容: aa 0,a 1 的b 次幂等于 N ,就是a b N ,那么数 b 叫做以 a 为底 N 的对 ⑴ 负数与零没有对数(∵在指数式中 ⑵ log a 1 0 , log a a 1 ; ∵对任意 a 0且 a 1, 都有 a 0 1 ∴log a 1 0 同样易知: log a a 1 ⑶对数恒等式 如果把 a b N 中的 b 写成 log a N , 则有 a logaN N . 定义:一般地,如果 数,记作 log a N b , a 叫做对数的底数, N 叫做真数. a b log a Nb 例如: 42 16 log 4 16 2 2 102 100 log 10 100 2 ; 探究: 1。 1 42 2 log 42 12 ; 是不是所有的实数都有对数? 10 2 0.01 log 10 0.01 2. log a N b 中的 N 可以取哪些值? 2. 根据对数的定义以及对数与指数的关系, log a 1 ? log a a ?

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数与对数知识点

对数与对数知识点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底 数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10 log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④ log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 对数函数及其性质 (5)对数函数

值域 R 过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 函数值的 变化情况 log 0(1) log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1) log 0(1)log 0(01) a a a x x x x x x <>==><< a 变化对 图象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴 基础练习: 1.将下列指数式与对数式互化: (1)2- 2=14; (2)102=100; (3)e a =16; (4)64-13=14; 2. 若log 3x =3,则x =_________ 3.计算:2lg 25lg 2lg 50(lg 2)++= 。 4.(1) log 29 log 23 =________. 5. 设a =log 310,b =log 37,则3a - b =_________. 6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________. 7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,1 10,则图象 C 1,C 2,C 3,C 4相应的a 值依次是______________ (2)函数y =lg(x +1)的图象大致是( ) 4. 求下列各式中的x 的值: (1)log 8x =-23;(2)log x 27=3 4 ; 8.已知函数f (x )=1+log 2x ,则f (1 2 )的值为__________. 9. 在同一坐标系中,函数y =log 3x 与y =lg 错误!x 的图象之间的关系是_______________

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实

数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 x y > O x y

对数与对数知识点教学内容

对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数, N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…) . (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④ log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 对数函数及其性质 (5)对数函数

值域 R 过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 函数值的 变化情况 log 0(1) log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1) log 0(1)log 0(01) a a a x x x x x x <>==><< a 变化对 图 象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴 基础练习: 1.将下列指数式与对数式互化: (1)2- 2=14; (2)102=100; (3)e a =16; (4)64-13=14; 2. 若log 3x =3,则x =_________ 3.计算:2 lg 25lg 2lg 50(lg 2)++= 。 4.(1) log 29 log 23 =________. 5. 设a =log 310,b =log 37,则3a - b =_________. 6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________. 7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,1 10,则图象C 1, C 2,C 3,C 4相应的a 值依次是______________ (2)函数y =lg(x +1)的图象大致是( ) 4. 求下列各式中的x 的值: (1)log 8x =-23;(2)log x 27=3 4; 8.已知函数f (x )=1+log 2x ,则f (1 2)的值为__________. 9. 在同一坐标系中,函数y =log 3x 与y =lg 13 x 的图象之间的关系是_______________

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数