LTE CSFB寻呼以及SIB2

LTE CSFB寻呼以及SIB2
LTE CSFB寻呼以及SIB2

像其他GSM、WCDMA系统一样,LTE系统在空闲态UE使用DRX(不连续接收-睡眠、唤醒机制)功能减少功率消耗,增加电池寿命。为了达到这一目的,UE从SIB2中获取DRX相关信息,然后根据DRX周期UE监测PDCCH信道,查看是否有寻呼消息,如果PDCCH信道指示有寻呼消息,那么UE解调PCH信道去看寻呼消息是否属于自己。在这个过程,UE如何根据DRX周期确认在哪一无线帧、哪一子帧去监测PDCCH 信道?寻呼时刻(PO)如何获取呢?寻呼的通知由 PDCCH DCI 格式 1C 通知 UE PDCCH的通知上携带P-RNTI,表示这是寻呼消息。具体的被寻呼的UE ID承载在PCH上的寻呼消息中,PCH映射到PDSCH 信道上,UE ID是IMSI或者是MME分配的S-TMSI。为了降低RRC_IDLE 状态下UE的电力消耗,UE使用非连续接收方式接收寻呼消息RRC_IDLE状态下的UE在特定的子帧监听PDCCH这些特定的子帧称为寻呼时机PO。这些子帧所在的无线帧称为寻呼帧PF。与PF 和PO 相关的两个参数是T和nB 这两个参数由系统消息SIB2通知UE。

PF的确定: SFN mod T= (T divN)*(UE_ID mod N) (1)

PO的确定: i_s = floor(UE_ID/N) modNs (2)

根据公式1和2计算出PF 和PO 的具体位置后,UE开始监听相应子帧的PDCCH 如果发现有 P-RNTI则根据PDCCH指示的RB分配和调制编码方式从同一子帧的PDSCH上获取寻呼消息。如果寻呼消息含有本UE 的ID则发起寻呼响应,否则在间隔T 个无线帧后继续监听相应子帧的PDCCH。

T:UE的非连续接收周期 T=min(Tc,Tue),其中Tc,Tue 分别表示核心网和无线侧设置的寻呼周期,一般情况无线侧的寻呼周期小于核心网周期,默认等于无线侧寻呼周期DefaultPagingCycle,该参数从SIB2中读取。而Tc从S1的寻呼消息中获取。取值范围是32、64、128 和256单位是无线帧。该值越大 则RRC_IDLE状态下 UE的电力消耗越少 但是寻呼消息在无线信道上的平均延迟越大。

nB :取值范围是4T 、2T 、T 、T /2 、T /4 、T /8 、 T /16、T /32 该参数主要表征了寻呼的密度 4T表示每个无线帧有4个子帧用于寻呼 T /4表示每4个无线帧有1个子帧用于寻呼 该值决定了系统的寻呼容量,从SIB2中读取。N =min(T,nB ) Ns =max(1,nB/T ) UE_ID =包含在S1的寻呼消息中,通过IMSI模1024计算得到。PO即寻呼帧所在位置对应的子帧号,该时刻不是通过计算得到,而是通过NS与I_s对应关系获取,分为FDD模式和TDD模式。Ns表示1和NB/T的较大值。其中nB,T都是通过SIB2获得。 i_s计算公式中UE_ID从S1消息中获取,N通过SIB2中信息计算得到。通过查找表寻呼子帧映射关系得到,寻呼时机存在于子帧0、子帧 1、子帧5和子帧6。子帧0和子帧5是下行子帧子帧1是特殊子帧,子帧6是下行子帧或特殊子帧,寻呼时机的安排便于UE在不同时隙配置下以相同方式实现寻呼功能,同时优先选择子帧0和子帧5 既兼顾了寻呼容量又尽量减少,对特殊子帧的影响。

我们通过例子来说明TD-LTE 在不连续接收方式下的寻呼时机计算。

假设UE 通过系统消息SIB2 得到非连续接收周期是64 即T =64 也就是DRX 周期是640ms 。nB =2T也就是每帧有2个子帧用于寻呼则N =min(T,nB )=T ,Ns =max(1,nB/T )=2,UE_ID =IMSI mod 1024=68。

PF 的计算当SFN =5,64+5,满足SFN mod T=(T div N )*( UE_ ID MOD N )=5。寻呼帧和寻呼时机示意图如上图所示。 PO 的计算:i_s可以通过查找表寻呼子帧映射关系得到,在FDD系统中寻呼时机存在于子帧0、子帧4、子帧5和子帧9。在TDD系统中寻呼时机存在于子帧0、子帧1、子帧5和子帧6。子帧0和子帧5是下行子帧子帧1是特殊子帧,子帧6是下行子帧或特殊子帧,寻呼时机的安排便于UE在不同时隙配置下以相同方式实现寻呼功能,同时优先选择子帧0和子帧5 既兼顾了寻呼容量又尽量减少,对特殊子帧的影响。i_s =floor(UE_ID/N ) mod Ns =0 查表得出PO =4。所以在FDD系统中寻呼时机PO为子帧4。如果是在TDD系统中,从TDD的寻呼子帧映射关系表可以得出PO=0,所以在TDD系统中,寻呼时机PO为子帧0。

SIB2中包含公共的无线资源配置信息,如上行RACH、PUCCH、PUSCH、SRS的资源分配与调度,上行信道功率控制信息;下行BCCH、PDSCH、PCCH信道资源配置等,这些信息对理解当前系统上下行的资源使用及分析网络资源问题有很大帮助。系统消息2主要有三大部分,包括radioResourceConfigCommon(公共无线资源配置信息)、ue-TimersAndConstants(定时器与常量)、freqInfo(频率信息)。除此之外还包含小区接入禁止相关信息。下面结合现网参数设置介绍下相关参数含义。

第一部分:radioResourceConfigCommon(公共无线资源配置信息)

radioResourceConfigCommon:rach-ConfigCommon

............................preambleInfo

..............................numberOfRA-Preambles:n52 (12) 保留给竞争模式使用的随机接入探针个数,PRACH探针共有64。当前参数设置52,表示52个探针用于竞争模式随机接入

..............................preamblesGroupAConfig

................................sizeOfRA-PreamblesGroupA:n28 (6) 组A随机接入探针个数。基于竞争模式的随机接入探针共分2组,A组和B组。当前参数设置28,A组中有28个探针,B组中52-28=24个探针。

................................messageSizeGroupA:b56 (0) 表示随机接入过程中UE选择A组前导时判断msg3大小的门限值/bit。当前参数设置56,即msg3的消息小于56bit时,选择A组。

................................messagePowerOffsetGroupB:dB10 (4) 用于UE随机接入Preamble B组的选择。默认为10dB。............................powerRampingParameters

..............................powerRampingStep:dB2 (1) 随机接入过程探针功率攀升步长。当前参数设置dB2,即2dB

..............................preambleInitialReceivedTargetPower:dBm-104 (8) 探针初始接收功率目标.当PRACH前导格式为0时,在满足前导检测性能时,eNodeB所期望的目标功率水平。当前参数设置-104 dBm,即期望的功率值,用于计算探针的初始发射功率。............................ra-SupervisionInfo

..............................preambleTransMax:n10 (6) 随机接入探针最大重发次数。当前参数设置10,即最大重发10次

..............................ra-ResponseWindowSize:sf10 (7) 随机响应接收窗口。若在窗口期未收到RAR,则上行同步失败,当前参数设置sf10,即10个子帧长度。

..............................mac-ContentionResolutionTimer:sf64 (7) RA过程中UE等待接收Msg4的有效时长。当UE初传或重传Msg3时启动。在超时前UE收到Msg4或Msg3的NACK反馈,则定时器停止。定时器超时,则随机接入失败,UE重新进行RA。当前参数设置sf64,即64个子帧长度。

............................maxHARQ-Msg3Tx:0x5 (5) Msg3的HARQ最大传输次数.当前参数设置5,即5次。

radioResourceConfigCommon:bcch-Config

............................modificationPeriodCoeff:n2 (0) BCCH信道修改周期系数,该值乘以defaultPagingCycle为UE侦听SI是否修改的周期。但系统消息是否修改还与MIB中tag相关。当前参数设置n2,即系数为2。

radioResourceConfigCommon:pcch-Config

............................defaultPagingCycle:rf128 (2) Idle模式下DRX周期,用于计算寻呼时刻,可实现节电的目的。当前参数设置rf128,即128个无线帧长度。

............................nB:oneT (2) 表示在一个寻呼周期内包含的寻呼时刻(子帧)的数量,也即寻呼组的数量。可获取N值,用于计算寻呼时刻。当前参数设置oneT,即1倍的寻呼周期。

radioResourceConfigCommon:prach-Config

............................rootSequenceIndex:0x7 (7) 用于生成Signature的逻辑Za-doff序列索引,每一个逻辑索引对应一个

物理Zadoff-chu序列。该值一般是按网络规划配置设置的。当前参数设置为7,对应物理Zadoff-chu序列为629.

见36.211 Table 5.7.2-4.

............................prach-ConfigInfo

..............................prach-ConfigIndex:0x6 (6) 该值与探针格式一同确定探针频域/时域资源。当前参数设置为6,对应

探针格式0,可占用任意系统帧的第1或6子帧资源。见36.211 Table 5.7.1-2.

..............................highSpeedFlag:FALSE 高速移动小区指示。即是否是覆盖高速移动场景,当前参数设置为False,

表示非覆盖高速移动场景。

..............................zeroCorrelationZoneConfig:0x2 (2) 零自相关区配置索引。随机接入探针是由具有CAZAC(恒幅零自相

关)的Zadoff-chu序列生成的,通过逻辑根序列获取物理根序列,然后对物理根序列进行循环移位获得。零自相关

区配置索引与Ncs的选择直接相关。取值范围0~15,当前参数设置为2,即对应Ncs=15(无限集)或Ncs=22(有

限集),见36.211 Table 5.7.2-2.

..............................prach-FreqOffset:0x6 (6) FDD小区的每个PRACH所占用的频域资源起始位置的偏置值。取值范围

0=< prach-FreqOffset ul-rb-6,当前参数设置为6,即在第6个PRB位置。

radioResourceConfigCommon:pdsch-ConfigCommon

............................referenceSignalPower:0xf (15) 每逻辑天线(port)的小区参考信号的功率值。参数设置值为15,即RS信号功率为15dbm。

............................p-b:0x1 (1) 表示PDSCH上EPRE(Energy Per Resource Element)的功率因子比率指示,它和天线端口共同决定了功率因子比率的值,见36.213 Table 5.2-1。P-b实际表征的是有RS的PDSCH符号功率与没有RS的PDSCH符号的功率偏移量。

radioResourceConfigCommon:pusch-ConfigCommon

............................pusch-ConfigBasic

..............................n-SB:0x4 (4) 给定跳频模式下,用于跳频的PUSCH子带个数。该参数与跳频偏置决定了子带的大小,而子带大小与跳频偏置、Vrb数一起决定PUSCH信道PRB的分配。该参数设置为4,即子带数为4.

..............................hoppingMode:interSubFrame (0) PUSCH跳频模式选择。该参数设置为interSubFrame,表示采用子帧间跳频模式。还有另一种模式为子帧内和间跳频。

..............................pusch-HoppingOffset:0x16 (22) PUSCH信道的跳频偏置;与FDD/TDD模式、子帧配置、CP长度相关。参与决定PUSCH信道资源分配。

..............................enable64QAM:TRUE 上行PUSHC是否使用64QAM调制方式。CAT5类终端支持。当前参数设置为TRUE,表示上行支持64QAM使用。

radioResourceConfigCommon:ul-ReferenceSignalsPUSCH

..............................groupHoppingEnabled:FALSE PUSCH信道的分组跳频开关;Group hopping作为UL RS生成base序列组

Planning的一种补充,有简化Planning及随机化UL RS互相关干扰的作用,虽然现有的Group hopping模式能够大大减小出现碰撞(即相邻小区在一个TTI内使用相同的base序列组)的概率,但却不能避免出现碰撞的情况。

..............................groupAssignmentPUSCH:0x0 (0) PUSCH信道的分组指派;一个eNodeB下所有小区的GroupAssignPUSCH取0时,这些的PUSCH上的UL RS由不同的base序列组生成,每个小区在生成UL RS时可以使用全部的CS(Cyclic Shift)取值,可用的CS越多,能够支持配对的V-MIMO用户越多。

..............................sequenceHoppingEnabled:FALSE PUSCH信道的序列跳频开关;当不执行Group hopping时,允许支持sequence hopping

..............................cyclicShift:0x0 (0) PUSCH信道的循环移位;当一个eNodeB下的所有小区使用相同的base序列组生成PUSCH 上的UL RS时,为了保证在半静态调度时这些小区使用不同的CS(Cyclic Shift)取值,需要为这些小区配置不同的CyclicShift 取值;

..........................pucch-ConfigCommon

............................deltaPUCCH-Shift:ds1 (0) PUCCH信道的循环移位间隔。在组网时根据环境类型获得小区的平均时延扩展,然后根据小区的平均时延扩展得到PUCCH信道的循环移位间隔。与硬件处理能力相关.

............................nRB-CQI:0x1 (1) FDD小区的RRC层给CQI配置的RB总数。当PUCCH资源调整开关关闭时,CQI RB个数才能够进行手动配置。参数设置为1,表示1个RB用于承载CQI.该参数定义与36.211 5.4章节描述不一致.规范中定义为不同PUCCH 格式下一个Slot可用带宽,即RB数。

............................nCS-AN:0x0 (0) 使用混合PUCCH格式下,用于PUCCH格式1/1a/1B的循环移位数。是delta PUCCH Shift的整数倍。

............................n1PUCCH-AN:0x12 (18) PUCCH占用RB数索引,表示PUCCH使用的RB个数. radioResourceConfigCommon:soundingRS-UL-ConfigCommon

..............................srs-BandwidthConfig:bw3 (3) SRS带宽配置;见36.211 Table 5.5.3.2-1、Table 5.5.3.2-2、Table 5.5.3.2-3 ..............................srs-SubframeConfig:sc3 (3) SRS子帧配置索引;见36.211 Table 5.5.3.3-1、Table 5.5.3.3-2

..............................ackNackSRS-SimultaneousTransmission:TRUE UE的Sounding RS和PUCCH的ACK/NACK或SR时域冲突时,是否允许同时发送.

radioResourceConfigCommon:uplinkPowerControlCommon

............................p0-NominalPUSCH:-0x43 (-67) PUSCH的标称P0值,应用于上行功控过程。与p0-NominalPUCCH含义一致。

............................alpha:al07 (4) 路径损耗补偿因子,应用于上行功控过程;

............................p0-NominalPUCCH:-0x69 (-105) 正常进行PUCCH解调,eNodeB所期望的PUCCH发射功率水平;P0NominalPUCCH 设置的过高,会增加本小区的吞吐量,但是会降低整网的吞吐量;P0NominalPUCCH设置偏低,降低对邻区的干扰,导致本小区的吞吐量的降低,提高整网吞吐量。

............................deltaFList-PUCCH

..............................deltaF-PUCCH-Format1:deltaF0 (1) PUCCH格式1的Delta值;用于计算PUCCH信道功率,相当于对每种PUCCH 格式补偿值。当前设置值deltaF0,表示0dB。

..............................deltaF-PUCCH-Format1b:deltaF3 (1) PUCCH格式1b的Delta值;当前设置值deltaF3,表示3dB。

..............................deltaF-PUCCH-Format2:deltaF1 (2) PUCCH格式2的Delta值;当前设置值deltaF1,表示1dB。

..............................deltaF-PUCCH-Format2a:deltaF2 (2) PUCCH格式2a的Delta值;当前设置值deltaF2,表示2dB。

..............................deltaF-PUCCH-Format2b:deltaF2 (2) PUCCH格式2b的Delta值;当前设置值deltaF2,表示2dB。

............................deltaPreambleMsg3:0x4 (4) 消息3的前导Delta值。步长为2;当PUSCH承载Msg3时,用于计算每个UE的PUSCH发射功率。

..........................ul-CyclicPrefixLength:len1 (0) 小区的上行循环前缀长度,分为普通循环前缀和扩展循环前缀,扩展循环前缀主要用于一些较复杂的环境,如多径效应明显、时延严重等。当前参数设置为len1,即采用扩展循环前缀。

第二部分:ue-TimersAndConstants(定时器与常量)

........................ue-TimersAndConstants

..........................t300:ms200 (1) RRC连接建立定时器。开始于RRCConnectionRequest发送,在收到RRCConnectionSetup或

RRCConnectionReject消息、cell re-selection或连接放弃后停止,定时器超时后,UE直接进入RRC_IDLE态。参数设置值为200ms。

..........................t301:ms200 (1) RRC连接重建定时器。UE在发送RRCConnectionReestabilshmentRequest时启动该定时器。

定时器超时前,如果UE收到RRCConnectionReestablishment或者RRCConnectionReestablishmentReject或者被选择小区变成不适合小区(适合小区定义参见3GPP TS 36.331),则停止该定时器。定时器超时后,UE进入RRC_IDLE态。参数设置为200ms。

..........................t310:ms1000 (5)无线链路失败定时器.在收到底层连续N310个失步指示后启动,若在定时器时间内收到连续N311个同步指示,无线链路恢复,否则定时器超时,即意味着无线链路失败。参数设置值为1000ms

..........................n310:n10 (6) 表示接收到底层的连续"失步"指示的最大数目。

..........................t311:ms10000 (3) 无线链路失败恢复定时器。在RLF后T311时间内进行RRC connection re-establishment流程,若在定时器内若RRC重建失败,则进行小区重选或者TA更新,UE进入idle状态。

..........................n311:n1 (0) 接收到底层的连续"同步"指示的最大数目。

第一部分:freqInfo(频率信息)

........................freqInfo

..........................ul-Bandwidth:n100 (5) 小区上行带宽。以RB数计量。当前参数设置N100,即100个RB,对应20M带宽。

..........................additionalSpectrumEmission:0x1 (1)附加频率散射,限制UE功率在相应信道带宽内的水平。即用于计算ue的上行发射功率。这个参数对应一个Additional Maximum Power Reduction (A-MPR),该值可以计算对应频带的上行发射功率。

该参数与Additional Maximum Power Reduction (A-MPR)的对应关系,见 TS 36.101 Table6.2.4-1和TS36.521 Table

6.2.4.3-1.当前参数设置值为1,对应NS_01,即A-MPR为NA。

见https://www.360docs.net/doc/282482151.html,/patents/app/20130053103。

........................timeAlignmentTimerCommon:sf1920 (3) 该参数表示UE上行时间对齐的定时器长度,该定时器超时,则认为UE上行失步。当前参数设置sf1920,即1920个子帧长度。

像其他GSM、WCDMA系统一样,LTE系统在空闲态UE使用DRX(不连续接收-睡眠、唤醒机制)功能减少功率消耗,增加电池寿命。为了达到这一目的,UE从SIB2中获取DRX相关信息,然后根据DRX周期UE监测PDCCH信道,查看是否有寻呼消息,如果PDCCH 信道指示有寻呼消息,那么UE解调PCH信道去看寻呼消息是否属于自己。在这个过程,UE如何根据DRX周期确认在哪一无线帧、哪一子帧去监测PDCCH信道?寻呼时刻(PO)如何获取呢?通常为了计算PO分为两步。

第一步、寻呼帧位置确认。

根据下面公式求得:

寻呼帧位置 PF = SFN mod T= (T div N)*(UE_ID mod N)

其中 SFN:系统帧号,当前UE所在帧号

T:T=min(Tc,Tue),其中Tc,Tue 分别表示核心网和无线侧设置的寻呼周期,一般情况无线侧的寻呼周期小于核心网周期,默认等于无线侧寻呼周期DefaultPagingCycle,该参数从SIB2中读取。而Tc从S1的寻呼消息中获取。

N:N=min(T,nB),nB从SIB2中读取。

UE_ID:包含在S1的寻呼消息中,通过IMSI模1024计算得到。

第二步、寻呼时刻的确认

寻呼时刻:即寻呼帧所在位置对应的子帧号,该时刻不是通过计算得到,而是通过NS与I_s对应关系获取。对应关系如下表1、2.其中表1为FDD模式,表2为TDD模式。

其中:Ns:Ns =max(1,nB/T),其中nB,T都是通过SIB2获得。

i_s :i_s = floor(UE_ID/N) mod Ns。UE_ID从S1消息中获取,N通过SIB2中信息计算得到。

下面举例说明寻呼帧与寻呼时刻的计算。

例如:如下表,现网中DefaultPagingCycle设置为128,则T=128;nB设置为T,即128,那么N=128;Ns=1.

第一步,算寻呼帧位置:

假设用户的IMSI= 448835805669362,则根据公式求得。

寻呼帧位置:= (T div N)*(UE_ID mod N) =(128/128)*((448835805669362 mod 1024) mod 128) = 114

则寻呼帧的位置可能出现在SFN =(128*i) + 114,(其中i = 0 到N ,但是SFN <= 1024)。如,寻呼帧的位置可能为128、242、498、626、754、868、982。

第二步,寻呼时刻确认:求Ns和i_s,根据公式求得。

Ns:Ns =max(1,nB/T)=1;

i_s = floor(UE_ID/N) mod Ns=floor((448835805669362 mod 1024)/128)= 0

按照表1、2对应关系,Ns=1&i_s=0 => PO=9, 即当NB=T时,PO在寻呼帧的9子帧位置。

影响寻呼成功率的因素

GSM网寻呼成功率指标的优化方法(2009-04-01 13:50:21) 标签:gsm网寻呼成功率优化指标分类:知识积累 1. 影响寻呼成功率的因素 网元MSC、BSC、BTS、MS,以及网络覆盖、干扰、信道拥塞以及设备硬件等因素都会影响到系统的寻呼成功率,例如: λ硬件故障 λ传输问题 λ参数设置问题 λ干扰问题 λ覆盖问题 λ上下行平衡问题 λ其它原因。 1.1 硬件故障 当出现TRX或合路器故障的情况时,将会造成MS难以相应寻呼,寻呼成功率下降。 1.2 传输问题 由于各种情况导致的Abis接口、A接口链路等传输质量不好,传输链路不稳定,也会导致寻呼成功率上升。 1.3 参数设置问题 BSC侧和MSC侧的一些参数设置会影响寻呼成功率,主要包括: MSC侧寻呼相关参数:

1.N侧位置更新时间(IMSI隐形分离定时器):2.首次寻呼方式: 3.首次寻呼间隔: 4.二次寻呼方式: 5.二次寻呼间隔: 6.三次寻呼方式: 7.三次寻呼间隔: 8.MSC重发寻呼次数: 9.全网下发寻呼: 10.预寻呼功能: 11.位置更新优化(MSC软参): 12.呼叫早释功能(MSC软参): 13.寻呼优化控制(MSC软参): BSC侧寻呼相关参数: 14.CCCH信道配置: 15.RACH最小接入电平: 16.MS最小接收信号等级 17.基站寻呼重发次数 18.接入允许保留块数

19.相同寻呼间帧数编码 20.MS最大重发次数 21.SDCCH动态分配允许 22.随机接入错误门限 23.T3212(周期性位置更新定时器) 24.RACH忙门限 25.CCCH负荷门限 26.Abis流量控制允许 27.A口协作寻呼开关(软参) 28.寻呼生存周期(软参29) 1.4 干扰问题 当存在网内、网外干扰时,都会影响系统的接入成功率,这样就直接影响到系统寻呼响应,使寻呼成功率下降。 1.5 覆盖问题 可能影响寻呼成功率的覆盖问题: 1.不连续覆盖(盲区) 由于基站所覆盖的区域地形复杂(如山区公路)、地势起伏,无线传播环境复杂,信号受阻挡,覆盖不连续等造成MS无法响应寻呼。 2. 室内覆盖差

关于寻呼成功率的提高方式

关于寻呼成功率的提高方式 1.位置区更新、小区重选等都会影响PAGING。 https://www.360docs.net/doc/282482151.html,C划分和LAC区容量分析,合理的设置位置区范围,避免基站LAC插话现象。这样可以减少所有BSC 系统从交换接收寻呼消息的负担,保证在一个LAC区内尽快把所有寻呼消息发出去。 3.手机是否在服务区将直接影响系统所发寻呼消息能否被手机响应,保证手机在服务区则需要网络的覆盖达到一定要求。因此网络的健全程度将从根本上制约无线系统接通率的提高。寻呼成功率反映的是网络的覆盖问题, 4.减少网络干扰(外界干扰、CDMA干扰、一些特殊机关部门的干扰机); 5.交换追出寻呼无响应多的小区,针对性的解决; 6.通常情况下,网络拥塞是影响无线系统接通率提不上去最大的因素。如果出现信令信道拥塞,就可能造成寻呼消息丢失,直接影响寻呼成功率。 7.处理传输等影响较大的硬件问题(射频单元、CDU、天馈系统等)。小区信号不稳定时,寻呼成功率会相当差。如此,需要尽可能少用微波传输。 8.有时候断站会影响相邻LAC的寻呼成功率的 9.用户的个人行为,比如正在进行短信、彩信的发送等。短信中心的寻呼机制也应关注。我们曾碰到一个案例,由于新建的短信中心的寻呼重发次数与其它短信中心不同,导致全网寻呼成功率大幅下降。 14.如果上下行信号不平衡,可能出现上行或下行信号很差,导致寻呼不到。 寻呼成功率的定义(C4.9): l寻呼响应次数(C11.3)/ 寻呼请求次数(C11.1)

a MSC判断为1次移动台被呼,向被呼MS当前的服务区域所属的BS发送寻呼请求(Paging Re quest)。并启动定时器T3113。上报1次“寻呼次数”。 b BS在前向寻呼信道上传送寻呼消息(page),寻呼消息中带有移动台地址。 c MS通过接入信道应答Page Res ponse消息。 d BS收到寻呼响应消息后,上报1次“寻呼响应”。BS构造A1口的Paging Response消息,通过完全层3消息发送给MSC,并启动定时器T303。 e BS收到Page Res ponse消息,给MS应答基站证实指令(Base Station A cknowledgment Order )。 MSC向BS发送指配请求(Assignme nt Re quest)消息,BS调用资源分配接口,分配无线信道的相关无线资源;然后配置业务信道单元。MSC收到寻呼响应消息后,F 停止定时器T3113。这条消息中同时带有MSC指定的地面电路。MSC启动定时器T10。BS收到来自MSC的指配请求(Assignme nt Request)消息后,

寻呼成功率信令流程

寻呼原理 当一个位置区下的移动台被寻呼时,MSC就会通过基站控制器(BSC)向这一位置区内的所有BSC发出寻呼消息,BSC收到寻呼消息后,向该BSC下属于此位置区的所有小区发出寻呼命令消息?当基站收到寻呼命令后,将在该寻呼组所属的寻呼子信道上发出寻呼请求消息,该消息中携带有被寻呼用户的IMSI或者TMSI号码。移动台在收到寻呼请求消息后,通过随机接入信道(RACH)请求分配SDCCH。BSC则在确认基站激活了所需的SDCCH 信道后,在接入允许信道(AGCH)通过立即指配命令消息,将该SDCCH指配给移动台。移动台则使用该SDCCH发送寻呼响应(Paging Resp)消息给BSC,BSC将PagingResp消息转发给MSC,完成一次成功的无线寻呼? 如下图1: 寻呼相关指标定义: 从寻呼信令流程中我们得出几个主要可能影响寻呼成功率的对应节点,每个节点所对应的指标计算公式如下:

MSC 寻呼成功率定义: (PAGING_NPAG1RESUCC+PAGING_NPAG2RESUCC)/(PAGING_NPAG1LOTOT+ PAGING_NPAG1GLTOT) LAC寻呼成功率定义: (LOCAREAST_NLAPAG1RESUCC+LOCAREAST_NLAPAG2RESUCC)/ (LOCAREAST_NLAPAG1LOTOT) UM口寻呼成功率定义: sum(RANDOMACC_RAANPAG + RNDACCEXT_ RAAPAG1 + RNDACCEXT_ RAAPAG2) / LOCAREAST_ NLAPAG1LOTOT 随机接入成功率: RANDOMACC_CNROCNT / (RANDOMACC_ RAACCFA +RANDOMACC_CNROCNT) SD建立成功率: CLSDCCH_CMSESTAB /CELTCHFP_ TFCONGPGSM

浅谈提高寻呼成功率的几种方法

浅谈提高寻呼成功率的几种方法 摘要在过去一年中,北京CDMA网络寻呼成功率有了较大幅度攀升。本文详细说明了提高寻呼成功率的几种方法,并介绍了其在北京现网中的实际应用情况。 关键词寻呼成功率CDMA SCI ISPAGING 1.引言 在CDMA网络中,寻呼成功率的公式为“(寻呼成功总次数/寻呼请求总次数)*100%”。其中寻呼请求总次数统计了MSC发出对被叫用户的寻呼消息的次数;寻呼成功总次数统计的是MSC收到被叫用户的寻呼响应消息的次数。 寻呼成功率是关系网络通信质量的一个重要指标,不但衡量了手机是否能够接收到交换机下发的寻呼消息,而且也考察了交换机是否能收到手机上发的寻呼响应消息。 2003年春天,北京CDMA网络的寻呼成功率较低。通过1年多的努力,该项指标上升了将近5个百分点,成果显著。在此,谈谈我们在提高寻呼成功率方面的一些经验和方法,供大家借鉴。 2.方法一:提高网络覆盖率 这是提高寻呼成功率最容易想到的方法。网络覆盖的面积大了,手机移动到无信号地区的概率自然就减小了,其能够成功响应寻呼消息的概率也就增加了。 然而网络不是一天建成的,网络覆盖空洞和弱覆盖地区也不是旦夕间灰飞烟灭的。因此,在实际实施中,这却是花费时间最长,需要长期积累才能看出明显效果的方法。但“不积跬步无以致千里,不积小流无以致江河”。这恰恰是这我们应该长期坚持努力的方向。 2003年是北京CDMA网络的建设年,基站覆盖的广度和深度都有了质的飞越。不论城区还是郊区的覆盖率都大为提升,成为寻呼成功率持续上升的重要保证。其中最为明显的一个例证是2003年年末伴随着地铁站台的全面覆盖,北京C网寻呼成功率迅速攀升了0.5个百分点。 3.方法二:减轻寻呼信道负荷 如图3.1所示,在CDMA系统中,一个80ms的寻呼信道时隙分成4个20ms的子时隙,每个子时隙中仅能容纳最多一条寻呼消息。因此,一个寻呼信道时隙中最多容纳4个寻呼消息。

寻呼成功率优化

1寻呼成功率优化 1.1概述 寻呼成功率是移动通讯系统中一项基本功能。他直接影响来话接通率和系统接通率等其它网络指标,影响用户的感受。 寻呼成功率由MSC统计,该指标优化提高要通过交换和无线优化共同努力解决。指标定义如下 寻呼成功率:寻呼相应次数/寻呼请求次数×100% 寻呼响应次数:只MSC收到的PAGING RES消息的总和,包括重复寻呼的响应,统计点为MSC 寻呼请求次数:指MSC首次发送的PAGING消息的总和,统计点为MSC。 1.2寻呼流程简介 寻呼成功率主要涉及到A接口和空口的流程: A1:MSC发来的电路业务请求次数 B1:Abis口电路业务寻呼下发次数 C1:Abis口电路业务寻呼成功次数。

当MSC从VLR中获得MS的LAC后,将向该LAC区域所有BSC发送PAGING消息。BSC收到消息后,向该BSC所属全部小区发送Paging Command。基站收到寻呼命令后,将在无线信道的该IMSI或TMSI所在寻呼组的寻呼子信道上发送Paging Request,该消息携带被寻呼用户的TMSI或IMSI。MS收到Paging Request 后,通过RACH请求分配SDCCH。BSC确认后激活相应的SDCCH信道后,在AGCH信道通过 immediate assignment 将该SD信道指配给MS。MS占用该SD信道成功后,发送Paging Response。BSC将该消息转发给MSC,完成一次寻呼。 1.3寻呼丢失原因分析 1.3.1电路寻呼损失的分析 如下图所示我们根据寻呼的基本信令流程,将寻呼损失分为3部分,再结合现网无线与交换的统计,对无线侧的寻呼损失进行量化分析。(因为MSC与BSC之间,BSC和BTS之间为有线连接,几乎不存在信令在传送过程中的丢失,为了简化分析我们不考虑MSC,BSC和BTS三者之间的信令丢失)。

移动LTE专项优化CSFB成功率提升思路

移动LTE CSFB成功率提升思路

1CSFB成功率提升思路 1.1CSFB寻呼成功率提升思路 1)、先行核查站点是否存在告警,重点是驻波类告警、传输链路类问题及时钟类告警。2)、核查站点功率设定是否满足规范要求(具体方法后续发送),需要区分单双模功率。 如下为单通道功率标称值,若单模可以直接以如下功率来进行设定;若双模就需要核实TDS 侧功率设定,TDS+TDL功率之和不能超过设备支持功率。 3)、核实小区数据设定是否符合规范要求,主要包含如下几项:端口数、收发模式与设备 特性、射频规划方式是否一致;如RRU3161-FA仅为单通道,就需要在小区属性中设定为单端口、单发单收;若设定为其它就需要核实RRU级联方式及扇区布置方式是否常规设定。4)、核查站点4G邻区关系是否完整(由于邻区不完整而无法顺利重选导致的假弱覆盖问题)。5)、核查U2000寻呼测量话统是否存在S1接口寻呼下发次数为0的问题,确定是否eNodeB ID重复所致; 6)、核查共站点LAC及TAC是否设定一致(由于经纬度问题或者规划问题导致的异常),是否存在跨MSC Pool的问题。 7)、分析MR数据RSRP及上行干扰数据来判断是否弱覆盖问题导致的寻呼黑洞问题,若是建议调整寻呼次数来加大空口寻呼力度。 8)、对于无线弱覆盖十分严重的小区就需要通过接入类参数进行优化调整,该重选到GSM

或者TDS网络的就要重选过去,避免弱覆盖异常导致的寻呼交互无法顺利进行的问题。1.2CSFB回落成功率提升思路 1)对LTE侧CSFB相关的开关及CSFB优先级参数进行核查,必须依照规范来设定。 2)核查GSM侧CSFB license资源是否充足,华为GSM还需要核实支持CSFB开关及未 知寻呼响应开关是否开启; 3)从U2000话统台对CSFB成功率及准备成功率进行分析,是否存在失败偏高90%以上 的小区,如果失败率高通常都是邻区及频点未添加所致,或者盲切换优先级、 connection态优先级未设定所致,需要依照规范来设定。 4)对TAC-LAC一致性进行核查,需要割接调整的就提单调整,配置不一致的就提单修改, 避免位置更新过程中容易导致的回落失败问题。 5)对TOP小区邻区关系进行核查,漏配、错配及频点不全、频点冗余等问题需要及时予 以整改,避免回落频点不合理而导致失败问题。 6)全网GSM站点及LTE站点加入Pool归属,若未组Pool需要加入MSC归属,对于Pool 间的邻区关系建议删除,具体频点也要做出相应的删减(具体需要依照该频点覆盖范围及LTE站点覆盖范围来确定);对于未组Pool的就需要将不同MSC的邻区关系进行删除,频点也如Pool间方式操作。 7)对TOP小区的MR数据进行解析,分析RSRP、上行干扰及UE功率余量话统来综合判 断是否网络干扰导致回落失败。 8)从GSM网络侧分析是否存在SDCCH溢出的问题,需要GSM日常优化去优化。1.3CSFB呼叫成功率提升思路 CSFB呼叫成功率阶段导致失败更多的是在GSM侧,需要重点从GSM网络侧进行优化。1)、对TCH话务溢出问题进行专题优化提升。 2)、结合A+Abis平台对GSM侧接通率TOP小区进行质差及干扰排查优化。 3)、对回落伴随位置更新频繁小区进行专题分析优化。 在LTE侧回落频点不合理时可能会造成回落小区不是最优小区,引发弱覆盖及质差问题,导致CSFB呼叫失败,对此需要重点从如下方面入手: 1)、对于呼叫失败TOP小区周围LTE站点邻区关系的合理性进行核查,避免4G侧邻区关系漏配及错配导致的回落频点不合理问题。

LTE网络寻呼容量评估

LTE网络寻呼容量评估

目录

1概述 1.1TAC介绍 LTE网络现行寻呼策略为:精准寻呼+普通的寻呼,即UE上次驻留的eNodeB发起寻呼->精准寻呼2S响应超时寻呼下级,最近TAC ->精准寻呼2S响应超时寻呼下级,TAL->精准寻呼2S响应超时重新寻呼, TAL ->寻呼6S超时后重新寻呼,TAL ->寻呼6S超时后寻呼失败。 注:若UE在一个eNodeB下的驻留时间小于2分钟(eNodeB粘性时长),MME将跳过该UE对应的寻呼规则中“最近eNodeB”的寻呼范围,直接跳转到下一级范围(TAC或TA List)进行寻呼。 TAC区作为LTE网络寻呼过程中重要的一环,配置即不能过大也不能过小: 过大:会导致核心侧、无线侧资源消耗过大,引起过载、挤占业务信道资源或需要的配置过高问题。 过小:会导致TAC级寻呼成功率偏低、从而触发过多不心要的TAC List级寻呼,并导致TAC编号资源紧张。 1.2TAC区约束条件 TAC区最大寻呼能力需要考虑以下2方面的约束条件: 1、核心侧MME现网配置条件下的寻呼能力。 2、无线侧寻呼对空口资源占用合理比例下的寻呼能力。 2TAC寻呼能力分析 2.1核心侧MME分析 核心网进行TAC合并的条件是,一个TAL下挂基站数量不超过150,否则在用户数突增情况下可能造成MME侧设备的负荷问题。 TAL下TAC数量减少对核心网设备负荷的影响在5%左右。 统计现网TAL下挂基站数目情况,150个基站以上的TAL数目达到53个,其中衡水最高达到一个TAL下面825个BBU(TAL:18929),部分过大的TAL需要进行分裂后再进行TAC合并。

寻呼成功率优化指导

寻呼成功率优化指导 1 寻呼成功率的计算方法 2006年,联通将寻呼成功率纳入考核指标,88%达标,94%满分。寻呼 成功率的计算方法如下: 寻呼成功率=寻呼响应次数/寻呼请求次数*100% 其中,寻呼响应次数定义:本地区所有MSC收到的PAGING RES消息的响 应总和,包括二次寻呼响应。统计点为MSC。 寻呼请求次数定义:本地区所有MSC发出的PAGING消息的总和,不包括 二次寻呼的消息。统计点为MSC。 2 影响寻呼成功率的因素 寻呼成功率是一个系统级的问题,涉及MSC、BSC、BTS、MS以及网 络的覆盖情况等。影响MSC寻呼成功率的因素主要有: 1、基站覆盖情况; 2、MSC的寻呼策略; 3、信令信道是否拥塞; 4、位置区划分的合理性、上下行平衡情况; 5、寻呼相关参数设置。如:上下行接入门限参数、周期位置时间(T3212) 等。 3 BSS侧提高寻呼成功率的措施 3.1 开启BTS寻呼重发功能 为了提高寻呼成功率和寻呼效率,基站侧增加了寻呼重发功能,这样可 以解决一些由于偶尔的无线链路传输质量差而造成的移动台暂时无法正 确接收寻呼命令问题,而对于持续的无线链路传输质量差而造成的移动 台暂时无法正确接收寻呼命令问题继续依赖于MSC侧的寻呼重发来解 决。另外,由于基站侧实现了寻呼重发,减少了MSC侧寻呼重发量,一 定程度上降低了整个网络侧的信令负载。

修改参数“寻呼次数”(小区属性表)开启BTS寻呼重发功能(建议设 置为4次)。 参数“寻呼次数”含义:在BTS2X基站中本参数用于BTS决定寻呼重 发,它与MSC内配置的寻呼次数共同控制寻呼的重发次数,总共的寻呼 次数近似为两者相乘值。华为BSC没有重发机制,收到一条寻呼消息处 理一条寻呼消息。华为BTS支持寻呼重发机制。 3.2 合理设置MSC周期位置更新时间 适当减小MSC周期位置更新时间,且设置BSC的周期位置更新定时器 T3212稍小于MSC周期位置更新时间(建议将BSC的周期性位置更新 时间值设置比MSC周期性位置更新时间小5~10分钟),有利于寻呼成 功率的提高。当MSC 附着分离定时器(Detach Timer)超时后,VLR 将把处于覆盖盲区或关机的手机设置为隐性关机,此时MSC也不会下发 寻呼。 在保证不发生信令过载的条件下,适当减小BSC、MSC周期位置更新时 间。 注意:同一位置区下不同BSC的周期位置更新时间设置为一致,并且 BSC的周期位置更新时间小于MSC的周期位置更新时间。 3.3 适当降低“RACH最小接入电平” 参数“RACH最小接入电平”(小区属性表)设置越小,对提高寻呼成 功率越有利。参数“RACH最小接入电平”最小可以设置为0(表示对上 行接入电平不限制)。由于影响寻呼成功率和掉话率的网优参数是互相 制约的,通过降低“RACH 最小接入电平”可以提高寻呼成功率,但会 造成掉话率增加。 3.4 适当降低“MS最小接收信号等级” 参数“MS最小接收信号等级”表示MS接入系统所需要的最小接收信号 电平,缺省值为8。为了提高寻呼成功率,可以适当降低该参数。该参数 设置过低同样会导致掉话增加,需要采取优化掉话的措施。 3.5 适当增大“MS最大重发次数” 参数“MS最大重发次数”(系统消息数据表)表示MS在同一次立即指 配进程中允许发送Channel Request消息次数的上限。参数设置值越大, 试呼的成功率越高,接通率越高,但同时RACH信道的负荷也越大。 参数“MS最大重发次数”缺省值为4次,为了提高“寻呼成功率”,可 以设置该参数为7次,但要密切关注RACH信道的负荷。

寻呼被叫无响应

GSM 0.5% 的差距。DT 测试长期趋势见Figure-1。 Edward Ruan Page 1 of 2 Performance Improvement Figure-3 寻呼响应失败时BCCH 下行BER 差 寻呼解码失败经常发生在BCCH 下行质量(BER)较差的情况下,同时有错误报告提示此时产生手机无法解码Paging 。 Call Attempts 7474 Call Connection Failure 112 98.50%Paging Timeout 53 47.32%SDCCH Loss 18 16.07%Data Source: TEMS logs from 4.23 to 6.23 Figure-2 TEMS 测试呼叫失败主要原因 寻呼无响应在移动网中较常见,主要发生在郊区盲区和弱覆盖区,对长途来话接通率(TICR )也有严重影响。在市区覆盖良好的小区中,同样可能发生寻呼无响应, 原因是BCCH 下行C2I 较差的点上,因为BER 恶化,被叫解码包含寻呼消息的CCCH 帧连续失败,导致无法响应寻呼。如Figure-3 所示,被叫驻留小区在BCCH 下行有较差的BER ,最终导致寻呼无响应即呼叫建立失败。 Figure-4 BCCH 的下行BER 差时不能解码paging BCCH 下行信令质量无法通过任何统计和通话测试来得到准确计量,但可通过TEMS 的IDLE-MODE 模式来测试,MS 收到每4个BCCH_BLOCKS 即4个51复帧后送出一个idle mode report ,内即包含BCCH 的rxqual 。如果有条件用TEMS3.1+RS320作IDLE 测试,每8个51复帧才给出一个测量值,可确保BCCH 下行信令质量测试结果的高可靠性。

寻呼失败分析

寻呼失败问题分析 1.概述 在寻呼无响应分析中,通常可以分为以下几个原因: ●位置更新原因:即当发生寻呼时,手机恰巧进行跨局位置更新,导致寻呼失败。 ●呼叫建立冲突:MS在开始建立通话到SDCCH信道分配前的时间段,VLR还未标记MS 状态,系统将寻呼MS,但MS未监听寻呼消息。 ●终端断电:MS非正常关机到MSC/VLR中隐关机计时器超时前的时间内,对该MS的寻 呼,MS无法相应,终端异常操作反映在终端发生寻呼失败后的第一个成功的网络事件是IMSI ATTACH ●弱覆盖或盲区:MS处于弱覆盖或盲区内,造成MS的寻呼无响应。根据后续发生业务 的时间,暂时起名为瞬间弱覆盖(10分钟内)或长期弱覆盖(10分钟后)。 ●其它:手机异常,手机死机,寻呼丢失,基站工作异常等 从G1的寻呼失败错误分布看,其中弱覆盖或盲区的原因,占总寻呼失败的90%以上,因此对弱覆盖的研究是寻呼失败的主要原因之一。 我们认为,引起这种弱覆盖的原因可能有以下两种情况: 1.手机进入弱覆盖区,容易脱网和入网的边界区 2.基站的paging丢失、SDCCH拥塞、AGCH阻塞,导致无法分配到SDCCH信道,无法 上发paging response消息。 前者,受限于现有网络的覆盖状况;后者,设备性能、配置、参数等设置有关。 为了更加精确的了解瞬间弱覆盖小区,我们将时间从10分钟内改为2分钟内,这样统计的结果可能更加接近实际弱覆盖小区。 统计结果如下: 寻呼失败后2分钟内发生新业务的小区排序如下:

寻呼失败后2-5分钟内发生新业务的小区排序如下: 2.数据分析 我们选择17157_1313和17157_6071两个小区为例,分析可能的产生原因。 2.1RMS报告弱覆盖数据分析 17157_1313:园丁花园3 上行弱覆盖(-95dBm以下)的比例为(67179+17380)/2580381= 3.28% 下行:质量电平分布如下:

寻呼成功率指导书

1. 寻呼成功率的背景及定义 2. CN侧影响因素分析及提高手段 3. B侧相关因素分析及提高手段 4. 案例分析应用 寻呼成功率指导书

第一章寻呼成功率的背景及定义 背景 无线寻呼成功率取自所有的端局(VMSC),移动用户做被叫或接收短消息过程中端局(VMSC)向所属用户发起寻呼情况的统计,即寻呼成功之和与寻呼尝试之和的百分比。 寻呼成功率考核各地无线覆盖情况、网络运行维护优化的质量等。这项指标的高低反映网络的覆盖规模,网络覆盖本质上是无线的问题,应归于基站的密度、发射接收功率的设置等。 通常,每期工程的顺利完成寻呼成功率就会有所提高,而且这个提高幅度同工程的规模成正比。网络优化的目的是尽可能使得寻呼成功率达到工程设计应该达到的水平。那么这项反映网络覆盖的指标如何优化呢?BSS当然是这项指标的理想跟踪对象,可以将大的系统指标分解到各个小区来定点分析,通过对各个小区或基站的障碍清除、参数调整、高度调整及俯仰角变换等等手段来达到无线的最佳覆盖,从而优化寻呼成功率。其次在NSS一边也有一些优化手段可以提高这项指标。本文主要讲述NSS侧的一些优化手段。 寻呼流程

定义 系统寻呼成功率=寻呼响应次数/寻呼请求次数*100% 寻呼响应次数 指本地区所有MSC收到的PAGING RES消息的响应总和。包括重复寻呼的响应。统计点为MSC。 寻呼请求次数

定义:指本地区所有MSC发出的首次PAGING消息(不包括重复寻呼)的总和,统计点为MSC。 语音寻呼成功率=语音寻呼响应次数/语音寻呼请求次数 话统指标 目前版本的实现,对于寻呼方面的统计有四个测量指标: MSC基本表测量 寻呼过程测量 MTC呼通率测量 位置区话务测量 话统公式:系统寻呼成功率以MSC基本表测量的寻呼响应次数和寻呼次数的比率为准。 <备注> B侧的寻呼成功率指标是以BSC为单元进行测量,而N侧的寻呼成功率指标分为两种:一是以MSC为单元进行测量;二是以位置区为单元进行测量。

GSM寻呼成功率指标优化

GSM寻呼成功率指标优化 1. 影响寻呼成功率的因素 网元MSC、BSC、BTS、MS,以及网络覆盖、干扰、信道拥塞以及设备硬件等因素都会影响到系统的寻呼成功率,例如: 硬件故障 传输问题 参数设置问题 干扰问题 覆盖问题 上下行平衡问题 其它原因。 1.1 硬件故障 当出现TRX或合路器故障的情况时,将会造成MS难以相应寻呼,寻呼成功率下降。 1.2 传输问题 由于各种情况导致的Abis接口、A接口链路等传输质量不好,传输链路不稳定,也会导致寻呼成功率上升。 1.3 参数设置问题 BSC侧和MSC侧的一些参数设置会影响寻呼成功率,主要包括: MSC侧寻呼相关参数: 1.N侧位置更新时间(IMSI隐形分离定时器): 2.首次寻呼方式: 3.首次寻呼间隔: 4.二次寻呼方式: 5.二次寻呼间隔: 6.三次寻呼方式: 7.三次寻呼间隔: 8.MSC重发寻呼次数: 9.全网下发寻呼: 10.预寻呼功能: 11.位置更新优化(MSC软参): 12.呼叫早释功能(MSC软参): 13.寻呼优化控制(MSC软参): BSC侧寻呼相关参数: 14. CCCH信道配置: 15. RACH最小接入电平: 16. MS最小接收信号等级

17.基站寻呼重发次数 18.接入允许保留块数 19.相同寻呼间帧数编码 20.MS最大重发次数 21.SDCCH动态分配允许 22.随机接入错误门限 23. T3212(周期性位置更新定时器) 24. RACH忙门限 25. CCCH负荷门限 26. Abis流量控制允许 27.A口协作寻呼开关(软参) 28.寻呼生存周期(软参29) 1.4 干扰问题 当存在网内、网外干扰时,都会影响系统的接入成功率,这样就直接影响到系统寻呼响应,使寻呼成功率下降。 1.5 覆盖问题 可能影响寻呼成功率的覆盖问题: 1.不连续覆盖(盲区) 由于基站所覆盖的区域地形复杂(如山区公路)、地势起伏,无线传播环境复杂,信号受阻挡,覆盖不连续等造成MS无法响应寻呼。 2. 室内覆盖差 因为一些建筑物密集,信号传输衰耗大,加上建筑物墙体厚,穿透损耗大,室内电平低,造成MS无法响应寻呼。 3. 越区覆盖(孤岛) 服务小区由于各种原因(如功率过大,天线方位角等)造成越区覆盖,导致MS可接收到下行信号,到MS发出的相应消息无法达到基站,造成寻呼成功率下降。 1.6 上下行平衡问题 如果由于基站发射功率过大或塔放、基站放大器、天线接口等出现问题,造成上下行电平相差较大,则在基站覆盖边缘会导致手机接入成功率不高。 2. 寻呼成功率分析流程和优化方法 2.1 分析流程图 2.2 寻呼成功率问题定位及优化方法说明 2.2.1 硬件和传输上存在问题 当出现TRX或合路器故障等情况时,将会造成寻呼下发失败或指配失败等情况,导致寻呼成功率下降。 检查硬件故障可以通过查看基站告警或在LMT上的基站设备面板界面直接查看硬件状态。主要的BSC告警如下表所示:

02 话统分析

目 录2-18A.2 中国联通质量考核指标........................................2-16 A.1 中国移动话统考核指标2002年...............................2-16 附录A ...........................................................2-142.4.6 切换成功率低的分析........................................2-12 2.4.5 SDCCH 拥塞率分析..........................................2-10 2.4.4 TCH 拥塞率的分析..........................................2-7 2.4.3 掉话率高的分析.............................................2-6 2.4.2 话统分析整体思路...........................................2-6 2.4.1 话统分析准备...............................................2-6 2.4 话统分析.......................................................2-4 2.3.2 运营商考核指标.............................................2-4 2.3.1 关键性能指标...............................................2-4 2.3 话统指标简介...................................................2-3 2.2.2 话务统计功能...............................................2-2 2.2.1 话务统计系统结构...........................................2-2 2.2 话务统计系统的结构和功能.........................................2-1 2.1 概述 ..........................................................2-1 第2章 话统分析........................................................

CSFB被叫寻呼成功率指标分析提升

1引言 当前TD-LTE系统支持三种语音解决方案:语音回落(CSFB:CircuitSwitchFallBack)、单卡双待、单无线模式语音呼叫连续性(SRVCC:SingleRadioVoiceCallContinuity)。目前,苹果手机采用CSFB方案,三星、华为、中兴等终端采用单卡双待方案。本文重点分析采用的CSFB方案。 CSFB业务过程共分4个步骤:终端开机在LTE/GSM网络联合附着,通话建立过程回落到GSM网络,在GSM网络发起语音呼叫,通话结束后返回LTE网络。 2CSFB指标及关键信令 2.1CSFB指标解析 CSFB是一个全流程的业务,涉及多个网元的交互与配合,需要无线与核心网联动来保障用户感知。由于CSFB终端做被叫的信令过程包含其做主叫的信令过程,为了便于统计分析,集团公司为CSFB定制了指标,主要针对被叫CSFB过程,分别为CSFB寻呼成功率、CSFB回落成功率、CSFB呼叫接通率。各项指标具体计算方法如下。 CSFB被叫寻呼成功率=SGs接口语音业务请求次数/(SGs接口语音业务一次寻呼次数-SGs接口业务取消次数) CSFB被叫回落成功率=(CSFB寻呼响应次数+CSFB被叫回落他局LCU次数)/CSFB呼叫移动用户终结试呼次数 CSFB被叫呼叫接通率=(CSFB呼叫2G终结接通次数+CSFB被叫呼叫出局语音业务接通次数)/(CSFB寻呼响应次数+CSFB被叫回落他局位置更新次数) 2.2CSFB被叫寻呼信令流程 按照定义可知CSFB被叫寻呼成功率为LTE网络负责信令控制的移动性管理实体(MME:MobilityManagementEntity)向交换机MSC回SERVICERE-QUEST的次数,与MSC向MME下发的寻呼次数相比得到的值。如图1所示,当UE处于空闲态时,MME下发寻呼手机上报扩展服务请求后,MME回SERVICEREQUEST给MSC,信令流程如图1所示;UE处于业务态时,MME收到MSC的寻呼消息时直接先回SERVICEREQUEST给MSC。 本文主要针对CSFB寻呼过程,从寻呼成功率 指标及寻呼关键信令来阐述CSFB寻呼失败的原因,提出相应的优化解决方案。 3影响CSFB被叫寻呼成功率的 原因分析 从信令流程可以看出,CSFB寻呼过程涉及MSC、MME和LTE无线三大网元部分。目前,MME处于轻载状态,MSC与MME的SGs接口也没有负荷告警,所以,我们将造成CSFB寻呼失败的原因聚焦在LTE无线侧。经过分析,其原因有以下几类。(1)被叫UE处于小区边缘弱覆盖区域,导致下行寻呼接收困难 由于小区边缘下行导频覆盖电平较差,使得PCH的覆盖一样较差,从而导致了该场景下UE接收寻呼困难(特别是农村场景和LTE覆盖边界区域)。我们可以进行功率提升或站点增建,以保障LTE的连续覆盖;对于无法进行覆盖提升的区域,则需要优化异系统重选门限,使得该区域的UE可以及时重选到其他系统,从而避免收不到寻呼消息的情况出现。(2)被叫UE进行频繁的TAU更新 UE在进行TAU更新的过程中是无法收到寻呼的,为了提升寻呼成功率,我们需要减少不必要的TAU更新。我们可以在系统TAU边界区域内对于RF进行重点调整,以降低TAC边界的重叠覆盖,减少TAC间的频选;还可以优化TAC边界的重选参数(修改TAC边界的重选偏置),适当增加TAC边界的重选难度,从而减少不必要的TAU更新。

GSM寻呼优化

陈源惠:GSM寻呼策略分析与优化建议 陈源惠 广东怡创通信有限公司,1997年7月中山大学计算机软件专业,网优中心经理兼网优专家,研究方向:GSM网络质量、容量的评估手段、分析方法及各种问题的解决方案;2G与3G共存情况下不同话务模型的优化方法。 1 寻呼原理 当一个位置区下的移动台被寻呼时,MSC就会通过基站控制器(BSC)向这一位置区内的所有BSC发出寻呼消息,BSC收到寻呼消息后,向该BSC下属于此位置区的所有小区发出寻呼命令消息。当基站收到寻呼命令后,将在该寻呼组所属的寻呼子信道上发出寻呼请求消息,该消息中携带有被寻呼用户的IMSI或者TMSI号码。移动台在收到寻呼请求消息后,通过随机接入信道(RACH)请求分配SDCCH。BSC则在确认基站激活了所需的SDCCH信道后,在接入允许信道(AGCH)通过立即指配命令消息,将该SDCCH指配给移动台。移动台则使用该SDCCH发送寻呼响应Paging Resp)消息给BSC,BSC将Paging Resp 消息转发给,完成一次成功的无线寻呼。MSC如图1:

2 寻呼策略设置介绍 (1)寻呼策略 目前GSM网存在TMSI寻呼和IMSI寻呼两种寻呼方式。在GSM系统中,每个用户都分配了一个惟一的MSI,IMSI写在移动台的SIM卡中,长8字节,用于用户身份识别;TMSI由VLR为来访的移动用户在鉴权成功后临时分配,仅在该VLR管辖范围内代替IMSI在空中接口中临时使用,且与IMSI相互对应,长4字节。因此空中接口的寻呼信道在使用IMSI 方式寻呼时,寻呼请求消息中只能包含2个IMSI 号码,而使用TMSI 方式寻呼时,则可以包含4个TMSI号码。因此,使用IMSI 方式寻呼带来的寻呼负荷会比使用TMSI 方式寻呼增加一倍,是否使用TMSI由参数TMSIPAR 来决定。在用户的位置区信息已知的情况下,第一次寻呼会在该位置区进行,如果第一次寻呼失败,则第二次的寻呼方式则根据PAGREP1LA 参数的设置进行,如果其值为0,则不会进行第次寻呼,直接产生EOS400;如果其值为1 或2,则其使用TMSI 或者IMSI 在原位置区进行

KPI指标提升案例

起呼问题的处理流程: 信号快衰造成未接通: 【事件描述】 国力大酒店3小区在丰潭路上有快衰现象,在该路段国力大酒店3小区信号迅速衰减至-90dBm,造成起呼失败。

信号快衰导致重选不及时 【解决措施】 现场调整国力大酒店3小区的机械下倾角由原来的6°→10° 【优化结果】 调整之后在丰潭路复测多次,此问题路段已不会切至国力大酒店3小区。 调整后切换关系图 跨RNC迁移时,被叫connect消息没有直传导致未接通 【事件描述】 在中河北路上,主叫呼被叫,被叫响应寻呼。22:33:26,被叫向网络侧发起connect 消息时,被叫正在从同发财富1小区跨RNC迁移到文苑宾馆2小区,被叫connect消息不能直传到CN而导致主叫未接通。

被叫在源RNC上没有上报connect直传消息,如下: 被叫在目标RNC上没有上报connect直传消息,如下: 【事件原因】 在起呼过程中,主被叫完成RAB建立,但是被叫发生了跨RNC切换,被叫在目标RNC发出送的connect消息,主叫在源RNC收不到CN下发的connect消息。 【解决措施】 需针对RNC边界进行优化(也即进行LAC区优化)。 RNC规划的推荐原则:

在规划RNC区时,需要尽可能的利用环境因素,减少RNC间的信令/数据流量,避免出现频繁的跨RNC 间切换。(注:此种情况一定要注意,像杭州一个RNC一个MSC出现频繁的跨RNC重选或切换会带来主叫在起呼过程中RAB建立完成发生切换至另外一个RNC导致收不到被叫发送的connect而导致未接通)如果存在两个以上的RNC区,在高话务的大城市,可以利用市区中山体、河流等地形因素来作为RNC 区的边界,减少两个RNC区下不同小区的交叠深度。如果不存在这样的地理环境,RNC区的划分尽量不要以街道为界,边界不要放在话务量很高的地方(比如商场)。一般要求RNC区边界不与街道平行或垂直,而是斜交。在市区和城郊交界区域,一般将RNC区的边界放在城郊区域外围一线话务量相对小的基站处,而不是放在话务密集的城郊结合部,避免结合部用户出现频繁的跨RNC间切换。 IMSI UNKNOWN IN VLR导致未接通 【事件描述】 车辆由南向北行驶在丰谭路上,在丰谭路左转至天目山路路口处,主叫UE由亚洲城2(40701)重选至国力大酒店2(40262),未能及时进行位置更新即起呼,造成CM SERVICE REJECT,cause为IMSI UNKNOWN IN VLR。 主叫路测截图 【事件原因】 该用户在其他的Server上做了位置更新,且HLR通知了本Server删除掉用户数据。由于该用户没有在本Server上做位置更新,也就是说,本Server上是没有该用户的数据的,所以当该用户在本Server上发起呼叫时,核心网直接拒掉,拒绝原因值为”IMSI Unknown in VLR”。 【解决措施】 关于该问题,核心网的MAP功能配置里有个选项可以解决此问题:

GSM网络寻呼成功率的分析及处理

GSM网络寻呼成功率的分析及处理 论文导读:对容量较大的位置区不启动全网寻呼,因为这样做容易造成基站过载和BSCCPU过载,导致大量的寻呼消息被丢弃,反而造成寻呼成功率急剧下降。关键词:寻呼成功率,影响因素,提升分析 一、影响寻呼成功率的因素 寻呼成功率是一个系统级的问题,涉及MSC、BSC、BTS、MS以及网络的覆盖情况等。影响MSC寻呼成功率的因素主要有: 1、基站覆盖情况; 2、MSC的寻呼策略; 3、信令信道是否拥塞; 4、位置区划分的合理性、上下行平衡情况; 5、寻呼相关参数设置; 6、周期位置时间(T3212)等; 7、手机质量问题。 三、现网寻呼成功率统计分析 A地MSC1地区整体寻呼成功率统计 日期寻呼成功率(10:00-11:00)寻呼成功率(20:00-21:00)2008-6-11 87.06 85.69 2008-6-12 88.03 86.26 2008-6-13 86.25 88.31 2008-6-14 91.64 84.12 2008-6-15 85.78 85.14 2008-6-16 87.55 85.86

2008-6-17 87.98 85.04 2008-6-18 87.89 85.36 2008-6-19 88.17 86.09 2008-6-20 88.27 84.87 A地MSC1早忙时寻呼成功率在88%,晚忙时寻呼成功率基本在86%左右,晚忙时的寻呼成功率比早忙时低2%-3%。 A地MSC1各位置区寻呼成功率统计 位置区073D主要覆盖A地市区,位置区073E主要覆盖A地西部地区,位置区073F主要覆盖PX、JL地区,下表为各位置区统计。 位置区日期寻呼成功率(10:00-11:00)寻呼成功率(20:00-21:00)46001073D 2008-6-11 91.19% 90.47% 2008-6-12 90.91% 91.30% 2008-6-13 90.78% 92.53% 46001073E 2008-6-11 84.88% 84.83% 2008-6-12 85.89% 84.25% 2008-6-13 83.83% 87.50% 46001073F 2008-6-11 84.96% 83.71% 2008-6-12 87.08% 84.07% 2008-6-13 86.25%

CDMA寻呼专项优化

CDMA寻呼专项优化 1 概述 CDMA寻呼成功率作为衡量网络质量的重要指标,对用户的感知明显,也是运行商考核指标之一,所以对寻呼成功率指标优化显得非常重要。 1.1 呼叫流程 下面有主叫和被叫的流程图,涉及空口、Abis、A口等,其中空口和A口都是标准的,遵循相关协议标准,而Abis口是由各系统制造厂家自行定义的。在图中说明了,呼叫建立过程中,在寻呼信道上所承载的消息,体现了移动台和系统的一个交互过程。网络中出现的一些问题,若与流程相关,则都应该根据全流程的这根主线来分析。一点说明:下图2中对接入信道的始呼消息或者寻呼响应消息的层二应答,是由BSC处理的。为了缩短应答时间,可以由BTS直接对上述两类消息进行层二的应答。

1.2 寻呼成功率定义 寻呼成功率 定义:寻呼响应次数/寻呼请求次数*100% 寻呼响应次数 定义:指所有MSC/MSCe收到的被叫用户寻呼响应的总次数,含语音和短信。触发点:统计MSC/MSCe 收到的”PAGING RESPONSE”。含二次寻呼的响应。 指标公式: 寻呼响应次数-PDSN寻呼响应次数 寻呼请求次数 定义:指所有MSC/MSCe发出寻呼被叫的总次数,含语音和短信。 触发点:统计MSC/MSCe发出对被叫用户的“PAGING REQUEST”消息的次数。不包含二次寻呼的次数。 指标公式:

寻呼响应次数+寻呼无响应次数-PDSN寻呼请求次数

2 影响寻呼成功率的因数 影响寻呼成功率的因素很多,从网元角度来看,寻呼成功率是一个很重要的KPI指标,涉及端到端众多网元,任何一个网元都会影响最终寻呼成功率结果。从宏观角度考虑,寻呼成功率最相关因素是网络覆盖,前反向平衡,干扰以及位置区划分不合理导致的拥塞和过载。 寻呼成功率是一个系统级的问题,涉及MSC、BSC、BTS、MS以及网络覆盖、干扰、寻呼信道拥塞等。影响MSC寻呼成功率的因素主要有: 基站覆盖情况; 前反向平衡情况; 干扰情况; 位置区划分的合理性; MSC的寻呼策略; 寻呼相关参数设置; 寻呼信道负荷; 接入信道参数设置。 3 寻呼成功率优化方法 3.1常规优化对寻呼成功率的影响 3.1.1网络覆盖对寻呼成功率的影响 网络覆盖范围是影响寻呼成功率的首要因素,当MS开着机而移动到网络覆盖区以外的地方(即盲区),网络无法知道MS目前的状态,它仍会认为该MS还处于附着的状态,这种情况将无法寻呼成功。提升寻呼成功率,首先要提高网络覆盖,在有网络覆盖的地区需要提升覆盖区域内信号强度,提升信号质量。提高网络覆盖,提升网络信号强度,提升信号质量主要通过网络优化解决。 改善覆盖可以通过加站、调整天馈、增加导频信道功率和提高基站额定发射功率等等来解决,这里不再详细说明,具体可以参考网规有关优化覆盖的指导书进行操作。

相关文档
最新文档