E5缺陷对铸造多晶硅寿命分布的影响[1]

E5缺陷对铸造多晶硅寿命分布的影响[1]
E5缺陷对铸造多晶硅寿命分布的影响[1]

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

压铸缺陷英文

磕碰:knocked wounded 划伤: scratch 变形:bending warping 拉伤:drags 龟裂:turtle cracks,network cracks 夹杂:inclusions 锈蚀,发霉:rust,corrosion 裂纹:cracks 气泡:blisters 气孔:gas porosity 油污:stained casting 夹层:laminations 成形不良:non-fills 零件外观不允许有明显压铸缺陷如冷隔、发黑 拉伤、起皮、水纹、粘料、切伤、滑块凸起 cold shut,black surface,drag mark,stripping,wave,sticky material,trimming wound and raised slider are not allowed on parts ? A . 尺寸,形状缺陷 ?铸造缺陷 casting defects ?尺寸超差 improper shrinkage allowance ?尺寸不合格 wrong size ?模样错误 excess rapping of pattern, deformed pattern, ?壁厚不均 different thickness ?铸型下垂 mold sag ?错型 mold shift, shift, miss-match, cross-joint ?舂移 ram off, ram away ?塌型 mold drop, drop off, drop out, drop sticker 上型下沉,沉芯 sag( 上型和型芯下垂导致壁厚减小) ?飞翅 fins, joint flash ?翘曲 warp age, buckling, warping, camber ?铸件变形 warped casting ?挤箱 push up, cramp-off ?型裂 broken mold, cracked ?掉砂 crush of mold, crush ?变形 deformation, casting distortion, warped casting ? B. 缩孔(由凝固收缩引起 ) ?缩孔 shrinkage, shrinkaged cavity ?内部缩孔 internal shrinkage, dispersed shrinkage, blind shrinkage

铸造专业英文词汇

Abating退火 Abrasion磨损 Abrasive paper砂纸 Abrasive wheel 砂轮 Accessory 附件,活块 Acicular ferrite针状铁素体 Acid refractory酸性耐火材料 Acid-proof cast iron / acid-resistance casting/ acid resisting cast iron耐酸铸件 Acid slay酸性渣 Active clay有效粘土 AFS fineness美国铸造学会型砂粒度 Agitator 搅拌机(型砂试验) Agitation 搅拌 Air blower鼓风机 Air drain 出气口(浇注系统) Air pollution control大气污染控制 Air tightness气密性 Air vent 出气孔 Allowance 余量,津贴,补助,宽容 Alloying agent 合金元素 Alloying component 合金成分 Anti-rust防锈 Argon氩气 Atomization雾化,喷雾 Atomizer test雾化试验(检验金属表面油脂)Attack侵蚀 Attack polishing method侵蚀抛光法Automatic charging 自动加料 Automatic de-sprueing自动切除冒口Automatic molding自动造型 Automatic pouring device自动浇注装置Automatic sand plant自动化砂处理装置Baked core干砂芯 Balance天平/余额 Ball feeder球状冒口 Ball hardness布氏硬度 Ball hardness testing machine布氏硬度机Ball mill球磨机 Band/belt conveyer皮带输送机 Band/belt elevator皮带斗式提升机 Bar bend test试棒抗弯试验 Base 底,基础 Base line 基线 Base plate底板 Base sand原砂Basic碱性的,基本的 Batch mill / batch sand mixer混砂机Beader pearlite珠光体 Bed charge/coke底焦 Belt grinder带式磨光机 Bending strength抗弯强度Bentonite膨润土 Binder粘结剂 Bituminous coal dust/black dust煤粉Black short冷脆 Black skin黑皮,铸皮 Blank毛胚,下料 Blast鼓风,送风 Blast capacity风量 Blast fan 离心式鼓风机 Blast hole风口 Blast intensity鼓风强度 Blast pressure gage风压表 Blast regulator风量调节器 Blast volume风量 Bleed缺肉,台箱跑火 Blender混砂机,搅拌机 Blind feeder/head暗冒口 Blind roaster马弗炉 Blind scab起痂 Blister皮下气泡 Blow down停炉 Boiling point沸点 Bond 粘结剂,合同 Bond clay造型粘土 Bond strength粘结强度 Bottom door炉底们 Bottom drop 打炉 Breaking-in 带肉 Brinell hardness布氏硬度Brittleness脆性 Brittle fracture脆性断口,脆性断裂B type graphite B型石墨 Buffing 抛光 Buffing machine抛光机 Bunker料斗 CE carbon equivalent 碳当量Carbide 碳化物 carbon dioxide二氧化碳 carbon monoxide一氧化碳 carbon pick-up增碳 carburetter 增碳剂,汽化器

铸件常见缺陷修补及检验

铸件常见缺陷的鉴别、起因、修补及检验----------------------------------------------福联造型,呋喃树脂、酚醛树脂、覆膜砂专家 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

铸造缺陷分析

发动机铸件汽缸体(汽缸盖)缺陷分析 概述 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)

然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。 提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通

少子寿命的测量

表面复合对少子寿命测量影响的定量分析 我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。 通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =S F R τ--11(τ0或b τ表示体寿命)推演出来: S b F τττ111+= (1) 即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。 光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。 光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。 但实际上的表面复合寿命与样品的厚度及表面复合速度有关。 由MF1535-0707中给出s l D l sp diff s 222+=+=πτττ (2)可知,其中: diff τ=D l 22 π——少子从光照区扩散到表面所需的时间 sp τ= 2l s ——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间 l ——样品厚度 D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s

S ——表面复合速度,单位cm/s 硅晶体的表面复合速度随着表面状况在很大范围内变化。如表1所示: 表1 据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。 现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。 为了定量分析表面复合对测量值F τ的影响,我们以最常用厚度为180μm 的P 型硅片为例进行定量分析。因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S ≥105cm/s 。因为良好的抛光面S ≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b τ= S F R τ--1 1 ,其中Rs 是表面复合速率,表面复合寿命S s R 1=τ, 由以上公式即可推演出常用公式:S b F τττ111+= 表面复合寿命s l D l sp diff s 222+=+=πτττ 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时, l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时, 我们测出的表观寿命受表面影响的程度,以及真实体寿命b τ与实测值F τ相差多

常见铸造缺陷产生的原因及防止方法

常见铸造缺陷产生的原因及防止方法 铸件缺陷种类繁多,产生缺陷的原因也十分复杂。它不仅与铸型工艺有关,而且还与铸造合金的性制、合金的熔炼、造型材料的性能等一系列因素有关。因此,分析铸件缺陷产生的原因时,要从具体情况出发,根据缺陷的特征、位置、采用的工艺和所用型砂等因素,进行综合分析,然后采取相应的技术措施,防止和消除缺陷。 一、浇不到 1、特征 铸件局部有残缺、常出现在薄壁部位、离浇道最远部位或铸件上部。残缺的边角圆滑光亮不粘砂。 2、产生原因 (1)浇注温度低、浇注速度太慢或断续浇注; (2)横浇道、内浇道截面积小; (3)铁水成分中碳、硅含量过低; (4)型砂中水分、煤粉含量过多,发气量大,或含泥量太高,透气性不良;] (5)上砂型高度不够,铁水压力不足。 3、防止方法 (1)提高浇注温度、加快浇注速度,防止断续浇注; (2)加大横浇道和内浇道的截面积; (3)调整炉后配料,适当提高碳、硅含量; (4)铸型中加强排气,减少型砂中的煤粉,有机物加入量; (5)增加上砂箱高度。 二、未浇满 1、特征 铸件上部残缺,直浇道中铁水的水平面与铸件的铁水水平面相平,边部略呈圆形。 2、产生原因 (1)浇包中铁水量不够; (2)浇道狭小,浇注速度又过快,当铁水从浇口杯外溢时,操作者误认为铸型已经充满,停浇过早。

3、防止方法 (1)正确估计浇包中的铁水量; (2)对浇道狭小的铸型,适当放慢浇注速度,保证铸型充满。 三、损伤 1、特征 铸件损伤断缺。 2、产生原因 (1)铸件落砂过于剧烈,或在搬运过程中铸件受到冲撞而损坏; (2)滚筒清理时,铸件装料不当,铸件的薄弱部分在翻滚时被碰断; (3)冒口、冒口颈截面尺寸过大;冒口颈没有做出敲断面(凹槽)。或敲除浇冒口的方法不正确,使铸件本体损伤缺肉。 3、防止方法 (1)铸件在落砂清理和搬运时,注意避免各种形式的过度冲撞、振击,避免不合理的丢放; (2)滚筒清理时严格按工艺规程和要求进行操作; (3)修改冒口和冒口颈尺寸,做出冒口颈敲断面,正确掌握打浇冒口的方向。 四、粘砂和表面粗糙 1、特征 粘砂是一种铸件表面缺陷,表现为铸件表面粘附着难以清除的砂粒;如铸件经清除砂粒后出现凹凸不平的不光滑表面,称表面粗糙。 2、产生原因 (1)砂粒太粗、砂型紧实度不够; (2)型砂中水分太高,使型砂不易紧实; (3)浇注速度太快、压力过大、温度过高; (4)型砂中煤粉太少; (5)模板烘温过高,导致表面型砂干枯;或模板烘温过低,型砂粘附在模板上。 3、防止方法 (1)在透气性足够的情况下,使用较细原砂,并适当提高型砂紧实度;

压铸件的缺陷分析及检验

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

铸造铸件常见缺陷分析报告文案

铸造铸件常见缺陷分析 铸造工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 常见铸件缺陷及产生原因 .学习帮手.

缺陷名称特征产生的主要原因 气孔 在铸件部或表 面有大小不等 的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 砂眼在铸件部或表 面有型砂充塞 的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,浇口方向不对,金属液冲坏了砂 .学习帮手.

型;④合箱时型腔或浇口散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有 一层型砂①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 错型铸件沿分型面 有相对位置错①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压 .学习帮手.

铸造缺陷中英文对照

A .尺寸,形状缺陷 铸造缺陷casting defects 尺寸超差impropershrinkage allowance 尺寸不合格wrong size 模样错误excess rappingof pattern, deformed pattern, pattern error 壁厚不均differentthickness 铸型下垂mold sag 错型mold shift,shift, miss-match, cross-joint 舂移ram off, ramaway 塌型mold drop,drop off, drop out, drop sticker 上型下沉,沉芯sag( 上型和型芯下垂导致壁厚减小) 飞翅fins, joint flash 翘曲warp age,buckling, warping, camber 铸件变形warped casting 挤箱push up,cramp-off 型裂broken mold,cracked 掉砂crush ofmold, crush 变形deformation,casting distortion, warped casting B.缩孔(由凝固收缩引起) 缩孔shrinkage,shrinkaged cavity 内部缩孔internalshrinkage, dispersed shrinkage, blind shrinkage

敞露缩孔open shrinkage,external shrinkages, sink marks, depression 缩松porosity, shrinkage porosity,leakers, micro shrinkage, disperded shrinkage 缩陷sink marks,draw, suck-in 芯面缩孔core shrinkage 内角缩孔cornershrinkage, fillet shrinkage 出汗孔extruded bead,exudation 线状缩孔fissure likeshrinkage C.气体缺陷(由气体引起的孔) 气孔blowholes,gas hole, blow 针孔pinholes 裂纹状缺陷,线状缺陷fissure defects D.裂纹 裂纹crack 缩裂shrinkage crack 季裂seasoncracking, season crack 应力热裂hot cracking,hot tearing, hot tear 淬火裂纹quench crack,quenching crack 应力冷裂cold cracking,breakage, cold tearing, cold tear 龟裂crack 激冷层裂纹,白裂chill crack

铸造英文对照及解析

铸造常用词中英文对照及简释 1. 铸件后处理(post treatment of casting) [ 铸件] 对清理后的铸件进行热处理﹑整形﹑防锈处理和粗加工的过程。铸件后处理是铸造生产的最后一道工序。 2. 铸件清理(cleaning of casting) [ 铸件] 将铸件从铸型中取出﹐清除掉本体以外的多余部分﹐并打磨精整铸件内外表面的过程。主要工作有清除型芯和芯铁。 3. 铸造有色合金(cast non ferrous alloy) [ 铸造合金] 用以浇注铸件的有色合金(见有色金属)﹐是铸造合金中的一类。主要有铸造铜合金﹑铸造铝合金﹑铸造镁合金等。 4. 浇注系统(gating system) [ 铸型] 为将液态金属引入铸型型腔而在铸型内开设的信道。包括﹕浇口杯,直浇道,横浇道,内浇道。 5. 模样(pattern) [ 铸型] 仿真铸件形状形成铸型型腔的工艺装备或易耗件。为保证形成符合要求的型腔﹐模样应具有足够的强度﹑刚度。 6. 冒口(riser) [ 铸型] 为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。在铸型中﹐冒口的型腔是存贮液态金属的容器。 7. 芯盒(core box) [ 铸型] 将芯砂制成型芯的工艺装备。可由木材﹑塑料﹑金属或其它材料制成。 8. 芯砂(core sand) [ 造型材料] 铸造生产中用于制造型芯的材料﹐一般由铸造砂﹑型砂黏结剂和辅加物等造型材料按一定的比例混合而成 9. 型砂(molding sand) [ 造型材料] 在砂型铸造中用来造型的材料。型砂一般由铸造砂﹑型砂黏结剂和辅加物等造型材料按一定的比例混合而成。 10. 型砂粘结剂(molding sand binder) [ 造型材料] 将松散的铸造砂粘结在一起使之成为型砂或芯砂的造型材料。 11. 再生砂(reclaimed sand) [ 造型材料] 铸造生产中经过处理基本上恢复了使用性能可以回用的旧砂。 12. 铸造砂(foundry sand) [ 造型材料] 铸造生产中用来配制型砂和芯砂的一种造型材料。 13. 混砂机(sand mixer) [ 铸造设备] 用于混制型砂或芯砂的铸造设备。混砂机一般具有下列功能﹕将旧砂﹑新砂﹑型砂黏结剂和辅料混合均匀。 14. 落砂机(shakeout machine) [ 铸造设备] 利用振动和冲击(见机械振动)使铸型中的型砂和铸件分离的铸造设备。落砂机的振动源分为机械﹑电磁和气动。 15. 抛丸机(shot blasting machine) [ 铸造设备] 利用抛丸器抛出的高速弹丸清理或强化铸件表面的铸造设备。抛丸机能同时对铸件进行落砂﹑除芯和清理。 16. 造芯机(core making machine) [ 铸造设备] 用于制造型芯的铸造设备。根据制芯时实砂方法的不同﹐造芯机可分为震击式制芯机﹑挤芯机和射芯机等。 17. 造型机(molding machine) [ 铸造设备] 用于制造砂型的铸造设备。它的主要功能是﹕填砂﹐将松散的型砂填入砂箱中﹔紧实型砂。

挤压铸造原理及缺陷分析正式样本

文件编号:TP-AR-L4314 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 挤压铸造原理及缺陷分 析正式样本

挤压铸造原理及缺陷分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。 挤压铸造原理及特点 1.1.基本原理 挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合

模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。 1.2.挤压铸造的特点 挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随

缺陷中英文词汇对比

A . 尺寸,形状缺陷 铸造缺陷casting defects 尺寸超差impropershrinkage allowance 尺寸不合格wrong size 模样错误excess rappingof pattern, deformed pattern, pattern error 壁厚不均differentthickness 铸型下垂mold sag 错型mold shift,shift, miss-match, cross-joint 舂移ram off, ramaway 塌型mold drop,drop off, drop out, drop sticker 上型下沉,沉芯sag( 上型和型芯下垂导致壁厚减小) 飞翅fins, joint flash 翘曲warp age,buckling, warping, camber 铸件变形warped casting 挤箱push up,cramp-off 型裂broken mold,cracked 掉砂crush ofmold, crush 变形deformation,casting distortion, warped casting B. 缩孔(由凝固收缩引起) 缩孔shrinkage,shrinkaged cavity 内部缩孔internalshrinkage, dispersed shrinkage, blind shrinkage 敞露缩孔open shrinkage,external shrinkages, sink marks, depression 缩松porosity, shrinkage porosity,leakers, micro shrinkage, disperded shrinkage 缩陷sink marks,draw, suck-in 芯面缩孔core shrinkage 内角缩孔cornershrinkage, fillet shrinkage 出汗孔extruded bead,exudation 线状缩孔fissure likeshrinkage C. 气体缺陷(由气体引起的孔) 气孔blowholes,gas hole, blow 针孔pinholes 裂纹状缺陷,线状缺陷fissure defects D. 裂纹 裂纹crack 缩裂shrinkage crack 季裂seasoncracking, season crack 应力热裂hot cracking,hot tearing, hot tear 淬火裂纹quench crack,quenching crack 应力冷裂cold cracking,breakage, cold tearing, cold tear 龟裂crack 激冷层裂纹,白裂chill crack E. 夹杂物 夹渣slaginclusion, slag blowholes 砂眼sandinclusion, raised sand, sand hole

铸造常用英文

. 铸件后处理(post treatment of casting) [ 铸件] 对清理后的铸件进行热处理﹑整形﹑防锈处理和粗加工的过程。铸件后处理是铸造生产的最后一道工序。 2. 铸件清理(cleaning of casting) [ 铸件] 将铸件从铸型中取出﹐清除掉本体以外的多余部分﹐并打磨精整铸件内外表面的过程。主要工作有清除型芯和芯铁。 3. 铸造有色合金(cast non ferrous alloy) [ 铸造合金] 用以浇注铸件的有色合金(见有色金属)﹐是铸造合金中的一类。主要有铸造铜合金﹑铸造铝合金﹑铸造镁合金等。 4. 浇注系统(gating system) [ 铸型] 为将液态金属引入铸型型腔而在铸型内开设的信道。包括﹕浇口杯,直浇道,横浇道,内浇道。 5. 模样(pattern) [ 铸型] 仿真铸件形状形成铸型型腔的工艺装备或易耗件。为保证形成符合要求的型腔﹐模样应具有足够的强度﹑刚度。 6. 冒口(riser) [ 铸型] 为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。在铸型中﹐冒口的型腔是存贮液态金属的容器。 7. 芯盒(core box) [ 铸型] 将芯砂制成型芯的工艺装备。可由木材﹑塑料﹑金属或其它材料制成。 8. 芯砂(core sand) [ 造型材料] 铸造生产中用于制造型芯的材料﹐一般由铸造砂﹑型砂黏结剂和辅加物等造型材料按一定的比例混合而成 9. 型砂(molding sand) [ 造型材料] 在砂型铸造中用来造型的材料。型砂一般由铸造砂﹑型砂黏结剂和辅加物等造型材料按一定的比例混合而成。 10. 型砂粘结剂(molding sand binder) [ 造型材料] 将松散的铸造砂粘结在一起使之成为型砂或芯砂的造型材料。 11. 再生砂(reclaimed sand) [ 造型材料] 铸造生产中经过处理基本上恢复了使用性能可以回用的旧砂。 12. 铸造砂(foundry sand) [ 造型材料] 铸造生产中用来配制型砂和芯砂的一种造型材料。 13. 混砂机(sand mixer) [ 铸造设备] 用于混制型砂或芯砂的铸造设备。混砂机一般具有下列功能﹕将旧砂﹑新砂﹑型砂黏结剂和辅料混合均匀。 14. 落砂机(shakeout machine) [ 铸造设备] 利用振动和冲击(见机械振动)使铸型中的型砂和铸件分离的铸造设备。落砂机的振动源分为机械﹑电磁和气动。

铸造多晶硅中杂质对少子寿命的影响

铸造多晶硅中杂质对少子寿命的影响 对于太阳电池材料,勺子寿命是衡量材料性能的一个重要参数。多晶硅锭中存在高密度的缺陷和高浓度的杂质(氧、碳以及过渡族金属铁等)。有研究表明,相比于晶界和位错,氧、铁等主要的杂质元素对硅锭中少子寿命的影响更大。 氧是铸造多晶硅材料中最主要的杂质元素之一,间隙氧通常不显电学活性,对少子寿命没有影响。但在晶体生长或热处理时,在不同温度氧会形成热施主、新施主、氧沉淀,氧沉淀会吸引铁等金属元素。另外铁也被认为铸造多晶硅中最常见的有害杂质之一。P型硅中,铁通常与硼结合成铁-硼对,铁一硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而形成间隙铁离子和硼离子,由于间隙铁离子和铁一硼对少数载流子复合能力的不同,使得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。 杂质在铸造多晶硅硅锭中的分布,与该杂质在硅中的分凝系数K有关。在铸造多晶硅锭料由底部向顶部逐渐凝固时,如果杂质的分凝系数K<1,则凝固过程中,固相中的杂质不断地被带到熔体中,出现杂质向底部集中,越接近底部浓度越大,相反,如果分凝系数K>1,则杂质集中在顶部,越接近顶部浓度越大。 氧主要集中在硅锭头部,其浓度呈现从硅锭底部向顶部逐渐降低的趋势。可以认为分凝机制对于氧在熔体硅中的传递和分布起主要作用。间隙铁分布为:头部和尾部浓度较高,中间部分浓度较低,且分布较为均匀。这与仅由分凝机制决定的间隙铁浓度分布,特别是在底部处产生了较大偏离。硅锭底部处出现了较大的间隙铁浓度,由于铁在硅中具有较大的扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层向其进行固相扩散的结果。事实上硅锭的底部最先开始凝固,通常整个凝固过程将持续数十小时,硅锭底部将有较长时间处于高温状态,因而使得固相扩散的现象有可能发生。固相扩散的程度与凝固后硅锭的冷却速率以及各温度下的铁的扩散系数有关。 从少子寿命的分布图中,可以看出硅锭两端的低寿命区域,对应着过高的间隙铁、氧浓度,因而可以认为高浓度的间隙铁、氧原子形成了有效复合中心,从而导致了硅锭两端低少子寿命区域的出现。

铝合金铸造常见缺陷

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。 (3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。(2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法:

(1)适当提高铝液温度和模具温度,检查调整合金成份。 (2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。 4、凹陷: 特征:在平滑表面上出现的凹陷部分。 形成原因: (1)铸件结构不合理,在局部厚实部位产生热节。 (2)合金收缩率大。 (3)浇口截面积太小。 (4)模温太高。 防止方法: (1)改进铸件结构,壁厚尽量均匀,多用过渡性连接,厚实部位可用镶件消除热节。(2)减小合金收缩率。 (3)适当增大内浇口截面面积。 (4)降低铝液温度和模具温度,采用温控和冷却装置,改善模具热平衡条件,改善模具排气条件,使用发气量少的涂料。 5、气泡 特征:铸件表皮下,聚集气体鼓胀所形成的泡。 形成原因: (1)模具温度太高。 (2)充型速度太快,金属液流卷入气体。 (3)涂料发气量大,用量多,浇铸前未挥发完毕,气体被包在铸件表层。 (4)排气不畅。 (5)开模过早。 (6)铝液温度高。 防止方法: (1)冷却模具至工作温度。 (2)降低充型速度,避免涡流包气。 (3)选用发气量小的涂料,用量薄而均匀,彻底挥发后合模。 (4)清理和增设排气槽。 (5)修正开模时间。 (6)修正熔炼工艺。 6、气孔(气、渣孔) 特征:卷入铸件内部的气体所形成的形状规则,表面较光滑的孔洞。 形成原因:

铸造铸件常见缺陷分析

铸造铸件常见缺陷分析 工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 1

常见铸件缺陷及产生原因 缺陷名称特征产生的主要原因 气孔 在内部或表面 有大小不等的 光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔内粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 2

砂眼 在铸件内部或 表面有型砂充 塞的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,内浇口方向不对,金属液冲坏了砂型;④合箱时型腔或浇口内散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 3

一层型砂 错型铸件沿分型面 有相对位置错 移①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压铁,浇注时产生错箱 冷隔铸件上有未完 全融合的缝隙或洼坑,其交接处是圆滑的①浇注温度太低,合金流动性差;②浇注速度太慢或浇注中有断流;③浇注系统位置开设不当或内浇道横截面积太小;④铸件壁太薄;⑤直浇道(含浇口杯)高度不够;⑥浇注时金属量不够,型腔未充满 浇不足 铸件未被浇满 裂纹铸件开裂,开 裂处金属表面①铸件结构设计不合理,壁厚相差太大,冷却不均匀;②砂型和型芯的退让性差,或春砂过紧;③落 4

相关文档
最新文档