推理与证明教案设计

推理与证明教案设计
推理与证明教案设计

第一课时 2.1.1 合情推理(一)

教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.

教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入:

1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”. 二、讲授新课: 1. 教学概念:

① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.

②归纳推理的几个特点;

1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.

2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.

3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上 归纳推理的一般步骤:

⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。

归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?

(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?

(iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题:

① [例1] 观察图,可以发现:1=12,1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, … 由上述具体事实能得出怎样的结论?

② 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n

n n

a a n a +=

=+,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列)

3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳. 三、巩固练习:

22221.:5124,7148,111120,131168,...24,,?

-=-=-=-=观察所得的结果都是的倍数继续试验你能得到什么猜想

1122.{},1,(*),2.n

n n n

a a a a n N a +==

∈+在数列中试猜想这个数列的通项公式

123.,2(1).n n n -+对于任意正整数猜想与的大小关系

第二课时 2.1.1 合情推理(二)

教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.

教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理. 教学难点:用归纳和类比进行推理,作出猜想. 教学过程: 一、复习准备:

导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理. 二、讲授新课: 1. 教学概念:

① 概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理. 类比推理的几个特点;

1.类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.

2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.

3.类比的结果是猜测性的不一定可靠,单它却有发现的功能

2. 教学例题:

① 出示例1:类比实数的加法和乘法,列出它们相似的运算性质. (得到如下表格)

思维:直角三角形中,090C ∠=,3条边的长度,,a b c ,2条直角边,a b 和1条斜边c ; →3个面两两垂直的四面体中,090PDF PDE EDF ∠=∠=∠=,4个面的面积123,,S S S 和S

3个“直角面”123,,S S S 和1个“斜面”S . → 拓展:三角形到四面体的类比. 3. 小结:类比推理的一般步骤:

1. 找出两类对象之间可以确切表述的相似特征

2. 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想

3. 检测猜想

1012121992.{},0,......(19,*).,{},1,?

n n n n a a a a a a a a n n N b b -=+++=+++<∈=在等差数列中若则有且成立类比上述性质在等比数列中若则存在怎样的等式

第三课时 2.1.2 演绎推理

教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。.

教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.

教学难点:分析证明过程中包含的“三段论”形式.

教学过程:

一、复习准备:

复习:合情推理

归纳推理的一般步骤:

类比推理的一般步骤:

二、讲授新课:

观察与思考

1.所有的金属都能导电, 因为铜是金属, 所以铜能够导电.

2.一切奇数都不能被2整除因为(2100+1)是奇数, 所以(2100+1)不能被2整除.

3.三角函数都是周期函数, 因为tan 三角函数, 所以是tan 周期函数

1. 教学概念:

①概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。

要点:由一般到特殊的推理。

②讨论:演绎推理与合情推理有什么区别?

合情推理?

?

?

归纳推理:由特殊到一般

类比推理:由特殊到特殊

;演绎推理:由一般到特殊.

“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断.

④举例:举出一些用“三段论”推理的例子.

2. 教学例题:

练习

:(0){},.

n n n a cq cq a =≠1.证明通项公式为的数列是等比数列并分析证明过程中的三段论

,,,,:ABC AC BC CD AB ACD BCD ?>∠>∠2.如图在中是边上的高求证,,ABC CD AB AC BC

AD BD ACD BCD

?⊥>>∠>∠证明:在中因为 所以于是指出上面证明过程中的错误。

3. 比较:合情推理与演绎推理的区别与联系?(从推理形式、结论正确性等角度比较;演绎推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路.)

? ①归纳是由特殊到一般的推理; ②类比是由特殊到特殊的推理; ③演绎推理是由一般到

特殊的推理.

? 从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确. 演绎推理是证明数学结论、建立数学体系的重要思维过程.

三、巩固练习:

D B

C

A

第一课时 2.2.1 综合法和分析法(一)

教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.

教学重点:会用综合法证明问题;了解综合法的思考过程.

教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程: 一、复习准备:

1. 已知 “若12,a a R +∈,且121a a +=,则

12

11

4a a +≥”

,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111

....n

a a a +++≥ 2n ) 2. 已知,,a

b

c R +∈,1a b c ++=,求证:

111

9a b c

++≥. 先完成证明 → 讨论:证明过程有什么特点? 二、讲授新课: 1. 教学例题:

① 出示例1:已知a , b , c 是不全相等的正数,求证:a(b 2+c 2)+b(c 2+a 2)≥4abc

② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示:

要点:顺推证法;由因导果.

③ .例2:2221

,,||||()ABC a CA b S a b a b ?===-设CB 求证

④ 出示例3:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形. 2. 练习:、

1.已知a ,b ,c 是全不相等的正实数,求证

3b c a a c b a b c

a b c

+-+-+-++>

2,A B 为锐角,且tan tan tan A B A B ++=60A B +=. (提示:算tan()A B +) 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ???,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题. 三、巩固练习:

1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P44 练习 1题)

2. ABC ?的三个内角,,A B C 成等差数列,求证:113

a b b c a b c

+=

++++. 3. 作业:教材P 46 A 组 1题.

第二课时 2.2.1 综合法和分析法(二)

教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.

教学重点:会用分析法证明问题;了解分析法的思考过程. 教学难点:根据问题的特点,选择适当的证明方法. 教学过程: 一、复习准备:

1. 提问:基本不等式的形式?

2. 讨论:如何证明基本不等式

(0,0)2

a b

a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件) 二、讲授新课: 1. 教学例题:

① 出示例1.

讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件? → 板演证明过程 (注意格式)

→ 再讨论:能用综合法证明吗? → 比较:两种证法

② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 框图表示:

要点:逆推证法;执果索因

.

22

()()0,:.828a b a b a b a b a b

-+->><<例2.已知求证

例3:如图,SA ⊥平面ABC,AB ⊥BC,过A 作SB 的垂线,垂足为E,过E 作SC 的垂线,垂足为F,求证 AF ⊥SC

222224.,(),sin cos 2sin ,

(1)

2

sin cos sin ,

(2)

1tan 1tan :.

1tan 2(1tan )

k k Z π

αβπθθαθθβαβαβ≠+

∈+=?=--=++已知且求证

③ 练习:设x > 0,y > 0,证明不等式:112

23

33

2

()()x y x y +>+. 先讨论方法 → 分别运用分析法、综合法证明.

④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推) ⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求) 2. 练习:

>+1.求证

21

,,,2,(),22a b c S ab S a b c S a ==++<2.设为一个三角形的三边且试证

222tan sin ,tan sin ,()16a b a b ab αααα+=-=-=3.已知求证

3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ???,直到所有的已知P 都成立;

比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意) 三、巩固练习:

1. 设a , b , c 是的△ABC 三边,S

是三角形的面积,求证:2224c a b ab --+≥.

略证:正弦、余弦定理代入得:2cos 4sin ab C ab C -+≥,

即证:2cos C C -≥

cos 2C C +≤,即证:sin()16

C π

+

≤(成立).

2. 作业:教材P 46练习 2、3题.

第三课时 2.2.2 反证法

教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

教学重点:会用反证法证明问题;了解反证法的思考过程. 教学难点:根据问题的特点,选择适当的证明方法. 教学过程: 一、复习准备:

A 、

B 、

C 三个人,A 说B 撒谎,B 说C 撒谎,C 说A 、B 都撒谎。则C 必定是在撒谎,为什么? 分析:假设C 没有撒谎,则C 真. ——那么A 假且B 假; 由A 假,知B 真. 这与B 假矛盾. 那么假设C 没有撒谎不成立; 则C 必定是在撒谎. 二、讲授新课:

1. 教学反证法概念及步骤:

提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.

证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立

应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).

方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实. 注:结合准备题分析以上知识. 2. 教学例题:

332,:2p q p q +=+≤例1.已知求证

例2 已知a ≠0,证明x 的方程ax=b 有且只有一个根。 例3:求证圆的两条不是直径的相交弦不能互相平分.

分析:如何否定结论? → 如何从假设出发进行推理? → 得到怎样的矛盾? 与教材不同的证法:反设AB 、CD 被P 平分,∵P 不是圆心,连结O P ,

则由垂径定理:O P ⊥AB ,O P ⊥CD ,则过P 有两条直线与OP 垂直(矛盾),∴不被P 平分.

222,,,2,2,2,

2

3

6:,,0.

a b c a x y b y z c z x a b c π

π

π

=-+=-+

=-+

例4.若均为实数且求证中至少有一个大于

④ 练习:

1..求证

3.,,,.2

ABC a b c B π

?<

的三边的倒数成等差数列求证

3. 小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题) 三、巩固练习: 1. 练习:教材P 45 1、2题 2. 作业:教材P 46 A 组3题.

第一课时 数学归纳法(1)

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备:

1、已知数列{a n }中,a 1=1,a n+1=a n /(a n +1),试求出a 2,a 3,a 4并猜想{a n }的通项公式

2、费马猜想

1

2234

2222*21 5 2117 21257 2165537

21()n

n N +=+=+=+=+∈都是质数,于是他用归纳推理提出猜想任何形如的数都是质数

225522142949672976416700417n

n =+==?时,是一个合数:

3、思考

? 从一个袋子里第一次摸出的是一个白球,接着,如果我们有这样一个保证:“当你这一次摸出的白球,

则下一次摸出的一定也是白球.”

能判断这个袋子里装的全是白球吗? 4、多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 二、讲授新课:

1、数学归纳法的定义

对于某些与正整数n 有关的命题常常采用下面的方法来证明它的正确性: 先证明当n 取第一个值n 0

时命题成立;

然后假设当n=k(k ∈N*,k ≥n 0

)时命题成立,证明当n=k+1时命题也成立。

数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥

n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立 2. 教学数学归纳法的应用:

例1、用数学归纳法证明1+3+5+……+(2n-1)=n 2

(n ∈N ). 例2:用数学归纳法证明

2222(1)(21)

1236

n n n n +++++

+=

练习:

求证: 11

(11)(1)(1)3

21

n ++???+

>-n ∈N *). 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材96 1

第二课时 数学归纳法(2)

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明几个经典不等式. 教学难点:理解经典不等式的证明思路. 教学过程: 一、复习准备: 二、讲授新课: 1. 教学例题: ①例1:已知数列

1111

,,,,,1×44×77×10(3n -2)(3n +1)

计算1234S ,S ,S ,S ,根据计算的结果,猜想 n S 的表达式,并用数学归纳法进行证明.

例2:是否存在常数a 、b,使得等式:222212n an +n

++…+=1335(2n -1)(2n +1)bn +2

对一切正整数n 都成立,并证明你的结论.

例3:用数学归纳法证明21

31()35

2n n f n ++=?+对任意的自然数n,f(n)都能被17整除

例4:平面内有n 条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)=n(n-1)/2.

高中数学选修2-2推理与证明教案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

命题与证明教学设计与反思(供参考)

教学设计与反思

想一想,议一议判断对错: 1、要证明假命题很简单,只要 举出一个反例就可以了。 2、证明真命题也很简单哪,只要 举一个正确的例子就可以了。 同学们,那句话是正确的?怎样 才能确定一个命题是真命题呢? 得出“证明”的定义: 一个命题的真假,常常需要进行 有理有据的推理才能作出正确 的判断,这个推理的过程叫做命 题的证明。 思考这两个问题的对 错,讨论各自的想法 并初步总结:如何判 断一个命题是真命题 呢? 由此引出“证明” 使学生通过思考 问题、互相讨论总结 出“证明”的定义, 加强前后知识的衔 接,使学生更清晰的 认识“证明”。 做一做归纳总结出示幻灯片: 例1 证明:平行于同一条直线 的两条直线平行。 证明一个命题的步骤是什么? (1)依据题意画图,将文字语 言转换为符号(图形)语言。 (2)根据图形写出已知、求证。 (3)根据基本事实、已有定理 等进行证明。 例2:求证:邻补角的平分线互 相垂直。 思考后互相讨论,总 结归纳出证明一个命 题的步骤,然后按照 步骤完成例2。 通过例题教学, 突出和落实“证明” 的两方面特征,并引 导学生充分认识并掌 握“证明过程”是如 何进行的。 练习1、已知:如图,∠1=∠2, 求证:AB∥CD 2、已知,如图,直线AB,CD 被EF、GH所截, ∠1=∠2 。 求证:∠3=∠4 要求学生自己动手, 实践“证明”,在练 习中使学生规范做题 步骤。 学生做题时可以 自行选择不同的证明 方法,使学生对证明 步骤熟悉的同时,培 养学生的灵活能力。 检测学生对证明步骤 的掌握情况。 课堂小结 以问题的形式引导学生自 主总结本节课所学内容:这节课 你们学到了什么?有何收获? 学生各自发表自己的 收获,总结本节课的 知识点 引导学生思考、 交流、梳理所学知识, “勤于思考,收获快 乐”,使学生的积极 情感体验得到升华。

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

5.3.2 命题、定理、证明(教案)

5.3.2 命题、定理、证明 【知识与技能】 1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理. 2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式. 【过程与方法】 通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理. 【情感态度】 通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用. 【教学重点】 命题的定义,命题的组成. 【教学难点】 命题的判断,真假命题的判断,命题的题设和结论的区分. 一、情境导入,初步认识 问题1 分析下列判断事情的语句,指出它们的题设和结论. (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行. (2)两条平行线被第三条直线所截,同旁内角互补. (3)对顶角相等. (4)等式两边加同一个数,结果仍是等式. 问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题. (1)画线段AB=5cm. (2)两条直线相交,有几个交点? (3)如果直线a∥b,b∥c,那么a∥c. (4)直角都相等. (5)相等的角是对顶角.

【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案. 二、思考探究,获取新知 思考 1.真命题与定理有什么样的关系. 2.对题设和结论不明显的命题,怎样找出它们的题设和结论. 【归纳结论】1.命题:判断一件事情的语句,叫做命题. 2.命题由题设和结论两部分组成 3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题. 4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理. 对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了. 三、运用新知,深化理解 判断下列命题是真命题还是假命题,如果是假命题.举出一个反例. (1)若a>b,则a2>b2. (2)两个锐角的和是钝角. (3)同位角相等. (4)两点之间,线段最短. 【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断. 【答案】略. 四、师生互动,课堂小结 请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上. 1.布置作业:从教材“习题5.3”中选取. 2.完成练习册中本课时的练习.

推理与证明教案

推理与证明合情推理(一) 教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用. 教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入: 1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”. 二、讲授新课: 1. 教学概念: ①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理. ②归纳推理的几个特点; 1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上 归纳推理的一般步骤: ⑴对有限的资料进行观察、分析、归纳整理; ⑵提出带有规律性的结论,即猜想; ⑶检验猜想。

归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论? (ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? (iii )观察等式:2221342,13593,13579164 +==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题: ① [例1] 观察图,可以发现:1=12,1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, … 由上述具体事实能得出怎样的结论? ② 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n n a a n a += =+ ,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构 造新数列)

2018届一轮复习北师大版第六章不等式推理与证明第五节合情推理与演绎推理教案

第五节合情推理与演绎推理 ☆☆☆2017考纲考题考情☆☆☆ 自|主|排|查 1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理。

②特点:是由部分到整体、由个别到一般的推理。 (2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理。 ②特点:是由特殊到特殊的推理。 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。 (2)“三段论”是演绎推理的一般模式 ①大前提——已知的一般原理。 ②小前提——所研究的特殊情况。 ③结论——根据一般原理,对特殊情况做出的判断。 微点提醒 1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明。 2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误。

3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的。若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的。 小|题|快|练 一、走进教材 1.(选修2-2P77练习T1改编)已知数列{an}中,a1=1,n≥2时,an=an -1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是( ) A.an=3n-1 B.an=4n-3 C.an=n2 D.an=3n-1 【解析】a1=1,a2=4,a3=9,a4=16,猜想an=n2。故选C。 【答案】 C 2.(选修2-2P84A组T5改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,且n∈N*)成立。类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________。 【解析】根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…bn=b1b2…b17-n(n<17,且n∈N*)。 【答案】b1b2…bn=b1b2…b17-n(n<17,且n∈N*) 二、双基查验 1.数列2,5,11,20,x,47,…中的x等于( )

下册《命题定理证明》教学设计

人教版义务教育课程标准教科书七年级下册 532命题、定理、证明教学设计 责任学校小街中学________ 责任教师_______ 段永杰_________ 一、教材分析 1、地位作用:对于命题的相关知识,教材是分散安排的,本课时主要是命题的概念、命题的构成、真假命题的判断、什么是定理、初步感知证明过程,大部分 内容是要求学生有一个初步的了解,不必探究,主要培养学生不同几何语言的转化,是后续学习的基础.总之,在这一部分,学生对命题的概念、命题的构成、命题的真假、定理、证明有一个初步的了解,就达到了教学要求. 2、教学目标: 1、知识技能:①理解命题的概念及构成;②会判断所给命题的真假;③初步感知什么是证明. 2、数学思考:①通过对命题及其真假的判断,提高学生的理性判断能力;②通 过对证明的学习,培养学生严谨的数学思维. 3、解决问题:①初步体会命题在数学中的应用、用证明论证自己的判断;②为今后的学习打好基础,发展应用意识? 4、情感态度:通过对命题、定理、证明的学习,让学生学会从理性的角度判断一件事情的真假,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心? 3、教学重、难点 教学重点:①命题的概念、区分命题的题设和结论;②判断命题的真假;③理解证明过程要步步有据? 教学难点:区分命题的题设和结论、理解证明过程

突破难点的方法:采用日常话语引导、多做练习突破 二、教学准备:多媒体课件、导学案、三角板 三、教学过程

(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条; (2)如果两个角互补,那么它们是邻补角;思考感悟 仔细判断 仔细判断, 认识定理 独立思考 动手尝试 为今后性质的准 确应用奠定基 础. 动手操作, 加深理解 提炼方法

命题定理与证明教案完整版

命题定理与证明教案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

《命题、定理与证明》教案 教学目标 知识与技能: 1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法; 2、了解命题、公理、定理的含义;理解证明的必要性. 过程与方法: 1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识. 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 难点 命题概念的理解; 理解证明的必要性. 教学过程 【一】 一、复习引入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180 度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. D C B A

1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题. 教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论. 有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.” (二)实例讲解 1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论. 学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”. 2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等; (2)如果a>b,b>c,那么a=c;

命题、定理、证明教学设计

课题 5.3.2命题、定理、证明授课人 教学目标知识技能 掌握命题、定理的概念,并能分清命 题的题设和结论,判定真命题和假命题; 能根据已知条件对简单问题进行证明.数学思考 通过讨论、探究、交流等形式,使学 生在辩论中获得知识体验. 问题解决 用类比的方法,经历自主学习、合作 探究,领悟命题的有关概念. 情感态度 在学习过程中培养学生敢于怀疑、大 胆探究的品质,培养合作、交流的能力, 从活动中体会学习的快乐. (续表) 教学 重点 掌握命题、定理的概念,并能分清命题的组成. 教学 难点 分清命题的组成,并能把一个命题改写成“如果……那么……”的形式. 授课 类型 新授课课时教具 教学活动 教学 步骤 师生活动设计意图 活动一:创设情境导入新课【课堂引入】 以下6个句子,有什么不同?你能对它们进行分类 吗?如果你能分类,分类的依据是什么? (1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线 都和第三条直线平行,那么这两条直线也互相平行; (4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空 气;(7)不许讲话. 指出像这样判断一件事情的语句,叫做命题. 既复习了已学 知识,又让学生认识 了命题的多种表现 形式. 活动二:实践探究交流新知 【探究1】命题的概念 下列句子中,哪些是命题? ①直角三角形中的两个锐角互余; ②正数都大于0; ③如果∠1+∠2=180°,那么∠1与∠2互补; ④太阳不是行星; ⑤对顶角相等吗? ⑥作一个角等于已知角. 1.通过各类型 的语句探究命题的 概念.

分析:①②③是命题,它们都对事情作出了肯定回 答;④是命题,它对事情作出了否定回答;⑤不是 命题,只表示疑问,并未作出判断;⑥不是命题, 只是描述了一个作图的过程,设有做出判断. 解:①②③④是命题,⑤⑥不是命题. 师生共同总结判断命题的依据:对事件做出了肯定 或否定的判断的句子为命题,否则不是命题. 【探究2】命题的题设和结论 命题由题设和结论两部分组成,其中“题设”是已 知事项,即命题中的已知条件;“结论”是由已知 事项推出的事项,即结论是在已知条件的前提下可 得到的结果.命题的表述形式有标准形式:“如 果……那么……”,另外还有“若……则……”等, 一般地,“如果……”和“若……”是题设部分,“那 么……”和“则……”是结论部分.一些命题前面 的“附加部分”属题设.要准确找出一个命题的题 设和结论,特别是一些没有关联词语、题设和结论 不明显的命题. (续表) 活动二:实践探究交流新知 例2判断下列语句是不是命题,是命题的 指出命题的题设和结论,并判断此命题是否是 真命题. (1)画射线AC; (2)同位角相等吗? (3)两条直线被第三条直线所截,如果同旁内角 互补,那么这两条直线平行; (4)任意两个直角都相等; (5)如果两条直线相交,那么它们只有一个交点; (6)若|x|=|y|,则x=y. 解:(1)(2)不是命题; (3)题设是两条直线被第三条直线所截,同旁内 角互补,结论是这两条直线平行,是真命题; (4)题设是两个角是直角,结论是这两个角相等, 2.师生通过例 题共同探究命题的 题设和结论的确定 方法. 3.引导学生区分命 题与定理的关系,且 体会数学命题证明 的必要性.

高中数学北师大版选修1-2《推理与证明复习一》试卷讲评课教案

试卷讲评课教案

精美句子 1、善思则能“从无字句处读书”。读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。读大海,读出了它气势磅礴的豪情。读石灰,读出了它粉身碎骨不变色的清白。 2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。幸福是“零落成泥碾作尘,只有香如故”的圣洁。幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。幸福是“人生自古谁无死,留取丹心照汗青”的气节。 3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。 4、成功与失败种子,如果害怕埋没,那它永远不能发芽。鲜花,如果害怕凋谢,那它永远不能开放。矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。航船,如果害怕风浪,那它永远不能到达彼岸。 5、墙角的花,当你孤芳自赏时,天地便小了。井底的蛙,当你自我欢唱时,视野便窄了。笼中的鸟,当你安于供养时,自由便没了。山中的石!当你背靠群峰时,意志就坚了。水中的萍!当你随波逐流后,根基就没了。空中的鸟!当你展翅蓝天中,宇宙就大了。空中的雁!当你离开队伍时,危险就大了。地下的煤!你燃烧自己后,贡献就大了 6、朋友是什么?

推理与证明教学设计范本(高中数学)

教学设计说明 一、本节课数学内容的本质、地位和作用的分析 推理是根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式. 数学、哲学和心理学等学科对其都有研究,它更是人类思维的基本形式. 人们在日常活动和科学研究中经常使用的推理有合情推理和演绎推理. 合情推理是人 类发现新知的一个重要途径. 它既有猜测和发现结论的作用,又有探索和启发思路的作用. 本节课所学习的归纳推理是合情推理的一种. 归纳推理是由部分到整体、由特殊到一般的思维过程,通过归纳推理可以发现新知识,获得新结论. 推理与证明的内容属于数学思维方法的范畴,贯穿数学教学的始终,遍布数学知识的每个领域. 旧教材将其渗透在具体的数学内容中分散处理,如:综合法和分析法放在“不等式”一章,“反证法”作为“简易逻辑”的一部分,“合情推理”更是很少涉及. 新课程将其统一纳入教材,集中讲授,我认为这对学生系统掌握其方法是很有必要的. 尤其是“合情推理”这一新加入内容,有助于学生从单纯的解答现成的问题,扩展到能够独立的提出一些问题. 很多大数学家(比如拉格朗日,波利亚)都强调合情推理是他们发现新问题的重要手段,波利亚更是在其名著《数学与猜想》中拿出很多章节对合情推理的模式进行一一总结. 如果学生掌握了这些方法,并能够在今后有意识的使用它们,不仅能培养其言之有据,论证有理的思维习惯,而且对开发学生创新性思维,为社会培养创新型人才都有很强的现实意义. 二、教学目标分析 新课程中,合情推理分为归纳推理和类比推理两讲,本节课是第一部分,对它是初步了解. 所以我把教学重点放在对归纳推理的概念理解和应用上.而提高学生从特 殊到一般的归纳能力则是本节课的教学难点,教学的关键是引导学生自己探索、观察、发现、归纳. 归纳推理作为发现新知的一种途径,有时探索的过程是漫长而曲折的,课堂上设置了有一定难度的“汉诺塔问题”,正是希望学生通过一番“辛苦”的努力才能得到结论. 这样的安排有利于提高学生的数学素养和锻炼学生的意志品质. 根据以上想法,结合我校学生的实际情况,我制定了如下教学目标: (1)了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单

命题、定理、证明1-人教版七年级数学下册优秀教案设计

5.3.2命题、定理、证明 1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点) 2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点) 一、情境导入 2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义? 二、合作探究 探究点一:命题的定义与结构 【类型一】命题的判断 下列语句中,不是命题的是() A.两点之间线段最短 B.对顶角相等 C.不是对顶角不相等 D.过直线AB外一点P作直线AB的垂线 解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D. 方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”. 【类型二】把命题写成“如果……那么……”的形式 把下列命题写成“如果……那么……”的形式. (1)内错角相等,两直线平行; (2)等角的余角相等. 解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行; (2)如果两个角是相等的角,那么它们的余角相等. 方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺. 【类型三】命题的条件和结论

直接证明和间接证明(4个课时)课程教案

2.2直接证明与间接证明 教学目标: (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法证明简单的不等式; (3)能根据实际题目灵活地选择适当地证明方法; (4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议: 1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用) 2.重点、难点分析 重点:不等式证明的主要方法的意义和应用; 难点:①理解分析法与综合法在推理方向上是相反的; ②综合性问题证明方法的选择. (1)不等式证明的意义 不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立. (2)比较法证明不等式的分析 ①在证明不等式的各种方法中,比较法是最基本、最重要的方法. ②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的 a-b>0.这种证法就是求差比较法. 由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件. ③求差比较法的基本步骤是:“作差→变形→断号”. 其中,作差是依据,变形是手段,判断符号才是目的. 变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可. ④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析 ①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法. ②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式. ③综合法证明不等式的逻辑关系是: (已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析

《命题 定理与证明》优秀教案

5.3.2《命题、定理、证明》第一课时教案教学目标 知识与技能: 1、了解命题、定理的含义;对命题的概念有正确的理解;会区分命题的条件和结论; 2、知道判断一个命题是假命题的方法;理解证明的必要性. 过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 教学重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 教学难点

命题概念的理解; 理解证明的必要性. 教学过程 一、复习导入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. 1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行;

(2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式. 像这样判断一件事情的语句,叫做命题。 问题2 判断下列语句是不是命题? (1)两点之间,线段最短;() (2)请画出两条互相平行的直线;() (3)过直线外一点作已知直线的垂线;() (4)如果两个角的和是90o,那么这两个角互余.()问题3 你能举出一些命题的例子吗? 问题4 请同学们观察一组命题,并思考命题是由几部分组成的? (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)如果两个角的和是90o,那么这两个角互余; (4)等式两边都加同一个数,结果仍是等式.

2017_2018学年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2_2

2.3 数学归纳法 预习课本P92~95,思考并完成下列问题 (1)数学归纳法的概念是什么?适用范围是什么? (2)数学归纳法的证题步骤是什么? [新知初探] 1.数学归纳法的定义 一般地,证明一个与正整数n有关的命题,可按下列步骤进行 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法. 2.数学归纳法的框图表示

[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项. (3)利用假设是核心 在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√ 2.如果命题p (n )对所有正偶数n 都成立,则用数学归纳法证明时须先证n =________成立. 答案:2 3.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52 ,f (16)>3,f (32)>72 ,由此推测,当n >2时,有______________.

推理与证明教案及说明

第二章推理与证明 人教A版选修2-2 合情推理(第一课时)——归纳推理 参评教师:中卫市第一中学俞清华

教案说明 一、授课内容的数学本质与教学目标定位 推理是由一个或几个已知的判断推出一个新的判断的思维形式,它不是数学所独有的,它是人们进行思维活动时对特定对象进行反映的基本方式。思维的基本规律是指思维形式自身的各个组成部分的相互关系的规律,即用概念组成判断,用判断组成推理的规律。它有4条:即同一律、矛盾律、排中律和充足理由律。 推理通常分为合情推理和演绎推理,本节课所要学习的归纳推理便是合情推 理的一种。归纳推理是由个别到一般的推理,前提是其结论的必要条件。首先,归纳推理的前提必须是真实的,否则,归纳就失去了意义。其次,归纳推理的结论超过了前提所判定的范围,因此在归纳推理中,前提和结论之间的联系不是然的,而是或然的,重在合乎情理。 本节课是本章内容的第一课时,按照新课标的要求,结合学生的具体情况,我制定了如下的教学目标: 【知识与技能】 结合生活实例了解推理含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用。 【过程与方法】 通过探索、研究、归纳、总结等方式使归纳推理全方位、立体式的呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;充分培养学生发散思维能力,挖掘学生的创新思维能力。【情感、态度与价值观】 通过学习本节课培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学习兴趣,认识数学的科学价值、应用价值和文化价值;通过探究学习培

养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。 二、本节课的地位和作用 学习形式逻辑知识,可以指导我们正确进行思维,准确、有条理地表达思想;可以帮助我们运用语言,提高听、说、读、写的能力;可以用来检查和发现逻辑错误,辨别是非。同时,学习形式逻辑还有利于掌握各科知识,有助于将来从事各项工作。 推理与证明的学习一直贯穿高中数学的过程中,但在旧教材中一直没有集中系统的阐述,随着科学发展对人才思维水平要求的提高,新课改将这部分内容纳入教材是具有积极的现实意义的。高中阶段所学习的推理与证明属于数学思维方法的范畴,即把过去渗透在具体数学内容中的思维方法,以集中显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们,以培养言之有理、言之有据的习惯。 推理不是数学独有的,它广泛地存在于科学发展的过程、生产生活的实践之中,所以在授课时我旁征博引,列举了许多生活中的、科学发展史上的、其他科学中涉及的推理,力求通过学习,使学生架起数学与科学、数学与生活的桥梁,形成严谨的理性思维和科学精神。 三、教学诊断分析 通过大量列举生活、科学中的实例,学生对推理以及归纳推理的含义和结构是很容易理解的,学习过程中可能会在下面几个方面遇到障碍: 1.对归纳推理形式的理解:归纳推理是由个别到一般的推理,那么个别究竟有多少,原则上说能够发现共性并能归纳出一般结论即可,对个体的数目没有严格要求,但是参与归纳的个体的数量越多,归纳得到的结论就越可靠。 2.归纳推理所得结论的或然性可能让学生产生思维上的冲突,归纳推理的结论超出了前提的判定范围,所以必然会导致结果的或然性,但这不是归纳推理的弊端,不能因此否定归纳推理的作用,归纳得到的结论可以有严格的演绎推理来证明。 3.归纳推理的作用:对于归纳推理的作用,不能片面认为“万能”的,也不能由于归纳结论的或然性而否定其在科学中的发现作用,所以通过例题的设置、同学的分析和讨论、教师的必要讲解,要让学生对归纳推理有一个全方位的立体的认识。 四、教法特点与效果分析 在教学过程设计方面根据教学内容我设计了四个教学环节,分别是“创设情境,导入新课”、“合作探究,收获新知”、“课堂回眸,感悟提高”、“布置作业,学以至用”,其中“合作探究,收获新知”是设计的主体,在这里,根据学生的认知能力和认知水平,

命题与证明全章教案

第4章命题与证明 目录 4.1定义与命题(1) .............................................................. 错误!未定义书签。 4.1 定义与命题(2) ............................................................. 错误!未定义书签。 4.2证明(1)........................................................................... 错误!未定义书签。 4.2证明(2)........................................................................... 错误!未定义书签。 4.2证明(3)........................................................................... 错误!未定义书签。 4.3反例与证明......................................................................... 错误!未定义书签。 4.1定义与命题(1) 【教学目标】 1.了解定义的含义. 2.了解命题的含义. 3.了解命题的结构,会把一个命题写成“如果……那么……”的形式. 【教学重点、难点】 ?重点:命题的概念. ?难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…”形式学生会感到困难,是本节课的难点. 【教学过程】 一、创设情景,导入新课(1)阅读新华社酒泉2005年10月11日这篇报导: 神舟六号载人飞船将于10月12日上午发射,……神舟六号飞船搭乘两名航天员,执行 多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°、 近地点高度为200千米、远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米 的圆轨道. 要读懂这段报导,你认为要知道哪些名称和术语的含义? (2)什么叫做平行线?(在同一平面内不相交的两条直线叫做平行线). 什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度). 二、合作交流,探求新知 1.定义概念的教学

高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

1.2 类比推理 类比推理 三角形有下面两个性质: (1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的1 2 . 问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的1 3 . 问题2:由三角形的性质推测四面体的性质体现了什么? 提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊. 定义 特征 由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推 理过程称为类比推理. 类比推理是两类事物特征之间的推理. 合情推理 合情推理的含义 (1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式. (2)归纳推理和类比推理是最常见的合情推理. 1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠; 2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.

平面图形与空间几何体的类比 [例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2 . [思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质: (1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合. (2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形. 通过与圆的有关性质类比,可以推测球的有关性质. 圆 球 圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线 垂直于截面 与圆心距离相等的两条弦长相等 与球心距离相等的两个截面的面积相等 圆的周长C =πd 球的表面积S =πd 2 圆的面积S =πr 2 球的体积V =43 πr 3 [一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下: 平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积 面积 体积 三角形 四面体 线线角 面面角 平行四边形 平行六面体 圆 球

2019-2020学年高中数学 第一章 推理与证明 1.1 归纳与类比 归纳推理教案 北师大版选修2-2.doc

2019-2020学年高中数学第一章推理与证明 1.1 归纳与类比归纳 推理教案北师大版选修2-2 一、教学目标 1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用. 2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。 二、教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。 教学难点:培养学生“发现—猜想—证明”的归纳推理能力。 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、引入新课 归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。 拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。这里就有着归纳推理的运用。 从一个或几个已知命题得出另一个新命题的思维过程称为推理。 见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理(二)、例题探析 例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。 解:考察一些多面体,如下图所示:

相关文档
最新文档