千题百炼——高中数学100个热点问题(三):第88炼 含有条件概率的随机变量问题

千题百炼——高中数学100个热点问题(三):第88炼 含有条件概率的随机变量问题
千题百炼——高中数学100个热点问题(三):第88炼 含有条件概率的随机变量问题

第88炼 含有条件概率的随机变量问题

一、基础知识:

1、条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为|B A

2、条件概率的计算方法:

(1)按照条件概率的计算公式:()()()

|P AB P B A P A =

(2)考虑事件A 发生后,题目产生了如何的变化,并写出事件B 在这种情况下的概率 例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率:

按照(1)的方法:设事件A 为“甲没中奖”,事件B 为“乙中奖”,则所求事件为|B A ,按照公式,分别计算()(),P AB P A ,利用古典概型可得:()2

541

5

P AB A =

=,()45P A =,所以()()

()1

|4

P AB P B A P A =

=

按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖。那么轮到乙抽时,乙抽中的概率即为

1

4

3、含条件概率的乘法公式:设事件,A B ,则,A B 同时发生的概率()()()|P AB P A P B A =? ,此时()|P B A 通常用方案(2)进行计算

4、处理此类问题要注意以下几点:

(1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率)

(2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别

(3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决。 二、典型例题:

例1:袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到的球

的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到的球的编号为奇数,则取球停止,取球停止后用X 表示“所有被取球的编号之和” (1)求X 的分布列 (2)求X 的数学期望及方差

思路:(1)依题意可知如果取球取出的是1,3,则取球停止,此时X 的值为1或3;当取球取出的是2号球时,按照规则要改为1号球放进去重取,再取时只能取到1或3,所有编号之和X 的值为3,5,所以可知X 可取的值为1,3,5,当1X =时,意味着直接取到了1号球

(概率为

13);当3X =时,分为两种情况,一种为直接取到3(概率为1

3),另一种为取到了2(概率为13),改完数字后再取到1(概率为23);当5X =时,为取到了2(概率为1

3

),

改完数字后再取到3(概率为1

3

),从而可计算出概率。进而得到分布列与期望方差

解:(1)X 可取的值为1,3,5

()113P X ∴==

()1125

33339P X ==+?= ()111

5339

P X ==?=

X ∴的分布列为:

(2)1353999

EX =?

+?+?= 2

2

2

123523123176

135********

DX ??????=-+-+-=

? ? ??????? 例2:深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.

(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.

(1)思路:第一次训练时所取得球是从6个球(3新,3旧)中不放回取出2个球,所以可判断出ξ服从超几何分布,即可利用其公式计算概率与分布列,并求得期望

解:ξ可取的值为0,1,2

()2326105C P C ξ=== ()11

332

63

15

C C P C ξ?=== ()23261

25

C P C ξ===

ξ∴的分布列为:

0121555

E ξ∴=?+?+?=

(2)思路:本题要注意一个常识,即新球训练过后就变成了旧球,所以要计算第二次恰好取到一个新球的概率,需要了解经过第一次训练后,所剩的球有几个新球,几个旧球。所以要对第一次取球的情况进行分类讨论:若第一次取2个新球,则第二次训练时有5旧1新;若第一次取到1个新球,则第二次训练时有4旧2新;若第一次取到2个旧球,则第二次训练依然为3旧3新,分别计算概率再相加即可

解:设事件i A 为“第一次训练取出了i 个新球”,则()233

2

6

i i i C C P A C -= 设事件B 为“从六个球取出两个球,其中恰好有一个新球” 事件C 为“第二次恰好取出一个新球”

()()()()012P C P A B P AB P A B ∴=++

()()()211

33300022

663

|25C C C P A B P A P B A C C ?=?=?= ()()()1111334211122

668

|25C C C C P A B P A P B A C C ?=?=?= ()()()213522222661

|15

C C P A B P A P B A C C =?=?=

()()()()0123875

P C P A B P A B P A B ∴=++=

例3:若盒中装有同一型号的灯泡共10个,其中有8个合格品,2个次品

(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率

(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数X 的分布列和数学期望

(1)思路:每次有放回的取灯泡,相当于做了3次独立重复试验,每次试验中取到合格品的概率为

45,取到次品的概率为1

5

,在3次试验中2次取到次品,1次取得合格品,所以考虑利用公式求解取到次品的概率 解:设事件A 为“2次取到次品”

()2

231412

55125P A C ??

??∴=?=

?

???

??

(2)思路:因为只有2个次品,所以最多用掉3个灯泡,X 可取的值为1,2,3,1X =时,

意味着取到的是合格品,概率为45,2X =是取到一个次品(概率为1

5)之后在9个灯泡中取到一个合格品(概率为89),3X =是连续取到2个次品(概率为11

59

?),之后一定拿

到合格品,分别计算概率即可 解:X 可取的值为1,2,3

()415P X ∴==

()18825945P X ==?= ()111

35945

P X ==?= X ∴的分布列为:

123545459

EX ∴=?

+?+?= 例4:一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.

(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;

(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的分布列和数学期望.

(1)思路:本题可用古典概型解决,事件Ω为“8张卡片中取出2张卡片”,所以()2

8n C Ω= 事件A 为“所得新数为奇数”,可知需要一奇一偶相加即可,则()1135

n A C C =?,从而可计算出()P A

解:设A 为“所得新数为奇数”

()11

352815

28

C C P A C ?∴==

(2)思路:依题意可知ξ可取的值为1,2,3,4,题目中的要求为“取出偶数即停止”所以若要保证第n 次能继续抽卡片,则在前()1n -次需均抽出奇数。所以1,2,3ξ=时,意味着抽卡片中途停止,则必在最后一次取到了偶数,以3ξ=为例,中途停止说明在第三次抽到偶

数,前两次抽到奇数。所以()325

3876

P ξ==??(第二次受第一次结果的影响,只剩7张卡片,含有2张奇数卡片,所以是前两次是奇数的概率为32

87

?)。当4ξ=时,只要在前三次

将奇数卡片抽完即可。 解:ξ可取的值为1,2,3,4

()518P ξ∴==

()351528756P ξ==?= ()3255387656P ξ==??= ()3211

487656

P ξ==??=

ξ∴的分布列为:

123485656562

E ξ∴=?+?+?+?=

例5:某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1个小时走出迷宫;若是2

号,3号通道,则分别需要2小时,3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止,令ξ表示走出迷宫所需的时间,求ξ的分布列和数学期望

思路:迷宫的规则为只有进入1号通道才能走出迷宫,如果是其他通道(以2号为例),则可能打开1通道然后走出迷宫,或者打开另一个通道,通过第三轮进入1通道走出迷宫,所以ξ可取的值为1(1号),3(2号+1号),4(3号+1号),6(3号+2号+1号或2号+3号+1号)。根据ξ的取值便可判断出走迷宫的情况,从而列出式子计算概率,得到分布列 解:ξ可取的值为1,3,4,6

()113P ξ== ()1113326P ξ==?=

()1114326P ξ==?= ()11111

632323

P ξ==?+?=

ξ∴的分布列为:

134636632

E ξ∴=?+?+?+?=

例6:某学校要对学生进行身体素质全面测试,对每位学生都要进行9选3考核(即共9项测试,随机选取3项),若全部合格,则颁发合格证;若不合格,则重新参加下期的9选3考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为

12,第二次参加考试合格的概率为23,第三次参加考试合格的概率为4

5

,若第四次抽到可要求调换项目,其它选项小李均可一次性通过 (1)求小李第一次考试即通过的概率P (2)求小李参加考核的次数ξ分布列

(1)思路:由题意可知,小李能够通过考试的概率取决于是否能够抽到“引体向上”这个项目,如果没有抽到,则必能通过;若抽到“引体向上”则通过的概率为1

2

。后面通过测试的概率受到前面抽签的影响,要利用条件概率进行解决

解:(1)若没有抽到“引体向上”,则3813

92

3

C P C == 若抽到“引体向上”,则2823

911

26

C P C =?= 12215

366

P P P ∴=+=

+= (2)思路:依题目要求可知ξ可取的值为1,2,3,4,在参加下一次考核时,意味着前几次考核失败,所以当ξ取2,3,4时,要考虑前面考核失败的情况与该次考核成功两个方面同时成立。

解:ξ可取的值为1,2,3,4

()516P ξ== ()32883399124

26327

C C P C C ξ??==?+?= ???

()2328883339991147

3635405C C C P C C C ξ????==???+?=

? ????? ()228833991111

4635810

C C P C C ξ????==????=

? ????? ξ∴的分布列为:

例7:袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是3

,从

B 中摸出一个红球的概率是2

3

,现从两个袋子中有放回的摸球

(1)从A 中摸球,每次摸出一个,共摸5次,求 ① 恰好有3次摸到红球的概率

② 设摸得红球的次数为随机变量X ,求X 的期望

(2)从A 中摸出一个球,若是白球则继续在袋子A 中摸球,若是红球则在袋子B 中摸球;若从袋子B 中摸出的是白球则继续在袋子B 中摸球,若是红球则在袋子A 中摸球,如此反复摸球3次,计摸出红球的次数为Y ,求Y 的分布列和期望

(1)思路:①题目中说“有放回的摸球”,所以本题为独立重复试验模型,在A 中摸出红球的概率为

1

3

,代入独立重复试验模型公式即可计算出概率;② 随机变量X 指摸出红球发生的次数,所以符合二项分布15,3X B ?? ???

,直接可计算期望 解:① 设事件M 为“恰好有3次摸到红球”

()3

2

35124033243P M C ????

∴=?=

? ???

??

② X 的取值为0,1,2,3,4,5,依题意可知15,3X B ??

???

15

533

EX ∴=?=

(2)思路:有放回的摸球三次,所以Y 可取的值为0,1,2,3,因为下一次在哪个袋子里摸球取决于上一次的结果:若是白球则在本袋继续摸,若是红球则要换袋子摸,所以在计算概率的过程中要监控每一次摸球的结果,并按红球个数进行安排。例如1Y =时,要按“红白白”,“白红白”,“白白红”三种情况进行讨论,并汇总在一起。 解:Y 可取的值为0,1,2,3

()3280327

P Y ??

===

??? ()22

112112171333333327P Y ????==?+??+?= ? ????? ()12211221210

233333333327P Y ==??+??+??=

()1212

333327P Y ==??=

Y ∴的分布列为:

0123272727279

EY ∴=?+?+?+?=

例8:为了参加中央电视台,国家语言文字工作委员会联合主办的《中国汉字听写大会》节目,某老师要求参赛学生从星期一到星期四每天学习3个汉字及正确注释,每周五对一周内所学汉字随机抽取若干个进行检测(一周所学的汉字每个被抽到的可能性相同) (1)老师随机抽了4个汉字进行检测,求至少有3个是后两天学习过的汉字的概率

(2)某学生对后两天所学过的汉字每个能默写对的概率为4

5

,对前两天所学过的汉字每个能默写对的概率为

35

,若老师从后三天所学汉字中各抽取一个进行检测,求该学生能默写对的汉字的个数ξ的分布列和期望

解:(1)设事件A 为“至少有3个是后两天学习过的汉字”

()1346664

121353

49511

C C C P A C +∴=== (2)思路:依题意可知ξ可取的值为0,1,2,3,本问的关键在于后三天中包括“后两天”与“第二天”两类,这两类中学生默写对的概率是不同的,所以在求概率时要讨论默对的属于哪个类别,再考虑其概率即可

解:()2122055125P ξ??∴==?= ??? ()2

1

24121319155555125P C ξ??==???+?=

??? ()2

12

4134256

255555125

P C ξ??==???+?=

??? ()2

4348

355125P ξ??==?=

???

ξ∴的分布列为:

01231251251251255

E ξ∴=?+?+?+?=

例9:QQ 先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出一条鱼(每条鱼被抓到的概率相同)并吃掉,若黑鱼未被抓出,则它每晚要吃掉一条青鱼(规定青鱼不吃鱼)

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率

(2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ (1)思路:依题意可知,如果QQ 先生没有抓到黑鱼,则黑鱼会一次次的吃掉青鱼,从而使得QQ 先生吃掉鱼的总数减少。所以QQ 先生吃鱼的总数决定于第几次将青鱼拿出,“QQ 先生

至少吃掉6条”包含6条和7条,若吃掉6条,则表示第一次拿出的是青鱼,在第二次拿黑鱼时,因为黑鱼已经吃掉一条青鱼,所以只能从剩下5条中拿出,故概率为61

75

?;若吃掉7条,则表示第一次就拿出黑鱼,即概率为

17

。 解:设事件i A 为“第i 次拿到青鱼” 事件A 为“QQ 先生至少吃掉6条鱼”

()()()121611177535

P A P A P A ∴=+=

+?= (2)思路:依题意可知只要晚一天拿出黑鱼,则这一天就会少两条青鱼(一条QQ 吃掉,一条黑鱼吃掉),所以ξ可取的值为4,5,6,7。7ξ=代表第一天就拿到黑鱼;6ξ=代表第二天拿到黑鱼;5ξ=代表第三天拿到黑鱼;4ξ=代表第四天拿到黑鱼,此时QQ 先生吃了3条青鱼,黑鱼吃了3条青鱼。分别求出概率即可 解:ξ可取的值为4,5,6,7

()177P ξ∴==

()616

67535P ξ==?= ()6418575335P ξ==??= ()64216

475335

P ξ==??=

ξ∴的分布列为:

45675353535735

E ξ∴=?+?+?+?==

例10:有,,A B C 三个盒子,每个盒子中放有红,黄,蓝颜色的球各一个,所有的球仅有颜色上的区别

(1)从每个盒子中任意取出一个球,记事件S 为“取得红色的三个球“,事件T 为”取得颜色互不相同的三个球“,求()(),P S P T

(2)先从A 盒中任取一球放入B 盒,再从B 盒中任取一球放入C 盒,最后从C 盒中任取一球放入A 盒,设此时A 盒中红球的个数为ξ,求ξ的分布列与数学期望

(1)思路一:可利用古典概型求出()(),P S P T ,基本事件空间Ω为“三个盒子的取球情况”,则()1

1

1

33327n C C C Ω=??=,则()1n S =,()3

36n T A ==(三种颜色全排列确定出

自哪个盒),从而求得()(),P S P T

解:(1)()1113331127P S C C C ==?? ()3

31113332

9

A P T C C C ==??

思路二:本题也可用概率的乘法进行计算。S 表示每个盒均取出红球(取出红球的概率为

13),因为每盒之间互不影响,所以()111

333

P S =??;T 要求每盒颜色不同,所以前一个盒取出球的颜色会影响到下一个盒取球的选择。第一个盒取出一个颜色,则第二个盒只能取另外两个颜色的球(概率为23),而第三个盒只能取出剩下颜色的那个球(概率为1

3

),所以()21

133

P T =?

? 解:(1)()1111

33327P S =??=

()212

1339

P T =??=

(2)思路:分析可知整个过程对于A 而言是取出一个球,再进入一个球,所以ξ可取的值为0,1,2,情况较为简单的为0ξ=和2ξ=的情况,当0ξ=时,意味着从A 盒中取出了红

球到B (概率为

13

),此时B 盒中为2红2非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为1

2

),则C 盒中为2红2非红,然后从C 中取出

非红球即可(概率为12);若取出的不是红球(概率为1

2

),则C 盒中为1红3非红,再从C

中取出非红球即可(概率为

34),综上可得:()111135

03222424

P ξ??==??+?=????;当2ξ=时,意味着从A 盒中取出了非红球到B (概率为

2

3

),此时B 盒中为1红3非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为1

4

),则C 盒

中为2红2非红,然后从C 中取出红球即可(概率为12);若取出的不是红球(概率为3

4

),

则C 盒中为1红3非红,再从C 中取出红球即可(概率为1

4

),综上可得:

()211315

23424424P ξ??==

??+?=

????

,进而可利用()()0,2P P ξξ==求出()1P ξ=

解:依题意,ξ可取的值为0,1,2

()111135

03222424P ξ??==??+?=

???? ()211315

23424424P ξ??==

??+?=

????

()()()7

110212

P P P ξξξ==-=-==

ξ∴的分布列为:

0121241224

E ξ∴=?

+?+?=

2014年高中数学计算题4

计算题专项练习 1.计算: (1); (2). 2.计算: (1)lg1000+log342﹣log314﹣log48;(2). 3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>.4.(1)计算:2××(2)计算:2log510+log50.25. 5.计算: (1);(2). 6.求log89×log332﹣log1255的值. 7.(1)计算.

(2)若,求的值. 8.计算下列各式的值 (1)0.064﹣(﹣)0+160.75+0.25(2)lg5+(log32)?(log89)+lg2. 9.计算: (1)lg22+lg5?lg20﹣1; (2). 10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值. 11.计算(Ⅰ) (Ⅱ). 12.解方程:.

13.计算: (Ⅰ) (Ⅱ). 14.求值:(log62)2+log63×log612. 15.(1)计算(2)已知,求的值. 16.计算 (Ⅰ);(Ⅱ)0.0081﹣()+??. 17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(?U A)∩B,求集合M,并写出M的所有子集; (Ⅱ)求值:. 18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5)

20.求值: (1)lg14﹣+lg7﹣lg18 (2). 21.计算下列各题: (1)(lg5)2+lg2×lg50;(2)已知a﹣a﹣1=1,求的值. 22.(1)计算; (2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,数k的取值围. 23.计算题 (1) (2) 24.计算下列各式:(式中字母都是正数) (1)(2).

高中数学数列压轴题练习(江苏)详解

高中数学数列压轴题练习(江苏)及详解 1.已知数列是公差为正数的等差数列,其前n项和为,且? , (Ⅰ)求数列的通项公式; (Ⅱ)数列满足, ①求数列的通项公式; ②是否存在正整数m,,使得,,成等差数列?若存在,求出m,n的值;若不存在,请说明理由. 解:(I)设数列的公差为d,则 由?,,得, 计算得出或(舍去). ; (Ⅱ)①,, , , 即,,, ,

累加得:, 也符合上式. 故,. ②假设存在正整数m、,使得,,成等差数列, 则 又,,, ,即, 化简得: 当,即时,,(舍去); 当,即时,,符合题意. 存在正整数,,使得,,成等差数列. 解析 (Ⅰ)直接由已知列关于首项和公差的方程组,求解方程组得首项和公差,代入等差数列的通项公式得答案; (Ⅱ)①把数列的通项公式代入,然后裂项,累加后即可求得数列的通项公式;

②假设存在正整数m、,使得,,成等差数列,则 .由此列关于m的方程,求计算得出答案. 2.在数列中,已知, (1)求证:数列为等比数列; (2)记,且数列的前n项和为,若为数列中的最小项,求的取值范围. 解:(1)证明:, 又, ,, 故, 是以3为首项,公比为3的等比数列 (2)由(1)知道,, 若为数列中的最小项,则对有 恒成立, 即对恒成立 当时,有; 当时,有?; 当时,恒成立,

对恒成立. 令,则 对恒成立, 在时为单调递增数列. ,即 综上, 解析 (1)由,整理得:.由, ,可以知道是以3为首项,公比为3的等比数列; (2)由(1)求得数列通项公式及前n项和为,由为数列中的最小项,则对有恒成立,分类分别求得 当时和当的取值范围, 当时,,利用做差法,根据函数的单调性,即可求得的取值范围. 3.在数列中,已知,,,设 为的前n项和. (1)求证:数列是等差数列; (2)求;

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高中数学计算题大全

高中数学计算题大全篇一:2014年高中数学计算题五 2014年高中数学计算题五 2014年高中数学计算题五 一(解答题(共30小题) 1((1)已知x+y=12,xy=9,且x,y,求的值( (2) 2(计算下列各题: (1) (2) 3(计算下列各题: (?) (?) 4((1)化简:( ( ,lg25,2lg2; ; ( ,(a,0,b ,0)( (2)已知2lg(x,2y)=lgx+lgy,求 5(解方程 6(求下列各式的值: (1)lg, lg+lg 的值( ( 1

7(求值: 2(1)(lg5)+lg2?lg50; (2)( ( 8(计算 9(计算: (1)已知x,0,化简 (2) 10(计算:(1)(0.001) (2)lg25+lg2,lg 11((1 )求值: (2)解不等式: 12(化简: ( ( +27+(),(),1.5的值( ( ,log29?log32( 13((?) 化简:; (?) 已知2lg(x,2y)=lgx+lgy,求 14(计算: (1)(2的值( ),×e++10 lg2(2)lg5+lg2×lg500,lg 15(化简或求值:(1),log29×log32(

16((1)计算:; 2 (2)已知2a=5b=100,求的值( 17((1)计算 (2)已知log189=a,18b=5,试用a,b表示log365( 18(计算: (1)(lg50)2+lg2×lg(50)2+lg22; (2)2(lg)2+lg?lg5+; (3)lg5(lg8+lg1000)+(lg2)2+lg+lg0.06( 19(化简下列式子: (1); (2)( 20(化简下列式子: (1); (2); (3)( 21(化简求值: 22(化简下列式子: (1);

高中数学压轴题试卷整合

2017届北京市海淀区高三下学期期中考试数学理卷 18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -,||3AF =. (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证:ODF OEF ∠=∠.

2017年南通市高考数学全真模拟试卷一 13.已知角,αβ满足tan 7tan 13 αβ=,若2sin()3αβ+=,则sin()αβ-的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为. 18.已知椭圆:C 22 31mx my +=(0)m > 的长轴长为,O 为坐标原点. (1)求椭圆C 的方程和离心率. (2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值. 19.已知函数32()f x ax bx cx b a =-++=(0)a >. (1)设0c =. ①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值; ②若a b >,求()f x 在区间[0,1]上的最大值. (2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立. 13.1 5 -14.5 18.(1)由题意知椭圆:C 22 111 3x y m m +=, 所以21a m =,213b m =,

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

高一数学计算题

指数函数对数函数计算题 1、计算:lg 5·lg 8000+. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:2. 4、解方程:9-x -2×31-x =27. 5、解方程:=128. 06.0lg 6 1lg )2 (lg 23++3log 1log 66-=x x )8 1(

6、解方程:5x+1=. 7、计算:· 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9求函数的定义域. 10、已知log 1227=a,求log 616. 12 3-x 10log 5log )5(lg )2(lg 2233++.10log 18121 log 8.0--=x x y

11、已知f(x)=,g(x)=(a>0且a≠1),确定x的取值范围,使得f(x)>g(x). 12、已知函数f(x)=. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x的方程a x+1=-x2+2x+2a(a>0且a≠1)的实数解的个数. 14、求log 927的值. 1 3 22+ -x x a5 2 2- +x x a 3 2 1 1 2 1 x x ? ? ? ? ? + -

15、设3a =4b =36,求+的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 a 2b 1

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高一数学基础计算题

1-3 初中计算题(一) 班级________ 姓名__________ 一、填空题: 1、若,13+= x 则代数式 3 41 · 132 +++-+x x x x x 的值等于 、 2、如果a,b 就是方程012=-+x x 的两个根,那么代数式a b ab +-的值就是 、 3.若1

高中数学100道试题

高中数学新课标人教A 版必修1-5选择题100题 1、若M 、N 是两个集合,则下列关系中成立的是( ) A .? M B .M N M ?)( C .N N M ?)( D .N )(N M 2、若a>b ,R c ∈,则下列命题中成立的是( ) A .bc ac > B . 1>b a C .2 2 bc ac ≥ D . b a 11< 3、直线x+2y+3=0的斜率和在y 轴上的截距分别是( ) A .2 1- 和-3 B . 2 1和-3 C .2 1- 和 2 3 D .2 1-和2 3- 4、不等式21<-x 的解集是( ) A .x<3 B .x>-1 C .x<-1或x>3 D .-1

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

高中数学计算题专项练习

2019年高中数学计算题专项练习1 一.解答题(共30小题) 1.计算: (1); (2). 2.计算: (1)lg1000+log342﹣log314﹣log48; (2). 3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4; (2)解不等式:21﹣2x>. 4.(1)计算:2×× (2)计算:2log510+log50.25. 5.计算: (1); (2). 6.求log89×log332﹣log1255的值. 7.(1)计算. (2)若,求的值. 8.计算下列各式的值 (1)0.064﹣(﹣)0+160.75+0.25 (2)lg5+(log32)?(log89)+lg2. 9.计算: (1)lg22+lg5?lg20﹣1;

(2). 10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值. 11.计算(Ⅰ) (Ⅱ). 12.解方程:. 13.计算: (Ⅰ) (Ⅱ). 14.求值:(log62)2+log63×log612. 15.(1)计算 (2)已知,求的值. 16.计算 (Ⅰ); (Ⅱ)0.0081﹣()+??. 17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(?U A)∩B,求集合M,并写出M的所有子集; (Ⅱ)求值:. 18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5) 19.(Ⅰ)计算(lg2)2+lg2?lg50+lg25;

(Ⅱ)已知a=,求÷. 20.求值: (1)lg14﹣+lg7﹣lg18 (2). 21.计算下列各题: (1)(lg5)2+lg2×lg50; (2)已知a﹣a﹣1=1,求的值. 22.(1)计算; (2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,求实数k的取值范围.23.计算题 (1) (2) 24.计算下列各式:(式中字母都是正数) (1) (2). 25.计算:(1); (2)lg25+lg2×lg50+(lg2)2. 26.已知x+y=12,xy=27且x<y,求的值. 27.(1)计算:;

(完整word版)高中数学压轴题系列——导数专题——双变量问题(2).docx

高中数学压轴题系列——导数专题——双变量问题( 2) 1.(2010?辽宁)已知函数 f (x ) =( a+1)lnx+ax 2 +1 (1)讨论函数 f (x )的单调性; (2)设 a <﹣ 1.如果对任意 x 1,x 2∈( 0,+∞),| f ( x 1)﹣ f ( x 2)| ≥ 4| x 1﹣ x 2 | ,求 a 的取值范围. 解:(Ⅰ )f (x )的定义域为( 0,+∞) . . 当 a ≥0 时, f ′(x )> 0,故 f ( x )在( 0,+∞)单调递增; 当 a ≤﹣ 1 时, f ′( x )< 0,故 f ( x )在( 0, +∞)单调递减; 当﹣ 1< a <0 时,令 f ′( x ) =0,解得 . 则当 时, f'( x )> 0; 时, f' ( x )< 0. 故 f (x )在 单调递增,在 单调递减. (Ⅱ)不妨假设 x 1≥ 2,而 <﹣ ,由( Ⅰ)知在( 0, ∞)单调递减, x a 1 + 从而 ? x 1, 2∈( , ∞), | f ( 1)﹣ ( 2) ≥ 4| x 1﹣ 2 | x 0 + x f x | x 等价于 ? x 1, 2∈( , ∞), f ( 2 ) 2 ≥ ( 1 ) 1 ① x 0 + x +4x f x +4x 令 g ( x )=f ( x ) +4x ,则 ①等价于 g (x )在( 0,+∞)单调递减,即 . 从而 故 a 的取值范围为(﹣∞,﹣ 2] .( 12 分) 2.( 2018?呼和浩特一模)已知函数 f (x ) =lnx , g ( x ) = ﹣ bx (b 为常数). (Ⅰ)当 b=4 时,讨论函数 h (x )=f (x )+g (x )的单调性; (Ⅱ) b ≥2 时,如果对于 ? x 1,x 2∈( 1, 2] ,且 x 1≠ x 2,都有 | f (x 1)﹣ f ( x 2)| <| g (x 1)﹣ g (x 2) | 成立,求实数 b 的取值范围. 解:( 1)h ( x )=lnx+ x 2﹣bx 的定义域为( 0,+∞),当 b=4 时, h ( x )=lnx+ x 2 ﹣4x , h'(x )= +x ﹣4= , 令 h'(x ) =0,解得 x 1 ﹣ , 2 ,当 ∈( ﹣ , 2+ )时, ′( )< , =2 x =2+ x2 h x 0 当 x ∈( 0, 2﹣ ),或( 2+ ,+∞)时, h ′(x )> 0, 所以, h (x )在∈( 0, 2﹣ ),或( 2+ ,+∞)单调递增;在( 2﹣ , 2+ )单调递减; (Ⅱ)因为 f ( x )=lnx 在区间( 1,2] 上单调递增,

(推荐)高中数学计算题专项练习一

高中数学计算题专项练习一

高中数学计算题专项练习一 一.解答题(共30小题) 1.(Ⅰ)求值:; (Ⅱ)解关于x的方程. 2.(1)若=3,求的值; (2)计算的值. 3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算: (1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027; (2). 5.计算的值. 6.求下列各式的值. (1) (2)已知x+x﹣1=3,求式子x2+x﹣2的值. 7.(文)(1)若﹣2x2+5x﹣2>0,化简: (2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集. 8.化简或求值:

(1)3a b(﹣4a b)÷(﹣3a b); (2). 9.计算: (1); (2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006. 10.计算 (1) (2). 11.计算(1) (2). 12.解方程:log2(x﹣3)﹣=2. 13.计算下列各式 (Ⅰ)lg24﹣(lg3+lg4)+lg5 (Ⅱ). 14.求下列各式的值: (1) (2). 15.(1)计算 (2)若xlog34=1,求4x+4﹣x的值. 16.求值:. 17.计算下列各式的值

(1)0.064﹣(﹣)0+160.75+0.25 (2)lg25+lg5?lg4+lg22. 18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值. 20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:. 22.计算下列各题 (1); (2). 23.解下列方程: (1)lg(x﹣1)+lg(x﹣2)=lg(x+2); (2)2?(log3x)2﹣log3x﹣1=0. 24.求值:(1) (2)2log525﹣3log264. 25.化简、求值下列各式: (1)?(﹣3)÷; (2)(注:lg2+lg5=1). 26.计算下列各式 (1);(2).

(完整)高中数学选择填空题专项训练

综合小测1 一、选择题 1.函数y =2x +1的图象是 2.△ABC 中,cos A = 135,sin B =53 ,则cos C 的值为 A. 65 56 B.-6556 C.-6516 D. 65 16 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N*,则可作出的l 的条数为 A.1 B.2 C.3 D.多于3 4.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 A.f (x ·y )=f (x )·f (y ) B.f (x ·y )=f (x )+f (y ) C.f (x +y )=f (x )·f (y ) D.f (x +y )=f (x )+f (y ) 5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是 A.b ∥α,c ∥β B.b ∥α,c ⊥β C.b ⊥α,c ⊥β D.b ⊥α,c ∥β 6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( ) A.14 B.16 C.18 D.20 7.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 A.8种 B.10种 C.12种 D.32种 8.若a ,b 是异面直线,a ?α,b ?β,α∩β=l ,则下列命题中是真命题的为 A.l 与a 、b 分别相交 B.l 与a 、b 都不相交 C.l 至多与a 、b 中的一条相交 D.l 至少与a 、b 中的一条相交

9.设F 1,F 2是双曲线4 2 x -y 2=1的两个焦点,点P 在双曲线上,且1 PF ·2PF =0,则|1 PF |·|2PF |的值等于 A.2 B.22 C.4 D.8 10.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N*)的展开式中x 的系数为13,则x 2的系数为 A.31 B.40 C.31或40 D.71或80 11.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率 A.小 B.大 C.相等 D.大小不能确定 12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在 A.P 点 B.Q 点 C.R 点 D.S 点 题号 1 2 3 4 5 6 7 8 9 10 11 答案 二、填空题 13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________. 14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________. 15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解) 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆, 1222a MF MF =+ + ( 2 2 2222211321 a a b a c ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分) 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分) (Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H 令()11113,,,22x y A x y +?? ∴ ?? ? C ………………………………………………(7分) ()111231 23 22 DC AP x CH a x a ∴= =+=-=-+

()()( )22 2 2 2 2111212 1132344-23246222 DH DC CH x y x a a x a a a DH DE DH l x ????∴=-= -+--+??? ?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分) 2.(14分)已知正项数列{}n a 中,16a = ,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()() n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n , 不等式 1 120111111n n n a b b b +≤?????? +++ ? ??????? ?? 成立,求正数a 的 取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得 ()11111115:21,21 n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分) (Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()() ()()()()27274275421,4 2735 227145,2 4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴+ +=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。 ……………………(8分) (Ⅲ)由 1 120111111n n n a b b b +- ≤?????? +++ ? ??????? ??

必修一函数压轴题

函数压轴题 一、函数的性质 1.已知函数)1 ()(x x e e x x f - =,若f (x 1)x 2 B .x 1+x 2=0 C .x 1

相关文档
最新文档