AlPISiO2多层隔热膜制备与性能研究

AlPISiO2多层隔热膜制备与性能研究
AlPISiO2多层隔热膜制备与性能研究

第21卷第2期材料科学-ff工程学报总第82期

V01.21No2JoLlrnaIoiMaterialsScience&Engineering

Feb-2003

文章编号:1004-793X(2003)02—0221-03

Ai/PI/SiO,多层隔热膜制备与-眭能研究

程银兵”,姚兰芳“3。吴广明1.沈军‘。马建华‘,倪星元1,王珏1

f1.同济大学波耳固体物理研究所,上海200092;

2.深圳南玻显示器件有限公司.深圳518067;3.上海理3-大学,上海200093)

【摘要】系统研究了AI/P1/Si0:有机硅涂料多层隔热结构(MLI)组成的隔热系统。分别研究r铝膜、作为

支撑物的耐热聚酰、lF胺塑料和低热导填充物三种材料,采用金属铝膜可以有效的阻挡高温红外热辐射,而气凝胶和有机硅树脂复合的隔热涂料是热导率很低的材料,对接触热传导具有很大的热阻。这种多层结构足一种性能优异的岛温隔热体。最后用热模拟试验测试了这种膜系的隔热胜能c

【关键词】多层隔热;聚酰亚胺;有机硅树脂;}容胶凝胶法;气凝胶

中图分类号:’fKl24文献标识码:A

StudyonAI/PI/Si02MultilayerInsulation

CHENGYin.bin91”,YAOLan.fan91…,WUGuang—min91,SHENJun

MAJian.hual,NIXing-yuanl,WANGJuel

(1.PohlInstituteofSolidStatePhysics,TongjiUniversity,Shanghai200092,China;

2.ShenzhenNanbeDisplayTechnologyCo.LTD.Shenzhen518067,China;

3.ShanghaiUniversityforScienceandTechnology,Shanghai200092,China)

【Abstract】Mu

ayerinsulation(MLI)composednfAIfihn.polyimideandOrganosiliconehavebeeninvestigatedhis

shownthatAIfilmhavelowemissivityPolyimide(PI)canbeusedunder500屯forashorttimeI【isthesuitableiHaterialsfurourmulti—layer

insulation

systemasunderlaywhichprovideflexibiliD'andmechanical

intensily

Theweigtlllessnessisnomoi_f2tim.5%under500%by

TGAOrganosilieonebeettusedas8

part

ofthemmlinsulalingcoating”mixsiliconewithpigmentsuchasaerogelpowderandotheragentaccordingtotraditionalpaintprocess’rhecoatingoilPIplasticviarolli.gandbrushshowhavegoodadhesionwealsoanalyze

themⅢ1.Finally.wei[1t-|£tsilfethethermalinsulationeffectoftheM1一lsystem

【Keywo咄l

vauhila3,erjnml“m、;p01),mide;organ.silicon;sol—gel;aemgel

多层隔热(MLI)足一种性能优良的新型隔热体系,可广泛应用于石油、化工、航卒航天等领域的隔热防护。本研究采用低热导涂层/PI/AI膜构成多层隔热体系,Al膜作为热

反射屏,低热导崖为纳米复合有机硅耐热涂料,耐高温聚酰亚胺螭料(PI)为乘性支撑物。整个隔热体系不仅耐热、隔热、而且机械强度很岛,可满足实用化包裹隔热的要求。多层结构的示意图如图l所示。F面分别就这几种材料进行弹细研究。

1材料制备研究

1.1金属Al膜制备

采用塑料膜巷绕式镀膜设备。镀膜装置通常分为真空

图1多层隔热结构示意罔

Fig1Schenmticslmc[ufeofAI/PI/Si02MII

事、蒸发源、卷绕辊简系统、真空抽气系统几个部分。真空室有单室结构和双室结构两种,为了不使膜片接受更多的热辐射,为r镀膜室内膜片的暴露面秘最小以减少真空泵的排气负荷。通常采用双窜式结构。奉研究的蒸发源采用金属铝作为蒸发材料。采用电阻加热。

综上考虑,我们选用存P1基底上寅窀燕镀单层金属A】膜。用薄膜光学理论“汁算r在红外辐射K的反射、透射,吸收率。这就是我们制定Al膜制备参数的理论幕础。

收璃日期:2002-0819:倍订日期:2002-II-12

基金项目:圄家自然科学基金资助项目(69978017,59802007).中国工程物理研究院军品配套城

作者简介:程银兵(1972一),同挤大学博J生,从事纳米多}L材料研究

 万方数据

 万方数据

 万方数据

微波的光学特性实验

微波的光学特性实验 2014级光电信息科学与工程李盼园 摘要 微波是一种特定波段的电磁波,其波长范围为1mm~1m。它存在明显的反射、折射、干涉、衍射和偏振等现象。本实验主要对微波的单缝衍射、双缝干涉及布拉格衍射现象进行验证讨论。 关键词 微波、布拉格衍射、光学特性。 实验目的 1.了解微波的原理及实验装置 2.认识微波的光学特性及测量方法 3.明确布拉格公式的解释以及用微波实验系统验证该公式。 实验原理 微波是一种特定波段的电磁波,其波长范围为1mm~1m。它存在反射、折射、干涉、衍射和偏振等现象。但因为它的波长、频率和能量具有特殊的量值,所以它所表现出的这些性质也具有特殊性。用微波来仿真晶格衍射,发生明显衍射效应的晶格可以放大到宏观尺度(厘米量级),因此要微波进行波动实验比光学实验更直观,安全。

1.微波的单缝衍射λ 当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。缝后出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央两侧的衍射波强度迅速减小,直至 出现衍射波强度的最小值,即一级极小,此时衍射角为a *sin 1λ ?-=,其中是λ波长,a 是狭 缝宽度。随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:)43.1(sin 1a λ ?-= 。如图2-1。 图2-1 2.微波的双缝干涉 当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。由两缝发出的次级波是相干波。当然,光通过每个缝也有衍射现象。为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,实验中令缝宽a 接近λ。干涉加强的角度为 )* (sin 1b a K +=-λ ?,其中K=1,2,...,干涉减弱角度为:

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

新能源材料学习心得

研究生课程结课综述 ------新能源材料心得体会 姓名: 学院: 专业: 学号: 新能源材料 一、新能源概况 新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生

的热能,包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。 以新能源中的太阳能为例,新能源具有无可替代的资源优势:太阳能资源取之不竭,太阳能是地球上分布最广泛的可再生能源,每年到达地球陆地上的太阳辐射能量约27万亿吨标准煤,是目前世界能源消费总量的2000多倍。可开发的风能资源为53000 TWh,是目前全球发电量的两倍,水力发电资源量的三倍。太阳能、风能已成为各国实施可持续发展的重要选择,是一种朝阳的产业,孕育着巨大的潜在经济利益为维持技术优势、占领市场的需要。 二、我国发展新能源的重要性 太阳能、风能已成为各国实施可持续发展的重要选择。同国外相比,我国的能源系统更加不具备可持续发展特点:能源枯竭的威胁可能来的更早。人口多,人均资源占有量仅及世界的一半,石油和天然气资源仅占世界人均量的17.1%和13.2%;加之能源利用技术落后,效率低下,能耗高,枯竭速度可能会比国外更加迅速,能源匮乏的威胁可能来的更早、能源供需缺口将越来越大。2020年全国需求量27亿吨TOE,尚缺4.8亿吨标煤;2050年一次需求量达到40亿吨标煤,缺口达10亿吨标煤,短缺25%以上。过度依赖煤炭,环境影响更加严重。煤炭几乎满足了我国一次能源需求的70%,66%的城市大气颗粒物的含量和22%的城市的二氧化硫含量均超过国家空气质量二级标准,在冬季这些污染物的浓度更大,通常为夏季的2倍。环境专家估计,大气中90%的二氧化硫和70%的烟尘来自于燃煤。 煤废料的处理仍是问题。煤炭开发利用过程中产生的大量的矸石、腐蚀性水、煤泥、灰渣和飞灰等,已构成对工农业生产和生态环境的危害,成为制约所在地区可持续发展的一个制约因素。 在我国,近13亿人中约80%居住在农村,每年消耗6亿多吨标煤的能量,其中约一半来自可再生能源,但这些能源目前还是以传统的利用方式为主。另外我国还有700万户无电人口,无法用常规电网延伸解决用电问题。 发展新能源可以满足安排剩余劳动力的需要。如丹麦的风力发电制造业,1999年风机制造、维护、安装和咨询服务,即为丹麦提供了1.2万至1.5万个工作机会;它的风机零部件的供应遍及全球,同时还创造了约6,000个工作机会。 发展新能源同时可以维护生态建设成果、改善农村生活环境。目前有2亿多人面临沙漠化的威胁,但燃烧传统生物质能源在很多地区仍是主要的生活用能方

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

高分子有机磁性材料

高分子有机磁性材料 1 引言 磁性材料是一簇新兴的基础功能材料。虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下: 上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。 近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。过去

一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。有可能在磁性材料领域产生一系列新技术。 2高分子有机磁性材料的主要性能特点 由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点: (1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。该类材料和元件制备的主要工艺流程如图1。 有机物的主要构成元素是碳、氢、氮,结构和化学性能十分稳定。将磁粉加工

磁性材料制作工艺

第一节铁氧体磁性材料概述 铁氧体磁性材料可用化学分子式MFe 2O 4表示。式中M 代表锰、镍、锌、铜等二价金属离子。铁氧体磁性是通过烧结这些金属化合物的混合物而制造出来的。铁氧体磁性的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体磁性能应用于高频领域。 首先,按照预定的配方比重,把高纯、粉状的氧化物(如Fe 2O 4、Mn 3O 4、ZnO 、NiO 等)混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温(1000~1400℃)下进行烧结。烧结出的铁氧体制品通过机械加工获得成品尺寸。上述各道工序均受到严格的控制,以使产品的所有特性符合规定的指标。 不同的用途要选择不同的铁氧体材料。有适用于低损耗、高频特性好的系列,有磁导率的线性材料。按照不同的适用频率范围分为:中低频段(20~150kHz )、中高频段(100~500kHz )、超高频段(500~1MHz )。 第二节铁氧体磁性材料的各项物理特性定义与计算公式 01) 初始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁性曲线始端的极限值,即 H B H i 00lim 1→μ=μ 式中 μ0:真空磁导率(4π×10-7H/m ); H : 交流磁场强度(A/m ); B : 交流磁通密度(T )。 02) 有效磁导率μe 在闭合磁路中(漏磁可以忽略),磁芯的有效磁导率可表示为: μe 72104××= e e A l N L π 式中 L :装有磁芯的线圈的自感量; N :线圈匝数; e e A l =C 1=磁芯常数(mm -1) 03) 饱和磁通密度B s

磁化到饱和状态的磁通密度。 04) 剩余磁通密度B r 从磁饱和状态去处磁场后,剩余的 磁通密度。 05) 矫顽力H c 从饱和状态去处磁场后,磁芯继续被反向的磁场磁化,直至磁通密度减小到零,此时的磁场强度称为矫顽力, 06) 损耗因素tan δ 损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和: tan δ=r e δδδtan tan tan h ++ =111r f e i V L h ++ 损耗因数也可用电阻和电抗之比来表示: L R R L R w eff m ωωδ?==tan 式中:tan δe :涡流损耗因数; tan δr :剩余损耗因数; h1:磁滞损耗因数; L :装有磁芯的线圈的自感量(H ); V :磁芯体积(m 3); i :电流(A ); e 1:涡流损耗系数; f :频率(Hz ); r 1:剩余损耗系数; R m :磁芯损耗的等效电阻(Ω); 0HH

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

新能源材料学习心得

新能源材料学习心得 班级:094 姓名:刘建德学号:200910204428 一、新能源概况 新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能,包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。 以新能源中的太阳能为例,新能源具有无可替代的资源优势:太阳能资源取之不竭,太阳能是地球上分布最广泛的可再生能源,每年到达地球陆地上的太阳辐射能量约27万亿吨标准煤,是目前世界能源消费总量的2000多倍。可开发的风能资源为53000 TWh,是目前全球发电量的两倍,水力发电资源量的三倍。太阳能、风能已成为各国实施可持续发展的重要选择,是一种朝阳的产业,孕育着巨大的潜在经济利益为维持技术优势、占领市场的需要。 二、我国发展新能源的重要性 太阳能、风能已成为各国实施可持续发展的重要选择。同国外相比,我国的能源系统更加不具备可持续发展特点:能源枯竭的威胁可能来的更早。人口多,人均资源占有量仅及世界的一半,石油和天然气资源仅占世界人均量的17.1%和13.2%;加之能源利用技术落后,效率低下,能耗高,枯竭速度可能会比国外更加迅速,能源匮乏的威胁可能来的更早、能源供需缺口将越来越大。2020年全国需求量27亿吨TOE,尚缺4.8亿吨标煤;2050年一次需求量达到40亿吨标煤,缺口达10亿吨标煤,短缺25%以上。过度依赖煤炭,环境影响更加严重。煤炭几乎满足了我国一次能源需求的70%,66%的城市大气颗粒物的含量和22%的城市的二氧化硫含量均超过国家空气质量二级标准,在冬季这些污染物的浓度更大,通常为夏季的2倍。环境专家估计,大气中90%的二氧化硫和70%的烟尘来自于燃煤。 煤废料的处理仍是问题。煤炭开发利用过程中产生的大量的矸石、腐蚀性水、

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展 【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。 【关键词】铁氧体磁性材料;研究进展;制备 铁氧体是一种非金属磁性材料,又称磁性陶瓷。人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型的超高频铁氧体,同时发现了含稀土元素的石石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系,应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。因此,有必要对铁氧体磁性陶瓷材料的研究动态进行总结以及对其发展进行展望。 1.铁氧体磁性材料的研究进展 近年来,国内外学者在研究和改进磁性材料的同时,进行了卓有成效的新探索,其重点的研究和应用主要集中在以下几个方面。 1.1 铁氧体吸波材料 由于科学技术的迅猛发展,在武器的隐身技术和电子计算机防信息泄露技术中,以及在生物学中的热效应方面,铁氧体作为吸波材料方面的应用尤为重要。铁氧体吸波材料通常分为尖晶石型铁氧体与六角晶系铁氧体两种类型,其中尖晶石型铁氧体应用历史最长,但尖晶石型铁氧体的电磁参数(介电常数和磁导率)都比较小,而且难以满足相对介单一铁氧体难以满足吸收频带宽、厚度薄和面密度小的要求,所以近年来研究者主要集中研究复合铁氧体材料以及纳米尺寸的铁氧体来控制其电磁参数[1]。铁氧体纳米磁性材料作为微波的吸收体,纳米级的微粒材料的比表面积比常规粗粉大3~4个数量级,吸收率高,一方面,它能吸收空气中的游离的分子或介质中其他分子通过成键方式连接在一起,造成各向异性的改变。另一方面,在微波场中,活性原子及电子运动加剧,促使磁化,最终将电磁能转化为热能,从而增加吸收体的吸波能力。在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁氧体颗粒的涂层作为

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

光学参数研究现状

双积分球技术 近年来,激光在生物医学上的应用得到人们越来越广泛的关注,其中生物组织光学特性在光与组织体的相互作用中扮演着重要的角色。组织光学特性参数用来表述组织的光学性质,为临床的医疗诊断和治疗提供参数指标,对医学领域的相关应用有重要的指导意义。 生物组织是一种复杂介质,是一种高散射随机介质,研究光与这种随机介质的相互作用并通过相互作用来反映有关组织内部的特征信息是近几年光学技术研究较为活跃的前沿领域之一,并逐步发展成为一种新兴学科分支——组织光学。 组织光学的核心是发挥光子学测量的实时、无损或微创等优势,利用各种光子学技术,通过测量组织光学特性参数的变化来揭示生物组织结构与功能的变化。因此,光学特性参数的测量对组织光学至关重要。 随着激光生物医学的普及,特别是各种新型激光器的出现,激光正广泛应用于生物医学领域的各个方面。令人遗憾的是,目前有关激光生物医学领域的基础研究并未跟上临床应用,实际的应用中还存在着很大的盲目性,“经验"起着很重要的作用。其主要的原因在于,对激光与生物组织相互作用机理认识不足。为 研究光与组织的相互作用,诸多模型被提出来了,这些模型的准确性取决于组织光学特性参数的测量。因此,光学特性参数的准确测量对组织光学至关重要,它是进一步研究光在生物组织中传播的基础,对激光外科,光动力疗法等激光临床应用都有重要的指导意义。 凡是与光学参数有关的关系和规律,均可成为测量的依据和原理,因而组织体光学特性参数的测量方法及所涉及的内容几乎包罗万象。测量组织光学特性参数方法有时间分辩、空间分辩、频率调制,超快时间分辩谱和空间分辨谱,积分球技术甚至神经网络技术等等。各种测量方法各有千秋,双积分球技术是目前公认最为精确的一种测量技术。该技术采用的是一种离体的间接光学特性参数测量方法,是将积分球系统及传输理论的精确解结合起来实现的。在己知生物组织样品厚度的情况下,利用积分球系统测量组织样品的反射率,透射率以及准直透射率,而后再根据特定的组织体光学传输模型就可以获得组织体的主要光学特性参数。它能够同时获取离体生物样品的各项光学特性参数,并且可以分别考虑组织的层状结构,如可以对离体的真皮和表皮分别进行测量,是研究组织光学的一种重要方法。 生物组织中的光传输以及生物组织的光学特性是生物医学光子学重要的研究内容,在医学上对疾病的光诊断和光治疗有重要的理硷和实际的意义。因此本论文对光在生物组织中的传输以及生物组织光学特性参数的测量进行了理论和实验研究。 从光的传输理论出发,在漫射近似下获得了生物组织内光传输的漫射近似方程,并且在不同的边界条件下对无限细光束垂直入射到半无限大组织的漫射方程进行了求解,给出了组织表面漫反射系数的时间和空间分辨的表达式。 生物组织是由不同大小、不同成分的细胞和细胞问质组成的,对可见光和近红外光通常呈现出不透明、混沌和高散射的特点。光在生物组织传播是一个很复杂的过程,其主要特点是生物组织对光波的散射和吸收。 确定生物组织光学特性参数是医学诊断和治疗领域中迫切需要解决的问题,是生物医学光子学研究的热点之一。目前,生物组织光学特性参数的测量方法主要有直接测量法和间接测量法,其中活体组织的无损测量法是研究的热点。出于生物组织结构的多样性和复杂性,从目前国内外报道的研究和测量结果来看,所获得的生物组织的光学特性参数有较大的离散性,表明光传输理论或其他相关的理论尚有待进一步完善,依据光传输理论所建立测量方法与技术尚在理论和实验研究阶段,对于实际医学临床的使用还有大量的工作要做。另一方面,传统的光学参数有时并不适合于实际应用,寻找新的参数,使其能够更准确、更具特异性的体现生物组织的特性,也是今后这方面工作的一个重点。 历史上曾经提出两科t不同的理论来处理光波在随机分布粒子群中的传播问题,一种称为解析理论,另一种称为输运理论。解析理论也称为多次散射理论,它从Maxwell方程或波动方程这种基本微分方程出发,引进粒子的散射和吸收特性,并求出方差和相关函数这些统计量的适当的微分方程或积分方程。原则上,这种理论考虑了多次散射、衍射和干涉效应,在这个意义上说,它在数学上是严格的。但是,实际上它不

粉末冶金技术在新能源材料中的应用探讨

粉末冶金技术在新能源材料中的应用探讨 摘要:新能源的使用和普及是人类社会发展必经之路,新能源的使用所需要的 新能源材料是使用新能源的关键,对新能源材料和储存新能源材料的制备发挥作 用的技术上,粉末冶金技术是首选。本文将介绍什么是粉末冶金技术,并对粉末 冶金技术在新能源运用和储存中的作用进行分析和探讨。 关键词:粉末冶金技术;新能源储存 一、引言 随着人类社会经济的不断发展,人们生活变得越来越快节奏,越来越注重生 活品质的提升,与人们的需求相契合的是一切方便人们生活,出行等各方面的改变,如塑料制品越来越多,汽车等的普及。而这一切在为人们的生活带来方便的 同时,给我们的环境带来了压力,造成资源的短缺。为响应国家“统筹兼顾”、等 保护环境节约资源的政策措施,除了从衣食住行进行节约以外,我们还需要找出 一些可替代能源。本文将介绍粉末冶金技术在新能源技术中的应用。 二、粉末冶金技术介绍 粉末冶金是一种具有传统传统熔铸工艺无法获得的、独特的物理化学性质的 技术工艺。粉末冶金通过制备金属粉末能够做出半致密或者完全致密的工艺品, 不仅包括金属,现如今许多3D成型的制品均由粉末冶金技术制成。与传统工艺 相比,不需要切削便可制造出刀具、齿轮等还有更多精密成型的工具。 粉末冶金技术具有四个主要的特点。首先,粉末冶金能够传统工艺制造工具 时出现的合金偏聚现象,这是由于其能够在制备之前制备出合金的粉末,从根本 上解决合金偏聚的发生。其次,粉末冶金技术还能够制备出一些晶体,比如非晶、微晶等高性能非平衡材料,这些材料在电学、力学、磁学等领域具有超高的价值。再次,粉末冶金技术还能够实现多种类型材料的复合,例如金属-陶瓷材料的复合,这是一种极其低成本高性能的进行材料复合的工艺技术。最后,它还能够制 备出普通传统工艺无法制备的特殊结构、特殊材料的工艺制品,在我们的生活之中,许多机加工刀具、五金模具实际中就是由粉末冶金技术制备的。 三、新能源的定义和特点 新能源是除了传统的能源例如水、石油、天然气等人们日常使用的为人熟知 的能源以外的或者还在研究中和制备中的、未来能够最为某一种传统能源替代品 进入人们生活的能源。比如说我们经常提到的太阳能、氢能、核聚变能等等,都 属于新能源。这些新能源对于环境保护、节约能源来说十分的重要,如果我们能 够很好的加以利用,它们必然能够发挥自身优势,为人们的生活,为地球的环境 等等做出贡献。 四、粉末冶金技术的引进与使用 前文已述,粉末冶金技术的诸多优点,不论是制造生活所用的刀具,抑或是 制备具有良好性能,难以制备的具有超高力学性能的晶体,对它来说都不再话下。对于粉末冶金技术所需要的粉末冶金的材料是属于信息类的一种材料,主要是软 磁材料。随着一些科研学家在进行科研等活动中运用到的磁记录材料的需求的增多,粉末冶金技术也越来越变得不可或缺,极大的满足了人们的需求。同时,粉 末冶金技术在能源领域也发挥着作用,对着新能源的不断创新和发展,对于新能 源的储存和运行都需要粉末冶金技术材料的支持。例如能够满足航空航天工业的 足够强度和硬度的材料都需要粉末冶金技术来制成。 五、粉末冶金技术在新能源运用中的作用

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

印刷纸的光学性能标准

印刷纸的光学性能标准 目前国内造纸工业的速发展,纸与纸板的总量,总消费量排在世界第二,而且渐渐形成一套完整的标准化体系,当中,国家标准化法,计量法和产品质量法,是纸产品生产与销售必须遵循的三个基本法。 中国造纸业标准包括了国家标准,轻工业标准和企业的标准,从应用的领域来说,就有产品标准,产品性能测试方法标准和产品测试环境大气候条件标准,与此同时还有质量质量监督检验造纸专业记录器具,轻工业部门计量检定规程。引用我国造纸工业标准化体系表,出版的印刷用纸粉别为涂布纸与非涂布纸两个大类。 出版印刷业大批量使用的纸张,如新闻纸、胶版印刷纸、胶印书刊纸、凸版印刷纸等属非涂布印刷纸类;铜版纸、低定量涂布纸、铸涂纸等涂布印刷纸类。纸张的光学性能从测试依据的光学原理看,白度、色度、不透明度等属纸张的漫反射特性,光泽度、印刷光泽度属纸张的镜面反射特性。本文重点介绍出版印刷用纸的白度、色度、不透明度等光学性能及其测试标准。 一、解析光学性能

1、白度 众所周知,白色纸张可真实、客观地反映出印刷图文的全部色彩,提高文字的反差和清晰度,使复制品色彩鲜艳,达到图文并茂的效果。纸张白度越高,这种效果越显著。然而白度不宜过高,否则反射光线强,对视觉神经刺激过强,易引起视觉疲劳,因而印刷纸并不是白度越高越好,而且,不同用途印刷纸的白度值也不尽相同,据悉,中国少年儿童出版社,从保护少年儿童视力的角度出发,很多课本都采用了低白度纸张,有的图书内文甚至采用豆绿、浅黄色书写纸。黑龙江少年儿童出版社也将教辅书用纸白度降低到76%——85%。教育部规定,儿童用教科书用纸的白度为75%—76%。尽管出版印刷用纸基本为白色或近白色,但都有偏色现象,有的偏蓝、有的偏红,目的是使视觉判断显得更白些,但也要因人而异。不管怎样,同批供应的纸张应白度一致、色调均匀、色差不明显,以避免装订成册的印刷品切口色调出现分层现象。 2、不透明度 印刷用纸不透明度值的高低,直接影响印品的透印情况,各种用途的印刷纸,都必须有足够的不透明度,否则容易发生透印故障。 3、光泽度 印刷品的光泽度与纸张镜面反射特性密切相关。纸张的印刷光泽度是指在的条件下用标准亮光油墨在纸张试样上进行实地印刷,干燥后测定印迹区域的光泽度,以百分数表示。一般纸张光泽度高,印刷品的光泽度则高,印品图文层次鲜明,色彩鲜艳。如铜版纸光泽度

新能源材料制备与加工技术.

新能源材料制备与加工技术李长久 西安交 通 大 学 《新能源材料制 备 与加 工技 西安交 通大学 材料 制备与加工技 术》 本课程的安排

第1讲绪论:能源结构与太阳辐射特点 第2讲太阳电池原理 第3讲太阳电池原理(续 第4讲单晶硅太阳电池制造工艺 第5讲薄膜太阳电池与DSC 制造工艺 第6讲燃料电池基础 第7讲固体氧化物燃料电池与质子交换膜燃料电池制备成形技术第8讲新型2次电池材料 试验1 单晶硅太阳电池特性 试验2 单晶硅、非晶硅、多晶硅太阳电池特性比较 试验3 SOFC 电池输出特性 试验4 PEMFC 试验 西 安 交 通 大

学《新能源材料制备与加工技西安交通大学材料

制 备 与 加 工技 术》 本课程的基本要求 了解能源结构与发展趋势,可再生能源与化石燃料高效能源转换系统 能源转换材料基本特征 太阳电池原理,太阳电池转换效率的影响因素及其影响规律、提高转换效率的基本途径; 太阳电池的种类与制造工艺及其特点; 燃料电池的原理、特点、开发现状与应用前景。二次电池及其相关材料技术 材料制备、加工与制造器件一体化的特征 西 安 交 通

大 学 《 新 能 源 材 料 制 备 与加 工技 西 安 交通 大 学材 料制备与加工技术》

主要参考书 1.(美胡晨明,R.M. 还特著,(李采华译,太阳电 池,北京大学出版社,1990年 2. Chenming HU and Richard M. White, Solar Cell, From Basic to Advanced System, McGraw Hill Book Company, 1983 3.(澳马丁格林著,李秀文等译,太阳电池,电子工 业出版社,1987年 4. 赵富鑫,魏彦章,太阳电池及其应用,国防工业出版社,1985 5. 雷永泉主编,新能源材料,天津大学出版社, 2000。 6. 衣宝廉著,燃料电池,化学工业出版社,2003。 7. Fuel Cell Handbook 西 安 交

磁铁的材质及性能

磁铁的材质及性能 一、磁铁的种类 磁铁的种类很多,一般分为永磁和软磁两大类,我们所说的磁铁,一般都是指永磁磁铁,永磁磁铁又分二大分类: 第一大类是:金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、钐钴磁铁(SmCo)、铝镍钴磁铁(ALNiCO) 第二大类是:铁氧体永磁材料(Ferrite) 1、钕铁硼磁铁:它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铁氧体磁铁:它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。 3. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 4、钐钴磁铁(SmCo):依据成份的不同分为SmCo5和 Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。 二、磁铁使用注意事项 下面是关于磁铁的使用注意事项,在使用磁铁产品之前请您务必先行阅读。 1.磁铁在使用过程中应确保工作场所洁净,以免铁屑等细小杂质吸附在磁铁表面影响产品的正常使用。 2.钕铁硼磁铁适宜存放在通风干燥的室内,酸性、碱性、有机溶剂、水中、高温潮湿的环境容易使磁体产生锈蚀,镀层脱落磁体粉化退

相关文档
最新文档