圆锥曲线经典性质总结与证明

圆锥曲线经典性质总结与证明
圆锥曲线经典性质总结与证明

圆锥曲线的经典结论

一、椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点.(中位线)

3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直

径的圆切.(第二定义)

4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b

+=.(求

导)

5. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点

弦P 1P 2的直线方程是00221x x y y

a b

+=.(结合4)

6. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan

2

F PF S b γ

?=.(余弦定理+面积公式+

半角公式)

7. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义)

8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和

AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q

交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上

根据第8条,证毕

10. AB 是椭圆22

221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

2

2OM AB b k k a ?=-,

即0

20

2y a x b K AB -=。(点差法)

11. 若000(,)P x y 在椭圆22

221x y a b

+=,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b +=+.(点差法) 12. 若000(,)P x y 在椭圆22221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b

+=+.

(点差法)

二、双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的角.(同上)

2. PT 平分△PF 1F 2在点P 处的角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直

径的圆,除去长轴的两个端点.(同上)

3. 以焦点弦PQ 为直径的圆必与对应准线相交.(同上)

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(切:P 在右支;外切:P

在左支)(同上)

5. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程

是00221x x y y

a b

-=.(同上) 6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切

线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.(同上)

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意

一点12F PF γ∠=,则双曲线的焦点角形的面积为122

t

2

F PF S b co γ

?=.(同上)

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--(同上) 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,

连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.(同上) 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,

A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.(同上)

11. AB 是双曲线22

221x y a b

-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB

的中点,则0202y a x b K K AB OM =?,即0

20

2y a x b K AB =。(同上)

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0),则被Po 所平分的中点弦的方程

是22

00002222x x y y x y a b a b

-=-.(同上) 13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0),则过Po 的弦中点的轨迹方程是

22002222x x y y

x y a b a b

-=-.(同上)

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直

线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

证明

2. 过椭圆

22

221x y

a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =(常数).

证明

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,

12PF F α∠=, 21PF F β∠=,则

tan t 22

a c co a c αβ

-=+. 证法1(代数)

证法二(几何)

4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上

任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.(上条已证)

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0

<e 21时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆一定点,则

2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

7. 椭圆

22

0022

()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是

2222200()A a B b Ax By C +≥++.

8. 已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.

(1)2222

1111||||OP OQ a b +=+;(2)|OP|2+|OQ|2

的最大值为22224a b a b +;(3)OPQ

S ?的最小值是22

22

a b a b +.

证明

9. 过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦

MN 的垂直平分线交x 轴于P ,则

||||2

PF e

MN =. 证明

(图片有误,ep=b^2/a )

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线的经典性质总结

椭圆 必背的经典结论 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两 个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角 形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 222 2 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点 F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF. 11. A B 是椭圆 2222 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆 222 2 1x y a b + =内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + .

圆锥曲线经典性质总结材料及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆切.(第二定义) 4. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

有关圆锥曲线的经典结论(稻谷书屋)

★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此! 有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

高考数学圆锥曲线的经典性质50条

For pers onal use only in study and research; not for commercial use 1. 2. 3. 4. 5. 6. 7. 8 . For pers onal use only in study and research; not for commercial use 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆 点P处的切线PT平分△ PF1F2在点P处的外角. PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ为直径的圆必与对应准线相离. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 若 F0(X 若 P0(X0 2 x ,y0)在椭圆一亍 a 2 、x ,y0)在椭圆一2 a 2 2 2 2 y - b y - b =1上,则过P0的椭圆的切线方程是一0厂?辔=1. a b =1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦 2 x 椭圆 一2 a 2 x 椭圆一 2 a 2 2 2 2 y b y - b =1 (a>b> 0)的左右焦点分别为F1, F2,点P为椭圆上任意一点一RPF2 - =1 ( a > b> 0)的焦半径公式: P1P2的直线方程是°2 - =1. a b 戈,则椭圆的焦点角形的面积为S A:1PF2 = b2 tan—

|MF i |=a ex o ,|MF 2p a-( Fj-c,0) , F 2(c,0) M (心 y °)). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A i 、A 2为椭圆长轴上的顶点, A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,则MF 丄NF. 2 2 2 2 -2 y ^ = 1内,则过Po 的弦中点的轨迹方程是一2 y^ - ―02 - a b a b a b 双曲线 1. 点P 处的切线PT 平分△ PF 1F 2在点P 处的内角. 2. PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线 相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(x 0, y 0)在双曲线 令-占=1( a > 0,b > 0)上,则过F 0的双曲线的切线方程是 彎一呼 =1. a b a b 2 2 6. 若i =0(x 0, y 0)在双曲线—~2 ^2 -1(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是■X 0,__y°y = 11. AB 是椭圆 即 K AB 2 2 a 2 b 2 b 2X 0 —2 。 a y ° =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 ~2 , a 12. F 0(X o , y o )在椭圆 2 2 7占=1内,则被Po 所平分的中点弦的方程是翠晋色 止 a 2 b 2 13. F 0(x 0,y °)在椭圆

圆锥曲线常用结论(无需记忆,会推导即可)

椭圆与双曲线--经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。

圆锥曲线性质

圆锥曲线的性质 、基础知识 (一)椭圆: 1定义和标准方程: (1)平面上到两个定点F U F2的距离和为定值(定值大于F1F2)的点的轨迹称为椭圆,其中F1, F2称为椭圆的焦点,F1F2称为椭圆的焦距 (2)标准方程: ①焦点在x轴上的椭圆:设椭圆上一点P x,y ,F1 -c,0 , F2C,0,设距离和 2 2 PF i PF2 = 2a,则椭圆的标准方程为:-y2 =1,其中a b 0,b2二a2 - c2 a b ②焦点在y轴上的椭圆:设椭圆上一点P x,y ,F10^C ,F20,C,设距离和 2 2 PFi +|PF2;=2a,则椭圆的标准方程为:专+令二丨,其中(a Ab>0,b2=a2—c2) a b 焦点在哪个轴上,则标准方程中哪个字母的分母更大 2 2 2、椭圆的性质:以焦点在x轴的椭圆为例:笃?爲=1 a b 0 a b (1)a:与长轴的顶点有关:A - a,0 ,A a,0 ,A A =2a称为长轴长 b :与短轴的顶点有关: BdO,-b),B2(0,b ),IB1B2 =2b称为短轴长 C :与焦点有关:斤(—c,O )F? (c,O ), F1F2 =2c称为焦距 (2)对称性:椭圆关于x轴,y轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设P x O,y O,则-a乞x O空a,-b乞y O乞b (4)通径:焦点弦长的最小值 ①焦点弦:椭圆中过焦点的弦 2b2 ②过焦点且与长轴垂直的弦,PQ|=—— a 说明:假设PQ过F r;_c,O ,且与长轴垂直,则P:L c, y O ,Q1. —c, - y O,所以

= (|PF i | +IPF 2I ) -2 PF 』PF 2 (1 +COSF 1PF2 ) .4c 2 =4a 2 -2 PF j|PF 2 1 cosFfF 2 PF 」|PF 2 = " _2c 1 +cosF 1PF 2 1 +cosF 1PF 2 比 2 .込各比出n 吐 1 COS RPF 2 2 F 1,F 2距离差为一个常数,则轨迹为双曲线的一支 2、标准方程: 厶 + 卑=1 二 y ; =3,可得 y 。-。则 PQ = a b a a 2b 2 (5) 离心率:e = c ,因为c a ,所以e - 0,1 a (6) 焦半径公式:称 P 到焦点的距离为椭圆的焦半径 ①设椭圆上一点 P(x 0,y 0 ),则 PR =a+ex), PF 2 ②焦半径的最值:由焦半径公式可得:焦半径的最大值为 (7)焦点三角形面积: S P FF 2二b 2 tan ;(其中n 1 证明:S PF ^- PF 1 - PF 2 sinRPF 2 2 + PF 且 F 1F 2 2 -2 PF 1H PF 2 cosRPF ? =a - e)(Q (可记为“左加右减”) a c ,最小值为a - c =PF 1F 2) 2b 2 1 〈PFf =2 PF 1 ' PF 2 1 sin F ]PF 2 : 2 1 cosPF F 2b 2 sin F |PF 2 1 因为 S PF/2 = 2 2c F 1PF 2 We%,所以2 =c y o ,由此得到的推论: ①.F 1PF 2的大小与 y 0之间可相互求出 ②? F 1 PF 2的最大值: F 1 PF 2 最大二 S PF 1 F 2 最大二 y o 最大=P 为短轴顶点 (二) 双曲线: 1、定义:平面上到两个定点 F 「F 2距离差的绝对值为一个常数(小于 F 1F 2)的点的轨迹 称为双曲线,其中 h,F 2称为椭圆的焦点, F 1F 2称为椭圆的焦距;如果只是到两个定点

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

圆锥曲线的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分12PF F ?在点 P 处的外角. (椭圆的光学性质) 2. PT 平分12PF F ?在点 P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. (中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离. (第二定义) 4. 以焦点半径1PF 为直径的圆必与以长轴为直径的圆内切. (第二定义) 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=.(求导或用联立方程组法) 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过0P 作椭圆的两条切线切点为12,P P ,则切点弦12PP 的直线方程是00221x x y y a b += 7. 椭圆22 221x y a b += (0a b >>)的左右焦点分别为12,F F ,点P 为椭圆上任意一点12F PF γ∠=, 则椭圆的焦点角形的面积为122 tan 2 F PF S b γ ?=.(余弦定理+面积公式+半角公式) 8. 椭圆22 221x y a b +=(0a b >>)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).(第二定义) 9. 设过椭圆焦点F 作直线与椭圆相交,P Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交 相应于焦点F 的椭圆准线于,M N 两点,则MF NF ⊥. 证明:x ky c =+, ()22222222222 22120x y a b k y b cky b c a b a b +=?++++=22222222222 2,P O P O b c a b b cky y y y y a b k a b k --=+=++, 222222222222 2,P O P O a c a b k a c x x x x a b k a b k -=+=++,

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线的基本概念和性质汇总

圆锥曲线的基本概念和性质 圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例1.已知P 是椭圆22x y 14 +=上的点,12F ,F 是椭圆的两个焦点,且12FPF 60∠=?,求12FPF ?的面积. 解答过程:依题意得:12PF PF 2a 4+==,在12 FPF ?中由余弦定理得 2221212PF PF 2PF PF cos60=+-?? =2 121212(PF PF )2PF PF 2PF PF cos60+-?-?? , 解之得:124PF PF 3?=,则12 FPF ?的面积为121PF PF sin 602??=小结:(1)圆锥曲线定义的应用在求解圆锥曲线问题中的作用举足轻重; (2)求解圆锥曲线上的点与其焦点围成的三角形问题中,正、余弦定理非常重要. 考点3. 曲线的离心率 曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =a c ∈(0,1) (e 越大则椭圆越扁); (2) 双曲线的离心率e =a c ∈(1, +∞) (e 越大则双曲线开口越大). 考点 利用向量求曲线方程 利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题: 练习.已知两点M (-1,0),N (1,0)且点P 使???,,成公差小于零的等差数列, (Ⅰ)点P 的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ. 解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得 (1,),PM MP x y =-=---),1(y x ---=-=, )0,2(=-= .

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

江苏高考数学圆锥曲线性质总结

高考数学圆锥曲线性质总结 椭圆与双曲线的对偶性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为 122tan 2 F PF S b γ ?=.

8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线 于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N , 则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的角.

高考中圆锥曲线常见结论

高考中解析几何有用的经典结论 一、椭 圆 1. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 2. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 3. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 4. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 5. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 6. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 7. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 8. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 二、双曲线 1. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程 是00221x x y y a b -=. 2. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线

圆锥曲线的性质

毕业论文 (2010 届) 题目圆锥曲线的性质 及其应用 学院数学与计算机学院 专业数学与应用数学(师范)年级2006级 学生学号12006242748 学生姓名王海强 指导教师胡有婧 2010年4 月19 日

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.圆锥曲线的性质 (2) 2.1圆锥曲线的基本性质 (2) 2.2圆锥曲线的光学性质 (4) 2.3由圆的性质引出的圆锥曲线的性质 (7) 2.3.1 蝴蝶定理 (7) 2.3.2 帕斯卡定理 (8) 2.4 与焦点弦相关的几条性质 (9) 3.圆锥曲线性质的应用 (11) 3.1基本性质的应用 (11) 3.2光学性质的应用 (12) 3.2.1解决一类“距离之和”的最值问题 (12) 3.2.2 圆锥曲线光学性质在解决与“切线”相关问题时起简捷作用 (15) 3.2.3在生产生活中的作用 (16) 3.3由圆的性质引出的圆锥曲线的性质的应用 (17) 3.3.1蝴蝶定理的应用 (17) 3.3.2巴斯卡定理的应用 (19) 3.4 与焦点弦相关的几条性质的应用 (20) 4.总结 (22) 参考文献 (22)

数学计算机学院数学教育专业2010届王海强 摘要本文首先从圆锥曲线的产生和发展入手,对圆锥曲线的定义和圆锥曲线的部分性质进行了简要的概括.主要是利用平面解析几何的知识和数形结合思想,对圆锥曲线的基本性质、光学性质,由圆的性质推广得到的几条性质和与焦点弦有关的性质,进行了总结和证明,并且将它们在日常生活中的应用和在解题中的应用进行了简要说明. 关键词圆锥曲线;性质;应用 中图分类号O123.1 The Properties of conic and Application

高考数学专题 17 圆锥曲线的几何性质专题

高考专题训练 培优点十七 圆锥曲线的几何性质 1.椭圆的几何性质 例1:如图,椭圆()22 22+10x y a b a b =>>的上顶点、左顶点、左焦点分别为B 、A 、F ,中 心为O ,则:ABF BFO S S =△△( ) A .(2:3 B .() 3:3 C .(2:2 D .() 3:2 【答案】B 【解析】由ABF ABO BFO S S S =-△△△,得()():::ABF BFO ABO BFO BFO S S S S S ab bc bc =-=-△△△△△ 而c a = () :3:3ABF BFO S S =△△,故选B . 2.抛物线的几何性质 例2:已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( ) A B .C .D .【答案】C 【解析】 设准线l 与x 轴交于点N ,所以2FN =,因为直线AF 的斜率为60AFN ∠=?,

所以4AF =, 由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=?,所以MAF △是以4为边长的正三 2 4=.故选C . 3.双曲线的几何性质 例3:已知点P 是双曲线2213664 x y -=的右支上一点,M ,N 分别是圆()2 2104x y ++=和 () 2 2101x y -+=上的点,则PM PN -的最大值为_________. 【答案】15 【解析】在双曲线22 13664x y -=中,6a =,8b =,10c =, ()110,0F ∴-,()210,0F ,12212PF PF a -==, 11MP PF MF ≤+,22PN PF NF ≥-,112215PM PN PF MF PF NF ∴-≤+-+=. 一、单选题 1.抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值为1,则p =( ) A .12 B .1 C .2 D .4 【答案】C 【解析】抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值即到准线的最小值, 很明显满足最小值的点为抛物线的顶点,据此可知: 12 p =,2p ∴=.本题选择C 选项. 2.设点1F ,2F 是双曲线2 2 13y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =, 则12PF F △的面积等于( ) A . B . C . D .对点增分集训

相关文档
最新文档