无穷级数复习讲义

无穷级数复习讲义
无穷级数复习讲义

第一节 数项级数 一.无穷级数∑∞

=0n n a 收敛的

充分条件:数列{}n a 的前n 项和数列{}n S 收敛; 必要条件:0lim =n a . 例1:证明级数∑

=12

1

n n

收敛. 证:①教材第二页的证明方法(利用cauchy 判则).

②取数列?

??

???21n 的前n 项和n S .当2≥n 时,n n n n n 111)1(112--=-≤

∴n S =

+++222312111 (2)

1

n + +-+-+≤312121111…n

n 1

11--+

=2n 1

- ∴n S 单调递增且有界,数列{}n S 收敛,所以级数∑∞

=121n n

收敛.

例2:研究级数∑∞

=1

001.0n n 的敛散性.

解:∵lim 01001.0≠=n

,∴级数∑∞

=1

001.0n n 发散.

小结:一般来说,cauchy 判则没有多大的实用价值,在证明数列收敛时一般不用此法;无穷级数∑∞

=0n n a 收敛的必要条件的逆否命题也是可以利用.

二.收敛级数的性质

⒈若级数∑∞

=1n n a 与∑∞

=1

n n b 都收敛,βα,是常数,则级数)(1

∑∞

=+n n n b a βα也是收敛的.

⒉在级数∑∞

=1

n n a 中改变有限项的值,并不改变级数的敛散性.

三.正项级数

若n a 0≥,则称∑∞

=1n n a 是正项级数.

⒈正项级数∑∞

=1

n n a 收敛的充要条件是它的部分和数列{}n S 有界.

(例题参见例1)

⒉设∑∞

=1

n n a 与∑∞

=1

n n b 都是正项级数,若从某项开始有b n b a ≤恒成立,则

⑴.若∑∞=1n n a 发散,则∑∞

=1n n b 发散;

⑵.若∑∞

=1

n n b 收敛,则∑∞

=1

n n a 收敛.

(比较判别法) 例3:∑

=11

n p

n

称为p 级数,讨论它的敛散性. 解:证明结果:

当1≤p 时,∑∞

=1

1

n p n 发散; 当1>p 时,∑

=11

n p

n

收敛. (详细证明方法参见书本第六页) 例4:级数∑∞

=2ln 1

n n 发散. 例5:∑

=+11

1

n n n 收敛.(利用p 级数)

小结:一般在应用比较判别法时,要用到p 级数.p 级数的应用价值很大,请记

住它的敛散性.

⒊设∑∞

=1

n n a 与∑∞

=1

n n b 都是正项级数,A b a b

n

=lim

. ⑴.若+∞<

=1

n n a 与∑∞

=1

n n b 同敛散;

⑵.若0=A ,则当∑∞=1

n n b 收敛时,∑∞

=1

n n a 也收敛;

⑶.若+∞=A ,则当∑∞=1

n n b 发散时,∑∞

=1

n n a 也发散.

例6:∑

=1

4

5

ln n n

n

收敛.

证明:

∵对于∑

=145ln n n n

,有818

94

5ln 1ln n n n n n

=,且l i m 0ln 81=n n ,由∑∞=1891

n n

收敛,知∑∞=14

5ln n n n 收敛. 小结:一般在应用这一定理时,也要介入p 级数来做比值判别.

⒋(cauchy 判别法)设∑∞

=1n n a 是正项级数.

⑴.若从某项起,,1<≤q a n n 则∑∞

=1

n n a 收敛;

⑵.若有无穷多个n ,使得0>≥αn a ,则∑∞

=1

n n a 发散.

⒌(cauchy 判别法的极限形式)设∑∞

=1

n n a 是正项级数,q a n n =lim .

⑴.当10<≤q 时,∑∞

=1

n n a 收敛;

⑵.当1>q 时,∑∞

=1

n n a 发散.

⒍(d ’Alembert 判别法)设∑∞

=1

n n a 是正项级数.

⑴.若从某项起 11

<≤+q a a n n ,则∑∞

=1n n a 收敛; ⑵. 若从某项起有11

≥+n n a a ,则∑∞=1

n n a 发散. ⒎(d ’Alembert 判别法)设∑∞

=1

n n a 是正项级数,q a a n

n =+1

lim

.

⑴.当10<≤q 时,∑∞

=1

n n a 收敛;

⑵.当1>q 时,∑∞

=1

n n a 发散.

例7:2

)11(2

11n n n

n +∑

=发散. 例8:∑∞

=12

)!

2()!(n n n 收敛.

小结:一般极限形式更容易解决问题.

⒐(cauchy 积分判别法的极限形式)设)(x f 在],1[+∞上有定义,非负且单调递减,则∑∞

=1)(n n f 与?

+∞

1

)(dx x f 同敛散.

四.交错级数

设0≥n a ,称级数∑∞

=-1)1(n n n a 为交错级数.

1.设}{n a 单调递减趋于0,则级数∑∞

=--1

1)1(n n n a 收敛,且和不大于1a .

例9:∑∞

=--1

1

ln )1(n n n

n

收敛. 五.条件收敛与绝对收敛 称||1

∑∞

=n n a 为∑∞

=1

n n a 的绝对值级数

1.若||1

∑∞=n n a 收敛,则∑∞

=1

n n a 收敛.

若||1∑∞=n n a 收敛,则称∑∞

=1

n n a 绝对收敛;

若∑∞

=1

n n a 收敛,||1

∑∞=n n a 发散,则称∑∞

=1

n n a 条件收敛.

(这是条件收敛与绝对收敛的定义,同时可以作为判别方法)

例10:()∑∞

=??????+--1

)11ln(1

1n n n n 绝对收敛.

证:分析只需证明∑∞

=??????+-1)11ln(1

n n n

收敛即可.

由柯西积分判别法,∑∞

=??????+-1)11ln(1

n n n 与广义积分?∞+????????? ??+-111ln 1dx x x

同敛散.

而广义积分?∞

+????????? ??

+-111ln 1dx x x

是收敛的(收敛于12ln 2-).

))0(1ln )1(11ln 10(>+++=????????? ??

+->?x C x x x dx x x

x 时,附:所以∑∞

=??????+-1)11ln(1n n n 收敛.所以()∑∞

=??????+--1)11ln(1

1n n n n 绝对收敛.

注意:∑∑∞=∞

=+1

n 1)11ln(1n n n 与都是发散的,但∑∞

=??????+-1)11ln(1

n n n 收敛.

()∑∞

=??????+--1)11ln(11n n

n n 绝对收敛,但是n n n 1)1(1

∑∞=-与)11ln()1(1n n n +-∑∞= 都是条件收敛的,那我能否说用两个条件收敛的级数的线性组合一定可以表示出

一个绝对收敛的级数?

第二节 幂级数和Taylor 展式

类似于数项级数,可以定义函数项级数.形如

n

n n

x x a )

(0

1

-∑∞

=的函数项级数称为

幂级数.在此我们重点讨论00=x 时的情况(n n n x a ∑∞=1

). 一.幂级数的收敛半径

⒈(Abel 引理)如果幂级数n

n n x a ∑∞

=1

在0x )0(0≠x 处收敛,则当||||0x x <时,n

n n x a ∑∞

=1

绝对收敛;如果幂级数n

n n x a ∑∞=1

在0x )0(0≠x 处发散,则当||||0x x >时,n n n x a ∑∞

=1

散.

下面两个定理用来确定幂级数的收敛半径:

⒉如果L a a n n =+||lim 1(+∞≤≤L 0),则幂级数n n n x a ∑∞

=1

的收敛半径L R 1

=.

⒊如果L a n

n =||lim ,则幂级数n n n x a ∑∞

=1

的收敛半径L

R 1

=

. 例11:求幂级数n

n n

x n ∑∞=1

和n n x n ∑∞

=1

的收敛半径.

解:∵1|1

|lim =+n n ,∴n n x n ∑∞

=1

的收敛半径为1;

∵+∞→=n n n

n

lim ,∴n n n x n ∑∞

=1

的收敛半径为0.

二.幂级数的性质

⒈设幂级数n

n n x a ∑∞

=1

和n n n x b ∑∞

=1

的收敛半径分别为1R 和2R ,取{}21,min R R R =,则

n

n n n

x b a

)(1

βα+∑∞

==α

n

n n x

a ∑∞

=1

n

n n x

b ∑∞

=1

在()R R ,-中成立.

⒉n n n x a ∑∞

=1

的收敛半径为R ,则和函数)(x S 在收敛区间()R R ,-上连续.

⒊对幂级数n n n x a ∑∞

=1

逐项积分或微分,不改变收敛半径,但有可能该变收敛区域.

例12:求幂级数121!

)!12(1

-∞

=∑

-n n x n 的收敛域和和函数.

解:显然0!

)!12(1!)!12(1

lim =-+n

n n ,则幂级数121!)!12(1

-∞

=∑-n n x n 的收敛半径+∞=R ,收敛域为全体实数.

令)(x S =1

21

!)!12(1-∞

=∑-n n x n ,则)(1!)!32(1)(232x xS n x x x S n n +=-+='∑

=-, 即)(1)(x xS x S +=',解得)(x S =dt e

e

x

t x ?

-0

2

2

2

。注意初始条件0)0(,1)0(=='S S .

例13:求幂级数∑∞

=+1

)1(n n

n n x 的和函数.

解:令)(x S = ∑∞

=+1)1(n n n n x ,则0)1(=S ,()x x x xS n n -=="

∑∞=-11)(1

1

所以1)1ln(11)(+-??? ?

?

-=x x x S

这类问题一般会涉及到常微分方程的求解

三.初等函数的Taylor 展开式

由Taylor 定理知,对n+1阶可导函数)(x f 有:

))(()(!

)

()(10000)

(+=-+-=∑

n n n

n n x x x x n x f

x f ο 如果一个函数能够在0x x =处展开成幂级数,那么这样的幂级数时唯一的,为:

n n n x x n x f x f )(!

)

()(000)(-=∑

=,这是)(x f 的Taylor 级数 当00=x 时,级数称为Maclaurin 级数.

⒈两个重要函数的Maclaurin 级数(必须熟记会用)

⑴.++++=!3!2132x x x e x

…++!

n x n

⑵.()

n n n

x x

∑∞

=-=

+0

111

在这两个Maclaurin 级数的帮助下,通过变形、积分、微分、代换等方法可以求出

其他比较复杂的函数的Maclaurin 级数或在指定点的Taylor 级数.

例14:将x ln 在1=x 处展开成Taylor 级数.

解:)11ln(ln -+=x x .

由()n n n

x x ∑∞

=-=+0

111,知=+)1ln(x ()

1

11

+-+∞

=∑n x n n n

所以()

1

)1(1)11ln(ln 1

+--=-+=+∞

=∑n x x x n n n

若要在5=x 处展开x ln ,则有如下做法:

))15

(1ln(5ln )55ln(ln -++=-+=x

x x

()

1

)15

(

15ln 10

+--+=+∞

=∑n x

n n n

∑∞

=+++--+=0

1

1

)

1(5)5()

1(5ln n n n n

n x 例15:将2

31

2

++x x 展开成Maclaurin 级数. 解:

2

1121

1121112

312

x

x x x x x +

-+=+-+=++

所以,()()n

n n n

n n

x x x x )2(1211231

02∑∑∞=∞

=---=

++ 化简()

n n n n

x x x )2

11(12

31

1

2+∞

=-

-=

++∑

不过,具体解决问题的方法还是因题而异,视情况而定.这些都只是系统化的方

法,有时候不一定是最优解.

例16:e n n n 5!)1(0

2

=+∑∞

=

解:设一个幂级数∑∞

=+='0

2!)1()(n n

n x n x S ,故待求的数项级数为)1(S '.

∴设)(!)1(!)1()(0

1x f x n x n x n x n x S n n

n n '=+=+=

∑∑

=∞

=+

x n n

n n xe n x x n x x f ===

∑∑

=∞

=+00

1!

!)( ∴x e x x x f x x S )1()()(+='= ∴x e x x x S )13()(2++=',

∴,即e S 5)1(=',e n n n 5!)1(0

2

=+∑∞

=

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

无穷级数内容小结

1.数项级数:∑∞=1n n u ,称∑==n i k n u s 1为前n 项部分和。 若存在常数 s,使n n s s ∞ →=lim ,则称级数收敛,s 为该级数的和;否则级数发散。 2.数项级数性质:1)∑∞ =1n n Cu =C ∑∞=1n n u ;2)若级数∑∞=1n n u ,∑∞=1n n v 收敛于σ,s ,则级数∑∞ =±1n n n v u 收敛于 σ±s ;3)级数中去掉,增加或改变有限项,敛散性不变;4)收敛级数任意加括号所得的级数仍收敛,且其和不变。5)若级数∑∞=1n n u 收敛,必有0lim =∞ →n n u 3.两个重要级数:1)几何级数:∑∞ =-11n n aq = +++++-12n aq aq aq a (0≠a ) 若,10) 若p>1,级数收敛;若1≤p ,级数发散;当p=1时,调和级数∑ ∞=11n n 发散。 4.正项级数审敛法:对一切自然数n,都有0≥n u ,称级数∑∞ =1 n n u 为正项级数 方法:1)比较审敛法:设∑∞=1 n n u 和∑∞=1n n v 都是正项级数,且n n v u ≤(n=1,2,…)若级数∑∞ =1n n v 收敛, 则级数∑∞=1n n u 收敛;若级数∑∞=1n n u 发散,则∑∞ =1 n n v 发散。2)比较审敛法的极限形式:若 l v u n n n =∞→lim )0(+∞<p )lim (1∞=+∞→n n n u u 包括,级数发散;当p=1时, 级数可能收敛,也可能发散。4根值审敛法:若ρ=∞ →n n n u lim ,则若p<1,级数收敛;若1>p )lim (∞=∞ →n n n u 包括,级数发散;当p=1时,级数可能收敛,也可能发散。

[填空题] 1.数项级数∑ ∞ =+-1) 12)(12(1n n n 的和为 21 。 2.数项级数∑∞ =-0 )!2()1(n n n 的和为 1cos 。 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分 和极限;另一种是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点的值。 3.设1))1((lim ,1,01 =->>∞ →n n p n n a e n p a 且,若级数∑∞ =1 n n a 收敛,则p 的取值范 围是),2(+∞。 分析:因为在∞→n 时,)1(1-n e 与 n 1 是等价无穷小量,所以由1))1((lim 1=-∞ →n n p n a e n 可知,当∞→n 时,n a 与 1 1-p n 是等价无穷小量。由因为 级数∑∞=1 n n a 收敛,故∑ ∞ =-11 1 n p n 收敛,因此2>p 。 4.幂级数∑∞ =-0 2)1(n n n x a 在处2=x 条件收敛,则其收敛域为 ]2,0[。 分析:根据收敛半径的定义,2=x 是收敛区间的端点,所以收敛半径 为1。由因为在0=x 时,级数∑∑∞ =∞ ==-0 2) 1(n n n n n a x a 条件收敛,因此应填]2,0[。 5.幂级数∑∞ =-+12) 3(2n n n n x n 的收敛半径为 3。 分析:因为幂级数缺奇次方项,不能直接用收敛半径的计算公式。因 为

22)1(21131)3(2)3(21lim x nx x n n n n n n n n =-+-+++++∞→, 所以,根据比值判敛法,当3x 时,原级数发散。由收敛半径的定义,应填3。 6.幂级数n n n x n n ∑∞ =??? ??+221ln 1 的收敛域为 )1,1[-。 分析:根据收敛半径的计算公式,幂级数n n x n n ∑ ∞ =2 ln 1收敛半径为1,收敛域为)1,1[-;幂级数n n n x ∑ ∞ =22 1收敛域为)2,2(-。因此原级数在)1,1[-收敛,在),)21[1,2(Y --一定发散。有根据阿贝尔定理,原级数在),2[]2,(+∞--∞Y 也一定发散。故应填)1,1[-。 7.已知),(,)(0+∞-∞∈=∑∞ =x x a x f n n n ,且对任意x ,)()(x f x F =',则)(x F 在 原点的幂级数展开式为 ),(,)0(11+∞-∞∈+∑∞ =-x x n a F n n n 。 分析:根据幂级数的逐项积分性质,及),(,)(0 +∞-∞∈=∑∞ =x x a x f n n n ,得 ∑?∑? ∞ =+∞=+=?? ? ??==-010 00 1)()0()(n n n x n n n x x n a dt t a dt t f F x F , 故应填),(,)0(1 1+∞-∞∈+∑∞ =-x x n a F n n n 。 8.函数 x xe x f =)(在1=x 处的幂级数展开式为 ?? ????-???? ??+-+∑∞=1)1(!1)!1(11n n x n n e 。 分析:已知∑ ∞ ==0! 1n n x x n e )),((+∞-∞∈x ,所以

无穷级数单元测试题 答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、收敛 3、5 4、π 33--,π π12 48+ -, ???????±±=--±±==,...3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件,

故该交错级数条件收敛。 (2)∑∞ =?? ? ??+11n n n n 解:lim lim( )[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a 解:另设级数1 () n v n a b =+ 111111 1(1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4) ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++ (补充条件1x <,或求出R )

无穷级数习题 一、填空题 1、设幂级数 n n n a x ∞ =∑的收敛半径为3,则幂级数 1 1 (1) n n n na x ∞ +=-∑的收敛区间为 。 2、幂级数 0(21)n n n x ∞ =+∑的收敛域为 。 3、幂级数 21 1(3) 2 n n n n n x ∞ -=-+∑的收敛半径R = 。 4 、幂级数 n n ∞ =的收敛域是 。 5、级数21 (2)4n n n x n ∞ =-∑的收敛域为 。 6、级数0 (ln 3)2n n n ∞ =∑的和为 。 7、 1 1 1()2n n n ∞ -==∑ 。 8、设函数2 ()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为 01 (cos sin )2 n n n a a nx b nx ∞ =++∑,则其系数3b 的值为 。 9、设函数2 1, ()1,f x x -?=?+? 0,0, x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。 10、级数 1 1 (1)(2)n n n n ∞ =++∑的和 。 11、级数21 (2)4n n n x n ∞ =-?∑的收敛域为 。 参考答案:1、(2,4)- 2、(1,1)- 3 、R = 4、[1,1)- 5、(0,4) 6、 22ln 3- 7、4 8、23π 9、212π 10、1 4 11、(0,4)

二、选择题 1、设常数0λ>,而级数 21 n n a ∞=∑ 收敛,则级数1 (1)n n ∞ =-∑是( )。 (A )发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p += ,2 n n n a a q -=, 1.2n =,则下列命题中正确的是( )。 (A )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (B )若 1n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (C )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不一定。 (D )若 1 n n a ∞ =∑绝对收敛,则 1 n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不定。 3、设0,1,2 n a n >=,若 1n n a ∞ =∑发散, 1 1 (1) n n n a ∞ -=-∑收敛,则下列结论正确的是( )。 (A ) 21 1n N a ∞ -=∑收敛, 21 n n a ∞ =∑发散. (B ) 21n n a ∞ =∑收敛, 21 1 n n a ∞ -=∑发散. (C ) 21 21 ()n n n a a ∞ -=+∑收敛. (D )2121 ()n n n a a ∞ -=-∑收敛. 4、设α 为常数,则级数 21 sin()( n n n α∞ =∑是( ) (A )绝对收敛. (B )条件收敛. (C )发散. (D )收敛性与α取值有关. 5、级数 1 (1)(1cos )n n n α ∞ =--∑(常数0α)是( ) (A )发散. (B )条件收敛. (C ) 绝对收敛. (D )收敛性与α有关. 6 、设(1)ln(1)n n u =-+ ,则级数 (A ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都收敛. (B ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都发散.

第十二章 无穷级数单元测试题 一、判断题 1、。收敛,则3)3(lim 21=+-∞→∞=∑n n n n n u u u ( ) 2、若正项级数∑∞=1 n n u 收敛,则∑∞=12n n u 也收敛。 ( ) 3、若正项级数∑∞=1n n u 发散,则。1lim 1>=+∞→r u u n n n ( ) 4、若∑∞=12n n u ,∑∞=12n n v 都收敛,则n n n v u ∑∞ =1绝对收敛。 ( ) 5、若幂级数n n n x a )23(1 -∑∞ =在x=0处收敛,则在x=5处必收敛。( ) 6、已知n n n x a ∑∞=1的收敛半径为R ,则n n n x a 21∑∞=的收敛半径为R 。 ( ) 7、n n n x a ∑∞=1和n n n x b ∑∞=1的收敛半径分别为b a R R ,,则n n n n x b a ∑∞ =+1)(的收敛半径为 ),min(b a R R R =。 ( ) 8、函数f(x)在x=0处的泰勒级数 ...! 2)0(!1)0()0(2+''+'+x f x f f 必收敛于f(x)。 ( ) 9、f(x)的傅里叶级数,每次只能单独求0a ,但不能求出n a 后, 令n=0得0a 。 ( ) 10、f(x)是以π2为周期的函数,并满足狄利克雷条件,

n a (n=0,1,2,...), n b (n=1,2,...)是f(x)的傅里叶系数,则 必有)sin cos (2)(1 0nx b nx a a x f n n n ++=∑∞=。 ( ) 二、选择题 1、下列级数中不收敛的是( ) A ∑∞ =+1)11ln(n n B ∑∞=131n n C ∑∞=+1)2(1n n n D ∑∞=-+14)1(3n n n n 2、下列级数中,收敛的是( ) A ∑∞ =--11)1(n n n ; B ∑∞=+-1232)1(n n n n ; C ∑∞=+115n n ; D ∑∞=-+1231n n n . 3、判断∑∞=+11 11n n n 的收敛性,下列说法正确的是( ) A 因为 01 1>+n ,所以此级数收敛 B 因为01lim 11=+∞ →n n n ,所以此级数收敛 C 因为 n n n 111 1>+,所以此级数发散。 D 以上说法均不对。 4、下列级数中,绝对收敛的是( ) A ∑∞=-1)1(n n n ; B ∑∞=++12123n n n ; C ∑∞=-??? ??-1132)1(n n n ; D ∑∞=-+-11)1ln()1(n n n . 5、若级数∑∞ =--112)2(n n n a x 的收敛域为[3,4),则常数a=( )

无穷级数总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

无穷级数总结 一、概念与性质 1. 定义:对数列12,, ,n u u u ,1 n n u ∞ =∑称为无穷级数,n u 称为一般项;若部分 和 数列{}n S 有极限S ,即lim n n S S →∞ =,称级数收敛,否则称为发散. 2. 性质 ①设常数0≠c ,则∑∞ =1 n n u 与∑∞ =1 n n cu 有相同的敛散性; ②设有两个级数∑∞=1 n n u 与∑∞=1 n n v ,若∑∞==1 n n s u ,σ=∑∞=1 n n v ,则∑∞ =±=±1 )(n n n s v u σ; 若∑∞=1n n u 收敛,∑∞=1 n n v 发散,则∑∞ =±1 )(n n n v u 发散; 若∑∞ =1 n n u ,∑∞=1 n n v 均发散,则∑∞ =±1 )(n n n v u 敛散性不确定; ③添加或去掉有限项不影响一个级数的敛散性; ④设级数∑∞ =1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的 和. 注:①一个级数加括号后所得新级数发散,则原级数发散; ②一个级数加括号后收敛,原级数敛散性不确定. ⑤级数∑∞ =1n n u 收敛的必要条件:0lim =∞ →n n u ; 注:①级数收敛的必要条件,常用判别级数发散; ②若0lim =∞ →n n u ,则∑∞ =1n n u 未必收敛; ③若∑∞ =1 n n u 发散,则0lim =∞ →n n u 未必成立.

二、常数项级数审敛法 1. 正项级数及其审敛法 ① 定义:若0n u ≥,则∑∞ =1n n u 称为正项级数. ② 审敛法: (i ) 充要条件:正项级数∑∞ =1n n u 收敛的充分必要条件是其部分和数列有界. (ii ) 比较审敛法:设∑∞=1 n n u ①与∑∞ =1 n n v ②都是正项级数,且 (1,2,)n n u v n ≤=,则若②收敛则①收敛;若①发散则②发散. A. 若②收敛,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≤>成立,则①收敛;若②发散,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≥>成立,则①发散; B. 设∑∞ =1n n u 为正项级数,若有1p >使得1 (1,2,)n p u n n ≤=,则∑∞ =1 n n u 收敛;若 1 (1,2,)n u n n ≥=,则∑∞ =1 n n u 发散. C. 极限形式:设∑∞ =1 n n u ①与∑∞ =1 n n v ②都是正项级数,若lim (0)n n n u l l v →∞=<<+∞,则 ∑∞ =1 n n u 与∑∞ =1 n n v 有相同的敛散性. 注:常用的比较级数: ①几何级数:∑∞ =-?? ???≥<-=11 1 11n n r r r a ar 发散; ②-p 级数:∑ ∞ =???≤>1 111n p p p n 时 发散 时收敛;

第十二章 无穷级数习题课资料 丁金扣 一、本章主要内容 常数项级数的概念与基本性质,正项级数审敛法,交错级数与莱布尼兹审敛法,绝对收敛与条件收敛。幂级数的运算与性质(逐项求导、逐项积分、和函数的连续性),泰勒级数,函数展开为幂级数及幂级数求和函数,周期函数的傅立叶级数及其收敛定理。 二、本章重点 用定义判别级数的收敛,P-级数、正项级数的审敛法,莱布尼兹型级数的审敛法,幂级数的收敛域与收敛半径,幂级数求和函数,函数的泰勒级数,傅立叶级数收敛定理。 三、本章难点 用定义判别级数的收敛,P-级数审敛法,幂级数求和函数,函数的泰勒级数,傅立叶级 数收敛定理。 四、例题选讲 例1:判别级数()2 1ln 1ln ln 1n n n n ∞ =??+ ???+∑的敛散性。 (用定义) 解:原式=()()2 2ln 1ln 11 ()ln ln 1ln ln(1)n n n n n n n n ∞ ∞==+-=-++∑∑ 级数的部分和1 11111ln 2ln3ln3ln 4ln ln(1)n S n n ??????=-+-++- ? ? ?+?????? 111ln 2ln(1)ln 2 n = -→+, ()n →∞ 所以原级数收敛,且收敛于 1 ln 2 。 例2:证明级数 2 cos cos(1) n n n n ∞ =-+∑收敛。(利用柯西审敛原理) 证明:1 cos cos(1) n p n p n m n m m S S m ++=+-+-= ∑ ()()()11cos 1cos 11 ()cos 111n p m n n n p m n m m n p +-=+++=--+- +++∑ 得1 111112 ()111n p n p n m n S S n m m n p n +-+=+-≤+-+=++++∑, 对任意的0ε>,取2N ε??=???? ,则当n N >时,对所有p N ∈,都有 n p n S S ε +-<,

1. 填空3分一道(1)若级数1n n u ∞=∑与1n n v ∞=∑都收敛,则()1 .n n n u v ∞ =+∑必 (2)若常数项级数1n n u ∞=∑收敛,则必有lim .n n u →∞ = 2.14分 下列级数中条件收敛的是( )绝对收敛的是() (A)()11112n n n ∞ =-+∑ (B)( )11n ∞=-∑ (C)()111n n n ∞=-∑ (D)()2111n n n ∞=-∑ (E)( )11n n ∞=-∑ (F )() 111n n ∞-=-∑ 下列题10分一道 3.判定级数112n n n ∞=?∑的敛散性(收敛或者发散) 4.判定级数13!n n n n n ∞=?∑的敛散性 5.判定级数()111001n n n ∞ =+∑的敛散性 6.判定级数211ln 1n n ∞=??+ ???∑的敛散性 7.求幂级数()131n n n n x n ∞=-∑的收敛半径及收敛区间(开) 8. 求幂级数11!n n x n ∞ =∑的收敛区间 9.求幂级数112n n nx ∞-=∑的收敛区间及和函数 10.将13 x +展开成()1x -的幂级数,并求其收敛区间。 知识点归纳: 一、正项级数:1.调和级数11n n ∞ =∑发散。 2.11p n n ∞=∑:当p>1时,收敛,p ≤1时发散(包括一系列等价无穷小) 3.比值审敛法(针对通项里出现了,!n a n ):1lim n n n u u +→∞ 的值<1,收敛;>1则发散;等于1,方法用错了,该用第2条。 二.交错级数:()11n n n u ∞=-∑,判定lim 0n n u →∞≠则该级数发散;lim 0n n u →∞ =, 1n n u u +≤,则该级数收敛,此时该级数分条件收敛和绝对收敛,就是将该级数加绝对值()111n n n n n u u ∞∞ ==-=∑∑,去掉麻烦的()1n -, 此时判别法回到正项级数判别法:1)如果还收敛的话,则为绝对收敛,如果发散则为条件收敛。

第10章 无穷级数 【学习目标】 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 【能力目标】 【教学重点】 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式; 【教学难点】 1、 比较判别法的极限形式; 2、 莱布尼茨判别法;

3、 任意项级数的绝对收敛与条件收敛; 4、 函数项级数的收敛域及和函数; 5、 泰勒级数; 【教学方法】 启发式、引导式 【教学课时分配】 (18学时) 第1 次课 §1 第2 次课 §2 第3 次课 §3 第4 次课 §4 第5次课 §5 第6次课 §6 第7次课 §7 第8次课 §8 第9次课 习题课 10. 1 常数项级数的概念和性质 一、无穷级数的概念 定义10.1 设有无穷序列 123,,, ,, n u u u u ??????, 则由此序列构成的表达式 123 n u u u u +++???++???称为无穷级数, 简称级数, 记为∑∞ =1 n n u , 即 3211 ???++???+++=∑∞ =n n n u u u u u , 其中第n 项n u 叫做级数的一般项. 如果(1,2,...)n u n =都为常数,则称该级数为常数项级数,简称数项级数;如果 (1,2,...)n u n =为变量x 的函数()n u x ,则称该级数为函数项级数. 二、数项级数的敛散性概念 级数的部分和: 作级数∑∞ =1n n u 的前n 项和

无穷级数练习题 无穷级数习题 一、填空题 ,,nn1,1、设幂级数的收敛半径为3,则幂级数的收敛区间为。axnax(1),,,nnn0,n1, ,n2、幂级数的收敛域为。 (21)nx,,0n, ,n21n,R,3、幂级数的收敛半径。 x,nn(3)2,,n1, n,x4、幂级数的收敛域是。 ,,1n0n, 2n,(2)x,5、级数的收敛域为。 ,nn4n,1 n,(ln3)6、级数的和为。 ,n20n, ,1n1,7、。 n,(),2n1, 28、设函数fxxx(),,, 的傅里叶级数展开式为 (),,,,,x ,a0,,(cossin),则其系数b的值为。 anxbnx,nn321n, ,,,,x0,,1,,2,9、设函数则其以为周期的傅里叶级数在点处的fx(),x,,,20,,,x1,,x,, 敛于。 ,110、级数的和。 ,nnn,,(1)(2)n1, 2n,(2)x,11、级数的收敛域为。 ,nn,4n,1 ,1,1)R,3参考答案:1、 2、 3、 4、 5、 (2,4),(1,1),(0,4), 21212,,46、 7、 8、 9、 10、 11、 (0,4)422ln3,3 二、选择题 1

,,an2n1、设常数,而级数收敛,则级数是( )。 ,,0a(1),,,n21n1n,,,,n(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛与,有关 aa,aa,nnnn,,n,1.2,则下列命题中正确的是( )。 2、设q,p,nn22 ,,, (A)若条件收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (B)若绝对收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (C)若条件收敛,则与的敛散性都不一定。 apq,,,nnn,n1n1n1,, ,,, (D)若绝对收敛,则与的敛散性都不定。 apq,,,nnn,n1n1n1,, ,,n1,an,,0,1,23、设,若发散,收敛,则下列结论正确的是( )。 a(1),a,,nnnn1,n1, ,,,,(A)收敛,发散. (B)收敛,发散. aaaa,,,,21n2n2n21n,,N1,n1n1n1,,, ,, (C)收敛. (D)收敛. ()aa,()aa,,,212nn212nn,,n1n1,, ,sin()1n,4、设为常数,则级数,是( ) (),,2nnn1, (A)绝对收敛. (B)条件收敛. (C)发散. (D)收敛性与取值有关. , ,,n,05、级数(1)(1cos),,(常数)是( ) ,n1n, (A)发散. (B)条件收敛. (C) 绝对收敛. (D)收敛性与有关. , 1n6、设,则级数 u,,,(1)ln(1)nn

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、 收敛 3、5 4、π33--,ππ1248+-,???????±±=--±±==,... 3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件, 故该交错级数条件收敛。

(2)∑∞ =??? ? ?+11n n n n 解:lim lim()[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a Λ 解:另设级数1 () n v n a b =+ 1111111 (1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ L L 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4)ΛΛ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) Λ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++L (补充条件1x <,或求出R ) 逐项求导,得2462 1 ()11f x x x x x '=++++=-L (这是公比21q x =<的几何级数)

无穷级数总结 一、概念与性质 1. 定义:对数列 u 1,u 2,L ,u n L , u n 称为无穷级数, u n 称为一般项;若部分和 n1 数列{&}有极限S ,即limS n S ,称级数收敛,否则称为发散. n 2. 性质 ① 设常数 c 0 ,则 u n 与 cu n 有相同的敛散性; n1 n1 ② 设有两个级数 u n 与 v n ,若 u n s , v n ,则 (u n v n ) s ; n1 n1 n1 n1 n1 若 u n 收敛, v n 发散,则 (u n v n ) 发散; n1 n1 n1 若 u n , v n 均发散,则 (u n v n ) 敛散性不确定; n1 n1 n1 ③ 添加或去掉有限项不影响一个级数的敛散性; ④ 设级数 u n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和. n1 注:①一个级数加括号后所得新级数发散,则原级数发散; ②一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 u n 收敛的必要条件: lim u n 0 ; n1 n 注:①级数收敛的必要条件,常用判别级数发散; ③若 u n 发散,则 lim u n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法 ① 定义:若 u n 0 ,则 u n 称为正项级数 . n1 ② 审敛法: i ) 充要条件:正项级数 u n 收敛的充分必要条件是其部分和数列有界 ②若 lim u n 0 ,则 u n 未必收敛; n1

(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),则若② n 1 n 1 收敛则①收敛;若①发散则②发散? A.若②收敛,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①收敛;若② 发散,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①发散; 1 B.设U n为正项级数,若有p 1使得u n—p (n 1,2丄),贝U U n收敛;若 n 1 n n 1 1 U n (n 1,2,L ),贝U U n 发散? n n 1 C.极限形式:设U n①与v n②都是正项级数,若lim l(0 l ),则 n 1 n 1 n V n U n与V n有相同的敛散性 n 1 n 1 注:常用的比较级数: a ①几何级数:ar n1 1 r r 1 n 1 发散r| 1 ②p级数:[收敛P 1时. n 1 n p发冃攵P 1时, ③调和级数:丄1 1 1 发散. n 1 n 2 n (iii )比值判别法(达郎贝尔判别法)设a n是正项级数,若 n 1 ①lim也r 1,则a n收敛;②lim也r 1,则a.发散. n a n n 1 n a n n 1 注:若lim 也1,或lim :恳1,推不出级数的敛散.例1 与2,虽然佃乩1,n a n n n 1 n n 1 n n a. lim n a n 1,但丄发散,而 $收敛? n' n 1 n n 1 n a n是正项级数,lim , a n ,若1,级数收敛, n (iv )根值判别法(柯西判别法)设

第十二章 无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑= 3211 正项级数:∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数 ∑∞ =1 n n u 发散 2) 性质: 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛. 两个收敛级数的和差仍收敛.,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. 去掉、加上或改变级数有限项,不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; 若级数收敛,则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散,则原来级数也发散.注:收敛级数去括号后未必收敛. 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数 表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有界; 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞ =1 n n u 收敛;若∑∞ =1 n n u 发散,则∑∞ =1 n n v 发散. 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞n v 收敛,则∑∞n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞n v 发散,则∑∞ n u 发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞ =1 n n u 收敛,而 ∑ ∞ =1 n n u 发散;绝对收敛: ∑ ∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则∑∞ =1 n n u 收敛。 其他级数:; 二、 函数项级数(幂级数: ∑∞ =0 n n n x a ) 1、 2、 和函数)(x s 的性质:在收敛域I 上连续;在收敛域),(R R -内可导,且可逐项求导;和函数)(x s 在收敛域I 上可积分,且可逐项 积分.(R 不变,收敛域可能变化).

级数知识点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第十二章无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑ = 3211 正项级数: ∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数∑∞ =1 n n u 发散 2) 性质: ? 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛 ? 两个收敛级数的和差仍收敛,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. ? 去掉、加上或改变级数有限项不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; ? 若级数收敛则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散则原来级数也发散注:收敛级数 去括号后未必收敛. ? 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有 界; ? 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞=1 n n u 收敛;若∑∞=1 n n u 发散,则∑∞ =1 n n v 发散. ? 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞ =1n n v 发散,则∑∞ =1 n n u 发散. ? ,当:1l 时,级数∞=1 n n u 发散;1=l 时,级数∞ =1 n n u 可能收敛也可能发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑ ∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞=1 n n u 收敛,而∑∞ =1 n n u 发散;绝对收敛:∑∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则 ∑∞ =1 n n u 收敛。 其他级数:二、 函数项级数(幂级数: ∑∞ =0 n n n x a )

第十一章 无穷级数 (A) 用定义判断下列级数的敛散性 1 . n 2n 1 ; . 1 ;3. 1 1 。 2 n 1 2n 2n2 n 1 3 n 5 n n 1 判断下列正项级数的敛散性 . n! ;5. n e ; 6. n 1 ;7. 2n 3 ;8. n 4 ; 4 n 1 e n 1 2n n 1 n n 3 n 1 n! n 1 100 n n n n n 1 n 9. ;10. 3n n 1 2n 。 n 1 1 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛 . 1 n 1 n 1 ; 12. 1 n 1 ; 13.1.1 1.01 1.001 1.0001; 11 2 n ln n n 1 n 2 14. 1 22 2 3 1 4 1 ; 2 1 3 2 4 2 求下列幂级数的收敛半径和收敛区间 . 3n x n ;16. 1 n x n ; 17. n! x n ; . 1 n ; 15 n n 18 n 1 2n n 1 n 1 n n 1 n 1 19. 1 2n 1 ; 20. n 2 n ; 1 2 n 1 x n 1 3 n x n 求下列级数的和函数 21. n 1 nx n 1 ; 22. n 1 2 1 n 1 x 2n 1 ; 将下列函数展开成 x x 0 的幂的级数 23. shx e x e x , x 0 0 ;24. cos 2 x , x 0 0 ; 2 25. 1 x ln 1 x , x 0 0 ; 26. 1 , x 0 3 ; x 将下列函数在区间 , 上展开为付里叶级数 27. A x cos x , x 。28. f x 2t , x 2

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

相关文档
最新文档