实验八 帧成形及其传输实验

实验八 帧成形及其传输实验
实验八 帧成形及其传输实验

大连理工大学实验报告

实验时间:2014 年 05月 19 日 星期 一 时间 :13:00 ~ 15:20实验室(房间号):C227 实验台号码: 4 班级: 电英1001 姓名: 杜勇 同组人: 杨钰莹 指导教师签字: 成绩:

实验八 帧成形及其传输实验

五、实验数据记录

1.发送传输帧结构观察

2.帧定位信号测量

通道1:TPB07 通道2:TPB03 通道1:TPB07 通道2:TPB03

框内为帧定时信号11100100 3.帧内话音数据观察 4.帧内开关信号观测

框内为语音信号 开关信号为00000000 思考:系统会出现同步不正确的现象,因为有两个定位点。 5.帧内m 序列数据观测 通道1:TPB07 通道2:TPB03

11 01

00

10

结论:帧内m 序列的数据变化。

思考:不能,m 序列的位数不是8bit 的整数倍,所以无法观测一个完整的帧内m 序列数据周期。

6.解复接帧同步信号指示观测 7. 解复接开关信号输出指示观测 通道1:TPB07 通道2:TPB06

结论:两信号同步。

接LED0,DB08亮 接LED6,DB02亮

接LED5,DB03亮 接LED4,DB04亮 接LED3,DB05亮 接LED2,DB06亮 接LED1,DB07亮 接LED7,DB01不亮 结论:接收端发光二极管指示灯会随着跳线开关SWB01中短路器状态改变而改变。

8.解复接m序列数据输出测量通道1:TPB01 通道2:TPB05

延时:Δx=62.5us

六、思考题

1.分析帧的组成过程。

答:在一个帧中共划分为32段时隙(T0~T31),其中30个时隙用于30路话音业务。T0为帧定位时隙(亦称报头),用于接收设备做帧同步用。在帧信号码流中除有帧定位信号外,随机变化的数字码流中也将会以一定概率出现与帧定位码型一致的假定位信号,它将影响接收端帧定位的捕捉过程。在搜索帧定位码时是连续的对接收码流搜索,因此帧定位码要具有良好的自相关特性。T1~T15时隙用于话音业务,分别对应第1路到第15路话音PCM码字。T16时隙用于信令信号传输,完成信令的接续。T17~T31时隙用于话音业务,分别对应第16路到第30路话音PCM码字。

2.在通信系统中PCM接收端应如何获得接收输入时钟和接收帧同步时钟信号?

答:将接收信号进行处理提取载波信号,从而获得接收输入时钟。在实际通信当中PCM信号通常都是复接在帧信号中进行传输的,因此接收帧同步时钟信号的获取通过检测帧标志(一般是巴克码)来实现。

3.当调整跳线开关SWB01中LED7~LED0为11100100码型时(与帧定位信号一致),系统会出现什么情况?

答:7位Barker码(1100100)具有良好的自相关特性,使接收端具有良好的相位分辨能

力,从而观察示波器时,能清楚地观察到脉冲,相位不重叠。发光二极管DB01~DB08分别为01100110,1为亮,0为不亮。

4. 能否调整示波器使在同步的条件下观测完整的一个帧内m序列数据周期,为什么?答:不能观测完整的一个帧内m序列周期。因为仪器的误码率是随机的,在不同时

刻,解复接模块产生的m序列都是不一样的。

5.经过复接/解复接系统的传输时延是多少?

答:为62.5us。

七、实验体会

本次实验为最后一次实验,过程中没有遇到太大的困难,但是处理过程中相对来说较麻烦,不过在参考了一些资料的情况下,顺利完成了实验处理。

中南大学通信原理实验报告(截图完整)

中南大学 《通信原理》实验报告 学生姓名 指导教师 学院 专业班级 完成时间

数字基带信号 1、实验名称 数字基带信号 2、实验目的 (1)了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 (2)掌握AMI、HDB 3 码的编码规则。 (3)掌握从HDB 3 码信号中提取位同步信号的方法。 (4)掌握集中插入帧同步码时分复用信号的帧结构特点。 (5)了解HDB 3 (AMI)编译码集成电路CD22103。 3、实验内容 (1)用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码 (HDB 3)、整流后的AMI码及整流后的HDB 3 码。 (2)用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 (3)用示波器观察HDB 3 、AMI译码输出波形。 4、基本原理(简写) 本实验使用数字信源模块和HDB 3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点(2个) ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ?并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数

光传输实验报告

学校代码: 10128 学号:xxxxx 专题设计实验报告 题目:光纤通信实验 学生姓名:X X X X 专业:X X X X 班级:X X X X 指导教师:X X X 二〇二〇年五月

实验一SDH 网元基本配置 一、实验目的: 通过本实验,了解 SDH 光传输的原理和系统组成,了解 ZXMP S325 设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握 SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套 ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH 对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口: STM-1 是 SDH 的第一个等级,又叫基本同步传送模块,比特率为 155.520Mb/s;STM-N 是 SDH 第 N 个等级的同步传送模块,比特率是STM-1 的 N 倍(N=4n=1,4,16,- - -)。

光接口:采用国际统一标准规范。SDH 仅对电信号扰码,光口信号码型是加扰的 NRZ码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速 SDH----高速 SDH,字节间插; b) 低速 PDH-----SDH,同步复用和灵活的映射。 (3) 运行维护:用于运行维护(OAM)的开销多,OAM 功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送 PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5) SDH 复用映射示意图如图1-1所示 图1-1 SDH 复用映射示意图 (6) SDH 体制的缺陷 a)频带利用率低 b)指针调整机理复杂,并且产生指针调整抖动 c)软件的大量使用对系统安全性的影响 2、城域传输网的层次 基于 SDH 多业务节点设备满足如下图所示从核心层、汇聚层到接入层的所有应用,可为用户提供城域网整体解决方案。

光纤通信实验指导书

目录 系统简介 (2) 实验部分 实验一数字信源及其光纤传输实验 (5) 实验二 HDB3编译码及其光纤传输实验 (11) 实验三 CMI编译码及其光纤传输实验 (20) 实验四光发送模块实验 (28) 实验五光接收模块实验 (35) 实验六数字信号电—光、光—电转换传输实验 (39) 1)方波信号和NRZ码传输; 2)CMI码传输; 3)HDB3码传输; 实验七波分复用(WDM)光纤通信系统实验 (43) EL-GT-IV光纤通信教学实验系统简介 光纤通信教学实验系统是为了配合《光纤通信系统》的理论教学而设计的实验装置,在这套系统上除了完成理论验证实验外,还可实现各种开发性实验,并可配合CPLD进行各模块的二次性开发。此外本实验箱,可扩展实验模块,实现通信原理的实验。 一、结构简介 光纤通信教学实验系统结构框图如下: 1310光纤收发模块1550光纤收发模块

主要由以下功能模块组成: 1.数字信号源单元: 此单元产生码速率为170.5K的单极性不归零码(NRZ),数字信号帧长为24位,其中包括两路数字信息,每路8位,另外8位中的7位为集中插入帧同步码。通过拨码开关,可以很方便地改变要传送的码信息并由发光二极管显示出来。 2.AMI(HDB3)编译码单元: 此单元将数字信号源单元产生的NRZ码进行编码,通过专用芯片转换成HDB3码或AMI码通过切换开关切换,然后将编码后的信号又经过译码单元还原成NRZ码。 3.电话接口单元 此单元有两路独立的电话输入接口、输出接口,通过专用电话接口芯片实现语音的全双工通信。自带馈电电源。 4.PCM&CMI编译码单元; 此单元采用CPLD来实现PCM&CMI编译码电路,可同时完成两路信号的编译码工作。PCM模块可以实现传输两路语音信号,采用TP3057编译器。 5.可调信号源单元: 此单元包括两路频率800HZ—2KHZ可调的方波、正弦波、三角波。 6.串行RS232接口单元: 此单元配有RS232接口及信号端口TX和RX,可实现自发自收通信实验,两台计算机间的全双工光纤通信实验。 7.1310波长光发送单元: PHLC-1310nmFP同轴激光二极管。 8.1550波长光发送单元: PHLC-1310nmFP同轴激光二极管。 9.1310波长光接受单元: 10.1550波长光接受单元: 主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。它主要有光检测模块、滤波放大模块组成。光检测模块采用PHPC-IS01-PFC,是PHOTRON公司的高性能光检测器件,输出可从DC到1GHZ。 11.数字时分复用光纤传输实验

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

移动通信课程设计——帧同步提取

课程设计报告 课题名称帧同步提取 学院 专业 班级 学号 姓名 指导教师 定稿日期: 2014 年 06月13 日

目录 摘要 (1) 一、前言 (2) 1.1 CDMA帧同步背景 (2) 二、帧同步提取基本原理 (3) 2.1 CDMA含义 (3) 2.2基本原理 (3) 2.2.1发端用户数据成帧 (3) 2.2.2 收端帧同步提取 (3) 三、帧同步提取设计 (6) 3.1课程设计分析 (6) 3.2帧同步提取测试设计步骤 (7) 3.2.1实验箱设置 (7) 3.2.2“发端数据成帧”测量步骤 (7) 3.3单片机程序流程图如下 (9) 四、帧同步提取测试结果 (10) 4.1课程设计实物链接图 (10) 4.2“发端数据成帧”实验过程 (10) 4.3实测收端帧同步误码: (11) 五、课设总结 (12) 参考文献 (13) 附录(源程序) (14)

摘要 在当今这个信息高速发展的时代,移动通信已经成为生活中不可或缺的一部分。在移动环境下点对点的传输问题已经得到解决,那么对于给定资源应该采用什么多址技术使得有限的资源能传输更大容量的信息?移动通信系统的发展经历了第一代模拟移动通信系统、第二代数字移动通信系统和第三代移动通信系统(IMT-2000)。第一代移动通信系统包括AMPS、TACS和NMT等体制。第二代数字移动通信系统包括GSM、IS-136(DAMPS)、PDC、IS-95等体制。一个典型的数字蜂窝移动通信系统包括:移动台(MS)、基站分系统(BSS)、移动交换中心(MSC)、原籍(归属)位置寄存器(HLR)、访问位置寄存器(VLR)、设备标识寄存器(EIR)、认证中心(AUC)和操作维护中心(OMC)。而这其中,多址技术便主要解决众多用户如何高效共享给定频谱资源的问题。常规的多址方式有三种:频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)。数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输,因此群同步信号的频率很容易由位同步信号经分频而得出,但是每群的开头和末尾时刻却无法由分频器的输出决定。群同步的任务就是要给出这个“开头”和“末尾”的时刻。群同步有时也称为帧同步。本次课程设计主要研究帧同步的提取及实现方法。 关键词:CDMA 帧同步移动通信

滤波法及数字锁相环法位同步提取实验和帧同步提取实验教学文案

滤波法及数字锁相环法位同步提取实验和帧同步提取实验

滤波法及数字锁相环法位同步提取实验和帧同步提取实验 一、实验目的 1、掌握滤波法提取位同步信号的原理及其对信息码的要求; 2、掌握用数字锁相环提取位同步信号的原理及其对信息代码的要求; 3、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念; 4、掌握巴克码识别原理; 5、掌握同步保护原理; 6、掌握假同步、漏同步、捕捉态、维持态的概念。 二、实验内容 1、熟悉实验箱 2、滤波法位同步带通滤波器幅频特性测量; 3、滤波法位同步恢复观测; 4、数字锁相环位同步观测; 5、帧同步提取实验。 三、实验条件/器材 滤波法及数字锁相环法位同步提取实验: 1、主控&信号源、8号(基带传输编译码)、13号(载波同步及位同步)模块 2、双踪示波器(模拟/数字) 3、连接线若干 帧同步提取实验: 1、主控&信号源、7号模块 2、双踪示波器(模拟/数字) 3、连接线若干 四、实验原理 滤波法及数字锁相环法位同步提取实验原理见通信原理综合实验指导书P129-P134; 帧同步提取实验原理见通信原理综合实验指导书P141。 五、实验过程及结果分析 (一)熟悉实验箱 (二)滤波法位同步带通滤波器幅频特性测量 1、连线及相关设置 (1)关电,连线。 (2)开电,设置主控,选择【信号源】→【输出波形】。设置输出波形为正弦波,调节相应旋钮,使其输出频率为200Khz,峰峰值3V。 (3)此时系统初始状态为:输入信号为频率200KHz、幅度为3V的正弦波。 2、实验操作及波形观测 分别观测13号模块的“滤波法位同步输入”和“BPF-Out”,改变信号源的频率,测量“BPF-Out” 的幅度填入下表,并绘制幅频特性曲线。

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

通信实验思考题

通信原理实验指导书思考题答案 实验一思考题P1-4: 1、位同步信号和帧同步信号在整个通信原理系统中起什么作用? 答:位同步和帧同步是数字通信技术中的核心问题,在整个通信系统中,发送端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元,在接收端必须有准确的抽样判决时刻(位同步信号)才能正确判决所发送的码元。位同步的目的是确定数字通信中的各个码元的抽样时刻,即把每个码元加以区分,使接收端得到一连串的码元序列,这一连串的码元序列代表一定的信息。通常由若干个码元代表一个字母(符号、数字),而由若干个字母组成一个字,若干个字组成一个句。帧同步的任务是把字、句和码组区分出来。尤其在时分多路传输系统中,信号是以帧的方式传送的。克服距离上的障碍,迅速而准确地传递信息,是通信的任务,因此,位同步信号和帧同步信号的稳定性直接影响到整个通信系统的工作性能。 2、自行设计一个码元可变的NRZ码产生电路并分析其工作过程。 答:设计流程图如下。 提示:若设计一个32位的NRZ码,即要求对位同步信号进行32分频,产生一路NRZ码的帧同步信号,码型调节模块对32位码进行设置,可得到可变的任何32位码型,通过帧同步倍锁存设置的NRZ码,通过NRZ码产生器模块把32位并行数据进行并串转换,用位同步信号进行一位一位输出,循环输出32位可变NRZ码即我们的设计完毕。 实验二思考题P2-4: 1、实验时,串/并转换所需的帧同步信号高电平持续时间必须小于一位码元的宽度,为什么? 答:如果学生认真思考,可以提出没有必要一定小于一位码元的宽度。如24位的数据在串行移位时,当同步信号计数到第24位时,输出帧信号,通过帧信号的上升沿马上锁存这一帧24位数据,高电平没有必要作要求。主要检查学生是否认真考虑问题。 2、是否还有更好的方法实现串/并转换?请设计电路,并画出电路原理图及各点理论上的波形图。 答:终端模块采用移位锁存的方法实现串/并转换,此方法目前是最好的方法了。 实验四思考题P4-6: 1、在分析电路的基础上回答,为什么本实验HDB3编、解码电路只能在输入信号是码长为24位的周期性NRZ码时才能 正常工作? 答:因为该电路采用帧同步控制信号,而1帧包含24位,所以当NRZ码输入电路到第24位时,帧同步信号给一个脉冲,使得电路复位。HDB3码再重新对NRZ码进行编译。且HDB3码电路对NRZ进行编译的第一位始终是固定的值。 因此HDB3编译码电路只能在输入信号是码长为24位的周期性NRZ码才能正常工作。但是由于HDB3码很有特点,现在为了使学生更好的观察HDB3如何进行编译码,我们对电路进行了改正,去掉了帧同步控制信号,所以现在对任意位的NRZ码都可以进行编码。 2、自行设计一个HDB3码编码电路,画出电路原理图并分析其工作过程。 答:根据HDB3的编码规则,CPLD电路实现四连“0”的检测电路,并根据检测出来的结果确定破坏点“V”脉冲的加入,再根据取代节选择将“B”脉冲填补进去。原理框图如下: 3

通信原理载波提取实验报告

实验项目三 数字锁相环法位同步观测 (1)观测“数字锁相环输入”和“输入跳变指示”,观测当“数字锁相环输入”没有跳变和有跳变时“输入跳变指示”的波形。 (2)观测“数字锁相环输入”和“鉴相输出”。观测相位超前滞后的情况。 (4)以信号源模块“CLK ”为触发,观测13号模块的“ BS2”。 实验二十 实验项目一 VCO 自由振荡观测 (1)示波器CH1接TH8,CH2接TH4 实验项目二 同步带测量

(1)示波器CH1接13号模块TH8模拟锁相环输入,CH2接TH4输出BS1,观察TH4输出处于锁定状态。将正弦波频率调小直到输出波形失锁,此时的频率大小f1为 400Hz ;将频率调大,直到TH4输出处于失锁状态,记下此时频率f2为。 实验二十一载波同步实验 实验项目载波同步 (1)本实验利用科斯塔斯环法提取BPSK调制信号的同步载波,对比观测信号源“256K”和13号模块的“SIN”,调节13号模块的压控偏置调节电位器,观测载波同步情况。

实验二十二帧同步实验 实验项目帧同步提取实验 (1)观测在没有误码的情况下“失步”,“捕获”,“同步”三个灯的变化情况经过多次实验反复观察,“失步”指示灯一直没有亮过,其余两个灯的顺序为捕捉指示灯先亮,之后熄灭,同步指示灯变亮。 (2)关闭7号模块电源。按住“误码插入”不放,打开7号模块电源。再观测“失步”,“捕获”,“同步”三个灯的变化情况。 经过多次实验反复观察,“失步”指示灯一直没有亮过,其余两个灯的顺序为捕捉指示灯先亮,之后熄灭,同步指示灯变亮。 (3)观察同步保护现象:如下图所示。 (4) 现误码时三个LED (5)观察假同步现象: 观察结果知, 分析原因:此时出现假同步状态,即时分复用单元将拨码开关S1的码值做为帧 头码,其他码元和原来的巴克码被当做了数据码元,从而在检查到01110010时 就开始按照8位为一个用户的数据,接着进行下面的数据采集。

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

帧同步提取试验

帧同步提取系统实验 一.实验目的 1、了解帧同步的机理 2、熟悉帧同步的性能 3、熟悉帧失步对数据业务的影响 二.实验内容 1、帧同步过程观察; 2、误码环境下的帧同步性能测试; 3、帧失步下对接受帧内的数据信号传输的定性观测。 三.实验仪器 1、JH5001通信原理综合实验系统一台 2、20MHz双踪示波器一台四.原理与电路 在TDM复接系统中,要保证接收端分路系统和发送端一致,必须要有一个同步系统,以实现发送端和接收端同步。帧定位同步系统是复接/解复接设备中最重要的部分。在帧定位系统中要解决的设计问题有:1)同步搜索方法;2)帧定位码型设计;3)帧长度的确定;4)帧定位码的码长选择;5)帧定位保护方法;6)帧定位保护参数的选择;等等。这些设计完成后就确定了复接系统的下列技术性能:1)平均同步搜捕时间;2)平均发现帧时间;3)平均确认同步时间;4)平均发生失帧的时间间隔;5)平均同步持续时间;6)失帧引入的平均误码率,等等。 通常帧定位同步方法有两种:逐码移位同步搜索法和置位同步搜索法。通信原理综合实验系统中的解复接同步搜索方法采用逐码移位同步法。逐码移位同步搜索法的基本工作原理是调整收端本地帧定位码的相位,使之与收到的总码流中的帧定位码对准。同步后用收端各

分路定时脉冲就可以对接收到的码流进行正确的分路。如果本地帧同步码的相位没有对准码流接收信号码流的帧定位码位,则检测电路将输出一个一定宽度的扣脉冲,将接收时钟扣除一个,这等效将数据码流后移一位码元时间,使帧定位检测电路检测下一位信码。如果下一位检测结果仍不一致,则再扣除一位时钟,这过程称“同步搜索”。搜索直至检测到帧定位码为止。因接收码流除有帧定位码型外,随机的数字码流也可能存在与帧定位码完全相同的码型。因此,只有在同一位置,多次连续出现帧定位码型,方可算达到并进入同步。这一部分功能由帧定位检测电路内的校核电路完成。 无论多么可靠的同步电路,由于各种因素(例如强干扰、短促线路故障等),总会破坏同步工作状态,使帧失步。从帧失步到重新获得同步的这段时间(亦称同步时间)将使通信中断。误码也将会造成帧失步。因此,从同步到下一次失步的时间因尽量长一些,否则将不断的中断通信。这一时间的长短表示TDM同步系统的抗干扰能力。抗误码造成的帧失步主要由帧定位检测电路内的保护记数电路完成,只有当在一定的时间内在帧定位码位置多次检测不到帧定位码,才可判定为帧失步,需重新进入同步搜索状态。逐码移位同步搜索法系统组成框图见图1所示。 语音信号的中断时间短于100ms,将不易被人耳分辨出来。但对某些数据终端传输却是不允许的。为能让学生能深入了解在有误码的环境下帧失步、同步和抗误码性能,在复接模块内专门设计了一个错码产生器(3种类型误码),通过错码设置跳线开关SWB02(E_SEL0,E_SEL1)选择不同的信道误码率(分别约为4×10—3、1.6×10—2和1×10—1)。学生能够观测到复接/解复接具有抗误码性能,即在小误码时帧同步锁定状态,加大误码帧帧失步,进入帧同步搜索(扫描)状态;另可测试不同误码和帧失步对话音业务的影响和观测对数据业务的影响。 五.实验步骤 准备工作:首先将解复接模块内的输入信号和时钟选择跳线开关KB01、KB02设置LOOP(自环)位置,使复接模块和解复接模块连接成自环测试方式;将复接模块内的工作状态选择跳线开关SBW02的m序列选择跳线开关M_SEL1、M_SEL2拔下,使m序列发生器产生全0码,将错码选择跳线开关E_SEL0、E_SEL1拔下,不在传输帧中插入误码。

光纤传输实验报告

音频信号光纤传输 实验目的: 1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。 2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。 3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。 实验仪器 TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器 实验原理 光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。 1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。目前商用光纤制作工艺多为渐变折射率芯层光纤。 从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。 一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。光纤的工作基础是光的全反射。由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。 附:光的全反射原理 根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。由于在临界状态下, 2 2π θ= ,代入上式,则??? ? ??=12 c n n arcsin θ ,称为全反射临界角。 光波在光纤中传输,可以用两种不同的理论来解释。一种是电磁理论,或称模式理论;另一种是几何光学理论,或称为射线理论。 1、光信号的发送(示意图) 系统低频响应不大于20赫兹,取决电阻、电容网络。 图1 图

通信原理实验 自定义帧结构的帧形成及其传输 自定义帧结构的帧同步系统 实验报告

姓名:学号:班级: 第周星期第大节实验名称:自定义帧结构的帧形成及其传输/自定义帧结构的帧同步系统 一、实验目的 1.加深对PCM30/32系统帧结构的理解。 2.加深对PCM30/32路帧同步系统及其工作过程的理解。 3.加深对PCM30/32系统话路、信令、帧同步的告警复用和分用过程的理解。 二、实验仪器 1.ZH5001A通信原理综合实验系统 2.20MHz双踪示波器 三、实验内容 (一)自定义帧结构的帧形成及其传输 1.发送传输帧结构观测 (1)(2) m序列输入的序列为全0 所找的帧在图上标注了。 (3)调整开关信号。 箭头所指为改变的开关信号。

(4)调整m序列 什么都不接是全0可以看清,接时,可以看清。接M_SEL1和两2.发送帧同步指示的观测 可以观测到已经同步 3.解复接开关信号输出的观测 4.解复接m序列数据输出观测 接M_SEL0 & M_SEL1 接M_SEL0 接M_SEL1 全不接 只要接M_SEL0接收就看不清,全1(M_SEL0)和全0(都不接)都可以

(二)自定义帧结构的帧同步系统 1.帧同步过程观测 (1)输入全0码 可以同步 可以同步 (3)将开关信号设置为帧定位信号,将KB01拔出插入 左边是假同步,右边是真同步。说明开关序列边位帧同步序列以后会影响

2.在误码环境下的帧同步性能测试和数据传输的定性测试(1)通过设置,使信道的误码率为1*10^-1 无法同步,同时观察LED灯,发现LED灯闪烁无规律。 (2)通过设置,使信道的误码率为1.6*10^-2 仍旧不能同步。 (3)通过设置,使信道的误码率为4*10^-3 在误码率较小的情况下,可以同步。

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

(精编)哈工大通信原理实验报告

(精编)哈工大通信原理 实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 通信原理 实验报告 课程名称:通信原理 院系:电子与信息工程学院 班级: 姓名: 学号: 指导教师:倪洁 实验时间:2015年12月 哈尔滨工业大学 实验二帧同步信号提取实验 一、实验目的 1.了解帧同步的提取过程。 2.了解同步保护原理。 3.掌握假同步,漏同步,捕捉动态和维持态的概念。

二、实验原理 时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。第9至24比特传输两路数据脉冲。帧结构为:X11100101010101011001100,首位为无定义位。 本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。其余部分完成同步保护功能。 三、实验内容 1.观察帧同步码无错误时帧同步器的维持状态。 2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态 3.观察帧同步器假同步现象和同步保护器。 四、实验步骤 1.开关K301接 2.3脚。K302接1.2脚。 2.接通电源,按下按键K1,K2,K300,使电路工作。 3.观察同步器的同步状态 将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304,TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。 4.观察同步器的失步状态。 关闭电源,断开K302,在开电源(三个发光二极管全亮)。使帧同步码措一位后再将

帧同步信号恢复实验报告

实验八 帧同步信号恢复实验 一、实验目的 1. 掌握巴克码识别原理。 2. 掌握同步保护原理。 3. 掌握假同步、漏同步、捕捉态、维持态概念。 二、实验内容 1. 观察帧同步码无错误时帧同步器的维持态。 2. 观察帧同步码有一位错误时帧同步器的维持态和捕捉态。 3. 观察同步器的假同步现象和同步保护作用。 三、基本原理 (A )原理说明 一、帧同步码插入方式及码型 1.集中插入(连贯插入) 在一帧开始的n 位集中插入n 比特帧同步码,PDH 中的A 律PCM 基群、二次群、三次、四次群,μ律PCM 二次群、三次群、四次群以及SDH 中各个等级的同步传输模块都采用集中插入式。 2.分散插入式(间隔插入式) n 比特帧同步码分散地插入到n 帧内,每帧插入1比持,μ律PCM 基群及△M 系统采用分散插入式。 分散插入式无国际标准,集中插入式有国际标准。 帧同步码出现的周期为帧周期的整数信,即在每N 帧(N≥1)的相同位置插入帧同步码。 3.帧同步码码型选择原则 (1)假同步概率小 (2)有尖锐的自相关特性,以减小漏同步概率 如A 律PCM 基群的帧同步码为001101,设“1”对应正电平1,“0”码对应负电平-1,则此帧同步码的自相关特性如下图所示 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 -1 -1 -1 -1 -5 -5 -5 -5 3 3 3 3 j 7 R(j)

二、帧同步码识别 介绍常用的集中插入帧同步码的识别方法。设帧同码为0011011,当帧同步 码全部进入移位寄存器时它的7个 输出端全为高电平,相加器3个输出端全为高电平,表示u i =1+2+4=7。 门限L 由3个输入电平决定,它们 的权值分别为1,2,4。 比较器的功能为? ??<≥=L u L u u i i o ,0,1据此可得以下波形: 三、识别器性能 设误码率为P e ,n 帧码位,L=n-m ,(即允许帧同步码错m 位),求漏识别概率P 1和假识别概率P 2以及同步识别时间t s 。 1.漏识别概率 正确识别概率为∑=--m n e e n P P C 0 )1(γγγ γ,故 ∑=--- =m n e e p P n P 0 1)1((1γ γ γγ,m=0时e nP P ≈1 门限L 越低,P e 越小,则漏识别概率越小。 2.假识别概率 n 位信码产生一个假识别信号的概率为n m n n P m C P -=-===∑202 20 2时γ γ 门限越高,帧码位数越多,则假识别概率越小。 3.同步识别时间t s P 1=P 2=0时,t s =NT s ,N 为一个同步帧中码元位数,T s 为码元宽度 一个同步帧中产生一个假识别信号概率为22)(NP P n N ≈-,故当P 1≠0、P 2≠0时 s s NT NP P t )1(21++= 分散插入帧同步码的同步识别时间为 s s T N t 2= L u 0 移位寄存器 PCM 码流 u 0

光纤传输损耗测试实验报告.doc

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验 1 光纤传输损耗测试 学院:工学院 专业班级:13 光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 光纤在波长处的衰减系数为( ) ,其含义为单位长度光纤引起的光功率衰减,单位是 dB/km 。当长度为 L 时, ( ) 10 lg P(L) (dB / km) (公式 1.1 )L P(0) ITU-T G. 650 、 G.651 规定截断法为基准测量方法,背向散射法 (OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1 )截断法:(破坏性测量方法)

截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率P2 ( ) 和剪断后约2m长度短光纤的输出功率 P1( ) ,按定义计算出() 。该方法测试精度最高。 偏置电路 包层模被测光纤 光源滤模器剥除器 注入系统检测器 放大器 电平测量 图 1.1截断法定波长衰减测试系统装置 (2 )插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率P 1、 P 2的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图 1.2示出了两种参考条件下的测试原理 框图。

相关文档
最新文档