专题十三 基本不等式及其应用

专题十三  基本不等式及其应用
专题十三  基本不等式及其应用

专题十二 基本不等式及其应用

复习目标:掌握基本不等式的条件、能利用基本不等式解决最值、参数范围、比较大小及实际

问题

知识要点:

定理1、若a ,b R ∈,则22a b 2ab +≥(当且仅当a=b 时取等号)

2、若a ,b R +∈

,则a b 2+≥a=b 时取等号)?若a ,b R +∈,则2a b ab 2

+≤()(当且仅当a=b 时取等号)

常用结论:①y=b a b a 22a b a b +≥+≤-或

②2a b 112a b

+≤≤≤+(a ,b R +∈ ) 一、【课前热身】

1.若x>0,y>0且182=+

y x ,则xy 有最 小 值为64 2.x<0,当

x=2-时,y=4-2x -x 3

的最小值4+3.设x,y ∈R +,x+y+xy=2,则xy

的最大值为4-

4、若x,a,b ,y 成等差数列, x,c,d ,y 成等比数列,则2

a+b)cd

(的取值范围为(][)04,-∞+∞ , 5.4

522++=x x y 的最小值是52 二、【例题讲解】

例1.若1x >,则11

x x +

-的最小值是 3 例1:11

x x +-=11131x x -++≥-,当且仅当x=2时取等号; 变式1

:已知20,a >求函数

解:2=

t ≥则1t t

+y=

1≥即1a ≥

时,min y

1<即01a <<时,2min y = 变式2:已知(],0,2x x

∈a 函数f(x)=x+,常数0,a >求函数f(x)的最小值。

2即4a ≥时,22

a +min y =

2即04a <<

时,min y =

例2、已知x ,y 为正实数,且x 2y 1+=,(1)求xy 的最大值,及取得最大值时的x ,y 的值;

(2)求11x y

+的最小值; 解:(1)

1=1x 2y 8xy +≥≤

当且仅当221x y x y =??+=?即121

4

x y ?=????=??时,max 18xy = (2)11x y +=(

)112x 2y 33x y x y y x

??++=++≥+ ???当且仅当221x y y x x y ?=???+=?

即x y ?=????=??

时,min 113x y ??+=+ ???变式1:已知x ,y 为正实数,若x y 4+=,则 14x y

+≥m 恒成立的实数m 取值范围是 解:14x y +=(

)(11414x y 195544y x 44

x y x y ????++=++≥+= ? ?????, 故9m 4

≤ 变式2:已知不等式(x y +)1a x y

+()≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为 解:∵(x y +

)1a y ax a 1a x y x y ++≥++()=1++

∴1a 9++≥,得a 4≥,即a 的最小值为4

变式3、(1)已知a ,b 是正常数,a ≠b ,x ,y 0∈+∞(,),求证: 222a b a b x y

x y ++≥+(),并指出等号成立的条件;(2)求 491f x)=((0,))x 122

x x +∈-(的最小值,并指出取最小值时x 的值。 解:(1)a ,b , x ,y 0∈+∞(,) ∴()()222222222a b b x a y x y a b a b 2ab a b x

y y x ??++=+++≥++=+ ??? ∴222a b a b x y x y ++≥+(),当且仅当22b x a y y x

=即x a b y =时取等号。

(2)()8989f x)=2x+122x 122x 12x x x ??+=+- ?--??

(17=+()8129217122x x x x -?+≥+-

当且仅当()81292122x x x x

-?=-即4x =时取等号。 例3、(1)已知直角三角形的周长为定值l ,求此三角形面积的最大值。

(2)已知直角三角形的面积为定值s,求此三角形周长的最小值。

解:(1)设直角三角形两直角边长分别为a ,b ,

则l

∴面积S=22

11

22ab ≤=

(2) 由(1)知l

变式1:若直角三角形的内切圆半径为1,求其面积的最小值. 解:∵11(),22

ab a b c =++

∴ab a b c a b =++≥+≥

2≥,即ab 6≥+

∴S=12

ab 的最小值3+a=b=2。 变式2:若正数a ,b 满足ab=a+b+3,求a+b 的取值范围。 解:法一∵a+b+3=ab 2a+b 2??≤ ???

, ∴

()()21a+b a+b 304

--≥得a+b 6≥ 法二∵a (b-1)= b+3,得b+3a b-1

= 由b+3a 0b-1

=>且b 0>得b >1

∴b+344a+b +b=+b+1=+b-1+226b-1b-1b-1=≥= 当且仅当b 3a 3

=??=?时取等号

三、【课堂检测】

1.0

时,y=)41(x x -的最大值41 2.已知a>0,b>0,且a+b=1,则

b a 11+的最小值为 4 . 3.给出下列函数:①x x y 1+

=;②)101(lg 1lg <<+=x x x y ;③x x y -+=33;

④)

20(sin 1sin π≤≤+=x x x y ,⑤)y x ∈R ,其中最小值为2的有③④

4.已知x , y 满足10x y ++=,则22x y A =+5、函数)22(244x x x x y --+-+=的最小值是 -2

四、【课堂小结】

本节课复习了基本不等式的应用,要注意应用的条件,同时要灵活运用“1”的代换,以及

注意含参数问题的讨论。

五、【课后作业】

1.已知0,1a b a b <<+=,则将221,2,,2a b ab a +按从小到大的顺序排列得22122

a a

b a b +<<< 2、若a >b >1,P =

b a lg lg ?,Q =21(lg a +lg b ),R =lg (2b a +),则P 、Q 、R 的大小关系为R Q P >>

3、某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则

2p q x +与的大小关系为2

p q x +≤ 4、某金店用一架不准确的天平(两边臂不等长)称黄金,一顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放在右盘使之平衡后给顾客;然后又将5g 的砝码放在右盘,将另一黄金放在左盘使之平衡后又给顾客,则该顾客所得黄金> 10g (填“>、<、≥、≤)

5.已知,1,1x y >>且lg lg 4,x y +=则lg lg x y ?的最大值是 4

6.已知33log log 2,m n m n +=+则的最小值是 6

7.已知0,0a b >>且1a b +=,则2211(

1)(1)a b --的最小值是 9 8.设x >0,从不等式12x x +≥和2244322x x x x x +=++≥,启发我们可推广为x +n x

≥( )n +1,则括号内应填写的是n n

9.已知非负实数a ,b 满足2a +3b =1010.若41x -<<,则22222

x x y x -+=-有最大值为-1

11.函数22()(42)(0f x x x x =-<的最大值是 2 .

12、使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值为

13.设01,0,a a t >≠>且试比较

11log log 22a a t t +与的大小,并证明你的结论. 解:∵12

t t +≥, ∴11a 1log log 22

a a t t +≥当>时; 11a 1log log 22

a a t t +≤当0<<时 14、已知ABC ?内接于单位圆,且(1tan )(1tan )2A B ++=.

⑴求证内角C 为定值 ⑵求ABC ?面积的最大值.

解:⑴∵(1tan )(1tan )2A B ++= 34

π=tan tan tan()11tan tan A B A B A B ++==- 又(0,)A B π+∈,∴4A B π+=

∴C 34

π=(定值) ⑵法一:

(化为边)

2sin 4c R c π=?=

∴222232cos 2224

a b ab a b ab π+-=?++=≥

2ab ?=

∴1sin 2S ab C ==≤

当且仅当a b =

max ()S = 法二:(化为角)

22sin ,2sin()sin sin 4a b a A b A A B π==?==-

111cos 2sin sin()sin 22422A S ab C A A A π-===-=-

1)42

A π=+- 当

A max 1)82

S π

==- 时,( 15、甲、乙两地相距240千米,汽车从甲地匀速行驶到乙地,速度不得超过60千米/时.已知汽车

每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平

方成正比,比例系数为b ;固定部分为a 元.

⑴全程运输成本把y (元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;

⑵为了使全程运输成本最小,汽车应以多大速度行驶?

解:⑴2240240a a y bv a)240bv 240bv v v v

=+?=+=+((),定义域为(]0,60

60y 240≥?时,

222a 240b v a b 60y =240b-v v

-'=()时,()

当v y ?'∈ ?时,<0,函数递减;

当v y ?'∈??时,>0,函数递增; ∴当v=60时,函数y 有最小值。

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

不等式及其应用

不等式的性质及其在中学中的应用 罗芳 摘要:中学数学学科的一个重要的内容便是不等式,它是比较大小的必备知识, 不等式还在其它学科中占有举足轻重的作用,比如物理中加速度大小的比较,化学反应中反应速率大小比较等等。在高考数学中不等式的知识也几乎可以渗透到高考的各个考点中,比如集合运算,比较大小,不等式的证明以及函数的最值问题等等。本文将从不等式的性质入手对结合高考中重点考查的不等式的数学思想的类型对其进行了归纳,体会不等式在中学考试中的应用。 关键词:不等式; 不等式的性质;均值不等式;应用 引言:现实世间和时常生活中,既有相等关系又存在着大量的不等关系, 当天平两端的砝码重量不同时,天平就会倾斜,这就是不等关系。2003年美国 发动伊拉克战争,其军事实力对比就是不等关系,有的不等关系可以用数学关 系式表示,这种不等关系就是不等式.研究不等式的性质和应用是一种很重要的 数学思想。 一、不等式的相关概念 作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大 小关系的有序集合上研究。由于复数域没有定义大小,所以不等式中的数或字 母表示的数都是实数。 1、不等式:用不等号“≠<>≤≥,,,,”连接起来的式子称为不等式。 2、不等式的解:使不等式成立的未知数的值。 3、不等式的解集:一个含有未知数的不等式的解的全体。 4、解不等式:求不等式的解集的过程。 二、不等式的基本性质 双向性: 1、对称性:a b b a 2、可加性:不等式的两边加(或减)同一个数(或式子),不等号的方向 不变.用符号语言表示为:b a >, c 为整式c b c a ±>±?。 单向性:

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

一元一次不等式(组)及其应用

课时6 一元一次不等式(组)及其应用 班级______ 姓名______ 【课前热身】 1.设a <b ,用不等号连接下列各题中的两式。 (1)a+c________b+c (2)-2a________-2b (3)a-b_________0 (4)m 2a________ m 2b (5)-ca_________-cb(c <0) 2.不等式-032>-x 的解是_______________ 3.一个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是 A .13x -≤< B . 13x -<≤ C .1x ≥- D . 3x < 4. 不等式组1 10320.x x ?+>???-? , ≥的解集是( ) A .- 3 1<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3 【考点链接】 1.用不等号表示 关系的式子叫不等式;使不等式成立的未知数的 ,叫做不等式的解;不等式的 的集合,叫做不等式的解集. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或 c a c b ). 3.一元一次不等式:只含有 未知数,未知数的最高次数是 的不等式,称为一元 一次不等式;其解法与一元一次方程的解法类似. 4.不等式组中各个不等式的解集的 ,叫做不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>?的解集是_________; x a x b >?? ?的解集是_________.

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用

基本不等式及其应用 1.ab ≤a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22 (a ,b ∈R ); (4)a 2+b 22≥? ????a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 (1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b 2,几何平均数为ab . (2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 2 4; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 选择题: 设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81 若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54 解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +

均值不等式的总结与应用

均值不等式总结及应用 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 22b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若 * ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则 2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则 2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22 b a b a +≤ +(当且仅当b a =时取“=”) 说明: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 【解题技巧】 技巧一:凑项 例 已知5 4x <,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

几个重要不等式及其应用

几个重要不等式及其应用 一、几个重要不等式 以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。 1、算术-几何平均值(AM-GM )不等式 设12,,,n a a a L 是非负实数,则12n a a a n +++≥L 2、柯西(Cauchy )不等式 设,(1,2,)i i a b R i n ∈=L ,则2 22111.n n n i i i i i i i a b a b ===?????? ≥ ??? ??????? ∑∑∑等号成立当且仅当存在R λ∈,使 ,1,2,,.i i b a i n λ==L 变形(Ⅰ):设+ ∈∈R b R a i i ,,则∑∑∑===??? ??≥n i i n i i n i i i b a b a 1 2 112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L 变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===??? ??≥n i i i n i i n i i i b a a b a 1 2 11。等号成立当且仅当n b b b ===Λ21 3.排序不等式 设n n n j j j b b b a a a ,,,,,212121?≤?≤≤≤?≤≤是n ,,2,1?的一个排列,则 n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当 n a a a ===Λ21或n b b b ===Λ21。(用调整法证明). 4.琴生(Jensen )不等式 若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ* ()n N ∈有 ()()()12121 ( ).n n x x x f f x f x f x n n +++≤+++??? ?L L 等号当且仅当n x x x ===Λ21时取得。(用归纳法证明) 二、进一步的结论 运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到 的效果。 1. 幂均值不等式 设0>>βα,),,2,1(n i R a i Λ=∈+ ,则

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

正弦余弦均值不等式及其应用

正余弦均值不等式及其应用 石嘴山市一中 刘 先看个例子: 在 △ABC 中,分别判断满足下列条件的三角形形状 ? ⑴ sin A + sin B + sin C = 332 ⑵ sin A·sin B·sin C = 338 ⑶ cos A + cos B + cos C = 32 ⑷ cos A·cos B·cos C = 18 ⑸ sin A 2+ sin B 2+ sin C 2 = 32 ⑹2sin A +2sin B +2sin C = 94 ⑺2cos A + 2cos B + 2cos C = 32 答案:以上各题的三角形均仅为正三角! 对于这样的题目,往往首先想到用三角恒等变形或正余弦定理直接导出 A = B = C 或 a = b = c 。实践证明,这种方法根本行不通! 这些题目一般思路是灵活借用判别式法、不等式法、数形结合法等进行所谓“巧妙变换”来解之。其“巧妙”程度因题而异,没有固定模式,不易掌握。实际上,这些题目属于同一类问题,应有统一解法,本文就此问题进行探讨。 定理1:对于任意角α、β,令 γ = 2αβ + ,则 │sinα+ sinβ│≤ 2│sinγ│ ① sinα·sinβ ≤ 2sin γ ② │cosα+ cosβ│≤ 2│cosγ│ ③ cosα·cosβ ≤ 2cos γ ④ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。

定理1 仅是本文的特例,我们可以称: ① 为 正弦和中值最大不等式; ② 为 正弦积中值最大不等式; ③ 为 余弦和中值最大不等式; ④ 为 余弦积中值最大不等式, 也可把它们统称为 正余弦中值定理 或 正余弦中值不等式。 证明:① ∵│sinα+ sinβ│=│2 sin 2αβ +·cos 2αβ -│≤│2 sin 2αβ +│ ∴│sinα+ sinβ│≤ 2│sinγ│ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ② ∵ sinα·sinβ= 12 [cos(α-β) - cos(α+β)] = 12[cos(α-β) - 1 + 2·sin 2(2αβ+)]≤ sin 2(2αβ+) ∴ sinα·sinβ ≤ sin2γ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ③、④ 同理可证。 注意:②、④ 没有绝对值符号,比如:α=2π,β=2π -,得 sinα·sinβ<sin2γ,但│sinα·sinβ│>│sin2γ│。 定理2:对于任意角 α、β、γ ∈[0, 2 π],令δ= 3αβγ++,则 sinα+ sinβ+ sinγ ≤ 3 sinδ sinα·sinβ·sinγ ≤ sin 3δ cosα+ cosβ+ cosγ ≤ 3 cosδ cosα·cosβ·cosγ ≤ cos 3δ 当且仅当 α=β=γ 时,取“=”号。 定理3:对于任意角α1 、α2 、… 、αn ∈[0, 2π],令δ=12 n n ααα+++, ( n ≥ 2 ,且 n ∈N ),则 sinα1 + sinα2 + + sinαn ≤ n sinδ sinα1 ·sinα2 · ·sinαn ≤ sin n δ

相关文档
最新文档