倒立摆控制

倒立摆控制
倒立摆控制

倒立摆控制

Johnny Lam 摘要: 倒立摆沿着水平轨道车移动时的平衡问题是控制领域中的经典问题。本文将介绍两种方法,使系在小车上的倒立摆从初始向下位置摆到直立位置,

并保持该状态。通过非线性启发式控制器和能量控制器,可以使倒立摆摆向直

立位置。倒立摆摆动起来后,通过线性二次型调节器的状态反馈最优控制器维

持其平衡状态。在合适的时间,启发式控制器输出一个重复信号,然后通过微

调使摆锤到达最合适的位置。通过能量控制器增加合适的能量到倒立摆系统,

来达到所期望的能量状态。最优状态反馈控制器是基于各地的直立位置线性模

型一个稳定的控制器,它在车摆系统接近平衡状态时能产生效果。这两种方法

都在倒立摆摆在向下位置时记录实验结果。

1.简介

倒立摆系统是在控制系统领域中的一个标准问题。在证明线性控制的思想

上它经常常是很有效的,例如使不稳定的系统的稳定化等。由于该系统本质上

是非线性的,它也一直在说明一些结论在非线性控制方面也是有效的。在这个

系统中,倒立摆附着到配备有马达驱动的沿水平轨道行驶的小车上。用户能够

通过电机来控制小车的位置和速度还能通过轨道来控制小车在水平方向上运动。传感器被连接到小车和小车的中心上来测量小车的位置和钟摆关节的角度。测

量采用连接到MultiQ - 3通用数据采集和控制电路板上的正交编码器。Matlab / Simulink用于实现控制和分析数据。

倒立摆系统本身有两个平衡点,其中之一是稳定的,而另一个是不稳定的。稳定平衡对应于一个状态,其中摆锤向下。在没有任何外力的情况下,该系统

会自然返回到这个状态。稳定平衡不需控制输入来实现,因此,从控制的角度

来看是没有意义的。不稳定的平衡对应于另一个状态,其中摆点完全向上,因此,需要控制输入力的大小,来保持在这个位置。倒立摆系统的基本控制目标

是使倒立摆在不稳定平衡位置上平衡。该项目的控制目标将侧重于从稳定的平

衡位置(摆朝下)起,摆动到它的不稳定的平衡位置(直立摆),并保持在这种状态。

2.建模

倒立摆的示意图如图1所示:

图1.倒立摆安装

小车上的电机使得小车沿水平方向运动,而小车的位置p和关节角θ测量是通过一个正交编码器拍摄的。运用动力学规律对倒立摆系统建立如下运动方程:

其中Mc是小车的质量,Mp是摆锤的质量,I是转动惯量,l是摆锤的一半长度,R是电动机的电枢电阻,r是电动机小齿轮的半径,Km为电机的转矩常数, KG是齿轮箱传动比。另外,为了简单起见,

并注意,对电机来说,力F和电压V间的关系是:

让所述状态向量被定义为:

最后,我们使有关不稳定平衡(0 0 0 0)T的系统线性化。在垂直位置的车摆系统的线性化方程是:

而:

最后,通过代入相对应本实验装置的参数值:

该系统使我们能够设计一个能通过控制器使各线性化点平衡的倒立摆。

3.稳定控制器的设计

在这个项目中,该控制器的设计可以分为两个部分。其中第一部分是线性模型中的最优状态反馈控制器的设计,它可以使倒立摆稳定在直立位置。第二

部分是控制器的设计,它可以使倒立摆动到不稳定平衡的位置。当摆锤接近线性化点时,控制器将切换到稳定控制器,使倒立摆在直立位置平衡。

负责倒立摆在直立位置平衡的状态反馈控制器是基于通过线性化系统设计的线性二次型调节器(LQR)来设计的。在LQR设计中,遵循线性状态反馈控制律u=-Kx的增益矩阵K是可以找到的最小化形式的二次价值函数。

其中Q和R是在某些状态或控制输入时要去除的加权参数。

在最优状态反馈控制器的设计中,选择的加权参数为:

根据这个设计,控制器增益矩阵线性化系统为:

通过使用K并且遵循控制律u=-Kx,该系统在线性化点(摆锤直立)上是稳定的。由于该控制律是基于线性化系统时,当摆接近直立位置,状态反馈最优控制器是唯一有效的。

4.状态估计

对于倒立摆实验装置,并非所有的状态变量都可用于测量。事实上,只有小车位置p和摆锤角度θ可以用于直接测量。这意味着在刚刚超越任何稳定控制的方案中,小车速度和摆角速度都不可立即使用。因此,观察者需要在所有车摆的位置的状态提供准确的估计。

基于前面得到的线性系统,可以使用线性全状态观测器。在这种设计中,

观察器只需提供在所有状态中的线性化点的准确估计。观察器通过重复实施线

性系统动力学规律,并在修正项中加入估计上的错误收益。该观测器增益矩阵

是由LQR设计决定的,类似于用于确定最佳状态的增益反馈状态控制器。在这

种情况下,加权参数选择为:

基于这种设计,观测器增益矩阵是:

由于线性全状态观测器是基于线性化系统,当车摆系统接近直立位置,估

计状态变量时,它是唯一有效的。因此,当系统不接近不稳定的平衡位置时,

低通滤波后的参数是用来估计两个不可测状态小车速度和摆锤角速度的。此方

法近似于车速度和摆角速度通过使用有限差,然后通过低通滤波器传递给它。

下面的过滤器是选择了这种估计方法:

用这样的方法存在的问题是,它引入了一些延迟而且具有比1稍小的增益。但是,从过滤后的参数获得的状态估计对于本文实现的摆起控制器是相当准确的。

5.摆起控制器设计

要使倒立摆从向下位置摆动到垂直位置,可以通过两种不同的控制方案来

实现。第一是一种启发式控制器,它在适当方向上提供恒定电压来驱动小车沿

轨道来回反复。它会重持续个命令,直到摆锤足够接近直立位置,使稳定控制

器可以使其保持这种平衡的状态。第二个方案是一种调节摆锤能量的控制器。

控制器持续输入能量到车摆系统,直到它达到对应于在垂直位置摆的能量状态。类似于启发式控制方法,当倒立摆接近垂直位置时,能量控制方法也将切换到

稳定控制器。当摆锤与垂直位置夹角小于5°或者角速度大于每秒 2.5弧度时,稳定控制器的开关将被激活。

启发式控制器

启发式控制器是基于逻辑的控制设计,根据系统的状态来确定推车移动的

方向和时刻。基于反复试验的结果,一个特定的电压增益应用到小车电机。每

当摆锤穿过向下的位置,该控制器将驱动倒立摆向前或向后摆动。

这个以逻辑为基础的控制设计是完全依赖于摆角的。当摆锤穿过向下位置时,该控制器将改变车的运动方向。由于这种控制的设计是基于摆角这个唯一

参数,要通过在适当的方向移动小车来增加能量到摆锤,那么向下的位置是最

佳的时刻。摆锤穿过向下位置后,车移动的方向立即变为与摆角相反的方向。

当小车运动的方向是确定的,在小车马达上施加同一方向上的恒定的电压增益,直至摆锤返回到向下的位置。这种控制方案将有效地控制小车沿轨道来回反复,直到摆锤摆动足够接近直立位置。

要注意,该控制方案的本质是不管摆锤是否高于或低于该水平轴施加(自

摆角的符号保持不变),小车都要有相同的运动。然而车摆系统的本质是一旦

摆锤低于水平增加能量到车摆时,实际上相同的车运动会从摆锤中带走能量。

最终,钟摆会达到一个无法吸收更多能量的点,但它尚未积累足够的能量到达

垂直位置。为了避免这种现象,当车摆与向下位置夹角为135°,需增加一个

开关来使输入到小车马达电压为0。因此,当车摆超过135度时,小车不会需

要从车摆系统吸收能量来移动。这将能使车摆返回到向下位置,而不会失去能量。当摆锤再次穿过向下位置时,基于逻辑的控制器将能够把更多的能量加到

摆锤,使它能够最终接近垂直位置。

这种控制方案的电压增益是由反复实验确定。车摆需要摆动至其直立位置

和电压增益的幅度之间有直接的关系。增益太高可能使摆接近垂直位置有太高

的速度导致稳定控制器无法平衡摆。另一方面,增益太低可能无法提供足够的

能量使摆到达垂直位置。另外,控制器在执行任务的可靠性会因为所选择的增

益而变化。因此,需要反复实验来微调增益,使钟摆到达直立位置时具有适当

的速度并且以较高成功率和合理的时间到达。

能量控制器

通过控制系统中的能量也可使摆锤从向下位置摆动起来。通过使用反馈控制,车摆系统中的能量可以被控制到所希望的值。通过添加对应于直立位置时

的能量,摆锤能够摆动到它的不稳定平衡的位置。当摆锤接近直立位置,前面

设计的稳定控制器可以驱动车摆并且使它在不稳定平衡的位置上平衡。

该系统的能量E在直立位置上是零。摆锤的能量可以写成:

并且:

Mp是摆的质量,l为摆的半长,g是重力加速度,而I是转动惯量。因此,该摆锤的能量是基于摆角和摆角速度的函数。还要注意的是,钟摆对应于向下

的位置的能量是 - 2mpgl。该控制方案的目标是补充能量进入系统,直到该值

等于摆在直立位置时的能量。

满足以下方程来达到所需的能量

其中,k是一个设计参数,E0是所需的能量。该控制输出a是枢转的加速度,可以通过使用等式(4)来转换为一个输入到小车中电动机电压,方程为:

在该控制方案中,satV函数被定义为提供给小车的饱和电压值。在任何时候,该控制器基本上采用摆角和摆角速度来确定车应该移动的方向。仍需要一

个随着需要达到能量状态的能量来缩放比例控制器来决定施加于电动机车的电压。在satV参数中V的值决定了可用控制信号的最大值并因此增加了摆系统能量的最大值。 k的值决定了为达到所需的能量状态的最大控制输入端。对摆锤

的能量增加至所需值来说,这种控制是有效的。当被用作一个摆起控制方法时,其期望的值对应于摆锤在其直立位置的能量。此时开关将被触发,从而使稳定

控制器可以用来驱动摆并且使它在不稳定平衡点平衡。

6.实验结果

结果是从两个摆起控制方法的实验中收集的。数据是从实验的每个控制方

案中钟摆在最初向下位置,垂直位置和各不稳定平衡点平衡各处中收集的。

通过提供3.26V电压来微调启发式控制器使车摆摆动。通过恒定电压增益

反复试验表明,稳定控制器在车摆摆到直立位置使其保持平衡状态在约75 %

的时间方面是成功的。实验运行的启发式控制器在控制器输出的情况如图2所示:

图2.控制启发式控制器输出的情况

要注意的是,摆起控制器需要约12.5秒到达直立位置。该稳定控制器清晰地捕捉到摆在直立位置的点。此外,输出到小车马达上的电压在3.26 V和-

3.26V之间,并且通过摆角来确定。在不到7秒时间内,摆角从向下位置超出135°,控制输出也开始输出从0 V逐渐增大。因此,钟摆需要大约另外 5.5s,超越向下位置135°(在5 °的垂直位置之内)。

图3为摆角对应的标绘图。略微增加摆动的摆角直到摆锤接近它的不稳定

的平衡。该控制器需要大约13次改变使摆足够接近的直立位置从而稳定控制器可以驱动它。其中稳定的控制器被激活是很明显的一点。另外,一旦被激活,

摆角仍然在平衡位置上相当稳定。

图3. 启发式控制器的摆锤角度的情况

能量控制器的所述设计参数中k选择为6.5。另外,比如在摆锤系统的摩擦和在方程(18)作出近似的结果,所需的能量弥补到一个比0略高的值。可以通过实验来确定适当的偏移量。在这些实验中,偏移被提升到E0 =0.70。反复试验表明,该控制器在至少90%的时间内是可靠的。实验运行中使用该能量控制器中的控制器输出标绘图如图4:

图4. 能量控制器的控制输出的情况

值得注意的是,能量控制需要大约10秒到达竖直位置。最初控制输出在

5.5 V和-5.5 V之间改变,因为它试图通过使用其最大控制输出(在这种情况下,饱和度被定义为5.5 V)尽可能快地提高系统的能量。当摆锤接近竖直位

置时,由于控制输出是基于系统的能量和所期望的值之间的差异的,因此控制

输出开始减小。与启发式控制器一样,该稳定控制器被激活的点是清晰可辨的。

该能量控制器的摆角对应的标绘图示于图5。需要注意的是,每个摆动的

摆角略有增加。在钟摆接近垂直位置时,该控制器需要大约12次摆动。显然,

一旦能量控制器成功将钟摆摇到竖直位置,稳定的控制器能够使摆平衡。

图5. 能量控制器对摆锤角度控制的情况

7.总结

两个摆起控制方案已经实施,当钟摆接近竖直位置时,将切换到一个稳定控制器,平衡倒立摆。两个控制器都能够成功地将摆从最初向下位置摆至垂直位置,并在该点平衡。在成功摆摆至垂直位置方面,能量控制器比启发式控制器更强大和可靠。数据表明,能量控制器也比启发式控制器稍快。能量控制器的另一个优点是,即使在用完轨道长度,并开始在轨道的端部碰到墙壁时,它能够到达直立位置的。然而本文中的启发式控制器,一旦小车碰到在轨道的端部就将导致实验失败。这两个摆起方法仍需要多次摆动来到达垂直位置,也需要一个稳定控制器在直立位置控制摆。总体上可以看出,在控制摆摆动到不稳定平衡位置上能量控制器其比启发式控制器更方便。但是,这两个控制器都可以有效地控制摆锤从向下位置摆动到垂直位置。

8.参考文献

Astrom, K.J. and K. Furuta, “Swinging up a Pendulum by Energy Control”, Automatica, Vol. 36, 2000

Smith, R. S, ECE 147b/ECE 238 Course Webpages,

https://www.360docs.net/doc/563198026.html,/people/smith/

Eker, J, and K.J. Astrom, “A Nonlinear Observer for the Inverted Pendulum”, 8th IEEE Conference on Control Application, 1996

Chung, C.C. and J. Hauser, “Nonlinear Control of a Swinging Pendulum”, Automatica, Vol. 31, 1995

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

一级倒立摆控制方法比较

一级倒立摆控制方法比较 摘要:倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。针对一级倒立摆系统,首先利用牛顿力学的知识建立了数学模型,然后利用Simulink 及其封装功能建立倒立摆的仿真模型,使模型更具灵活性,给仿真带来很大方便。根据状态方程判断系统的能控、能观性。通过LQR控制算法和极点配置设计控制器使系统达到稳定状态,分析两种方法的优缺点,并利用Matlab仿真加以证实。 关键词:倒立摆; LQR ;极点配置 ;Matlab DISCUSSION ON CONTROLOF INVERTED PENDULUM Abstract:the inverted pendulum system is a typical multi-variable, nonlinear, strong coupling and rapid movement of the natural unstable system. According to the level of inverted pendulum system, firstI make use of Newtonian mechanics knowledge to establishthe mathematical model, and use the Simulink and packaging function to establish inverted pendulum simulation model.The model is more flexibility, bringing a lot of convenience for simulation. By the equation of state, controllability and observablityof system can be sure. Designing the LQR control algorithm and pole-place makes the system stable state, analyzes the advantages and disadvantages of two methods confirmed through the simulation of MATLAB. Key words:Inverted pendulum ;LQR ;pole-place ;Matlab 0引言 倒立摆系统作为研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点。研究倒立摆系统具有很强的理论意义,同时也具有深远的实践意义。许多抽象的控制概念如稳定性、能控性和能观性,都可以通过倒立摆系统直观地表现出来。希望对倒立摆的研究能够加深对控制理论的了解,为后面学习奠定坚实的基础。 倒立摆[1]的稳定控制主要可分为线性控制和智能控制两大类,下面分别对其归纳介绍。 1)线性理论控制方法 应用线性控制方法的基本前提是倒立摆处在平衡点附近,偏移很小时,系统可以用

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

倒立摆姿态控制模型

倒立摆 倒立摆百度文库解释: 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 倒立摆分类

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文 一级倒立摆的建模与控制分析 学院:机械工程学院 班级:机研131 姓名:尹润丰 学号: 201321202016 2014年6月2日

目录 1. 问题描述及状态空间表达式建立..............................................................- 1 - 1.1问题描述.......................................................................................................................................- 1 - 1.2状态空间表达式的建立...............................................................................................................- 1 - 1.2.1直线一级倒立摆的数学模型 ..........................................................................................- 1 - 1.2.2 直线一级倒立摆系统的状态方程 .................................................................................- 5 - 2.应用MATLAB分析系统性能 .....................................................................- 6 - 2.1直线一级倒立摆闭环系统稳定性分析 ......................................................................................- 6 - 2.2 系统可控性分析.........................................................................................................................- 7 - 2.3 系统可观测性分析.....................................................................................................................- 8 - 3. 应用matlab进行综合设计.........................................................................- 8 - 3.1状态反馈原理...............................................................................................................................- 8 - 3.2全维状态反馈观测器和simulink仿真 .......................................................................................- 9 - 4.应用Matlab进行系统最优控制设计 ........................................................ - 11 - 5.总结 ............................................................................................................. - 13 -

倒立摆的H∞控制-文献综述

引言 近三十年来,随着控制理论技术和航空航天技术的迅猛发展,一种典型的系统在控制理论的领域中一直成为被关注的焦点,即倒立摆系统。 倒立摆的特点为支点在下,重心在上,是一种非常快速并且不稳定的系统。但正由于它本身所具有的这种特性,许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。因此在欧美等许多发达国家的高等院校中,倒立摆系统已经成为必备的控制理论教学实验设备。学生们可以通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,更容易对课程加深理解。 倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学中不可多得的典型物理模型。它深刻揭示了自然界的一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象[1-4]。通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供了一个从控制理论通往实践的桥梁。所以,研究倒立摆系统对以后的教育研究领域具有非常深远的影响。 本文为建立倒立摆系统的数学研究模型,在熟悉线性系统的基本理论和非线性系统线性化的基本方法的基础上确定研究的系统方案和实施的控制方法,通过MATLAB软件对其进行编程,以达到完成倒立摆的仿真实验,实现了倒立摆的平衡控制。

单级倒立摆控制系统设计及MATLAB中仿真

单级倒立摆控制系统设计及simulink仿真 摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。单级倒立摆系统是一种广泛应用的物理模型。控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。该方法可以有效地改善单级倒立摆控制系统的性能。本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。讨论了单级倒立摆系统的模糊控制方法和操作步骤。用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。通过仿真说明控制器的有效性和实现性。关键词:单级倒立摆;仿真;模糊控制;运动;建模;Simulink Design of single stage inverted pendulum control system and Simulink simulation Abstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortings of mon physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motion of the inverted pendulum, and designs the

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

单级倒立摆稳定控制实验

单级倒立摆稳定控制实验 一.实验目的 1.了解单级倒立摆的原理与数学模型的建立; 2.掌握LQR控制器的设计方法; 3.掌握基于LQR控制器的单级倒立摆稳定控制系统的仿真方法。 二.实验内容 图1 一级倒立摆原理图 一级倒立摆系统的原理框图如上所示。系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。光电码盘1将连杆的角度、角速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈回控制卡。计算机从运动控制卡中读取实时数据,确定控制决策,并由运动控制卡来实现该控制决策,产生相应的控制量,驱动电机转动,带动连杆运动,保持摆杆的平衡。 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示。 图2 直线一级倒立摆系 统

其中: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图3 (a )小车隔离受力图; (b ) 摆杆隔离受力图 分析小车水平方向所受的合力,可以得到以下方程: Mx F bx N =--&&& (1) 由摆杆水平方向的受力进行分析可以得到下面等式: ()2 2sin d N m x l dt θ=+ (2) 即:2cos sin N mx ml ml θθθθ=+-&&&&&

小车倒立摆系统开题报告

开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义: 倒立摆系统作为一个实验装置,形象直观,结构简单,构件组成参数和形状易于改变,成本低廉;作为一个被控对象,它又相当复杂,就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法方能使之稳定。 理论是工程的先导,倒立摆的研究具有重要的工程背景。机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来已有几十年的历史,但机器人的关键技术至今仍未很好解决。由于倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。 文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字): 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 倒立摆是机器人技术﹑控制理论﹑计算机控制等多个领域﹑多种技术的有机结合,其被控

单级倒立摆控制的极点配置方法

一级倒立摆控制的极点配置方法 摘要 倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。 本文通过极点配置, 实现了用现代控制理论对一级倒立摆的控制。利用牛顿第二定律及相关的动力学原理等建立数学模型,对小车和摆分别进行受力分析,并采用等效小车的概念,列举状态方程,进行线性化处理想, 最后通过极点配置,得到变量系数阵。利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能, 使模型更具灵活性,给仿真带来很大方便。实现了倒立摆控制系统的仿真。仿真结果证明控制器不仅可以稳定倒立摆系统,还可以使小车定位在特定位置。 关键词:倒立摆,数学建模,极点配置

THE POLE PLACEMENT CONTROL TO A SINGLE INVERTED PENDULUM Abstract Inverted pendulum system is multivariable, nonlinear, strong-coupling and instability naturally. The research of inverted pendulum has many important realistic meaning in the research such as, the walking of biped robot, the lunching process of rocket and flying control of helicopter, and many correlative productions has applications in the field of technology of space flight and subject of robot. Through the pole placement method, the control of the inverted pendulum is realized. We get the mathematic model according to the second law of Newton and the foundation of the dynamics, analysis the force of the cart and pendulum, and adopt the concept of "the equivalent cart”. During writing the equitation of the system, the equitation has been processed by linear. At last,we get coefficient of the variability. The simulation of inverted pendulum system is done by the SIMULINK Tool box. Specially Mask function is applied, it makes simulation model more agility, the simulation work become more convenient. The result shows that it not only has quite goods ability, but also is able to make the cart of the pendulum moving to the place where it is appointed by us in advance along the orbit. Key words: inverted pendulum, mathematic model, pole placement

单级倒立摆

2011级自动化1班 杨辉云 P111813841 一级倒立摆的模糊控制 一.倒立摆的模型搭建 1. 单级倒立摆系统的数学模型 对于单级倒立摆,如果忽略了空气阻力和各种摩擦阻力之后,可将直线一级倒立摆系统抽象成沿着光滑导轨运动的小车和通过轴承链接的均质摆杆组成,如图所示,其中小车的质量M=1.40kg ,摆杆质量m=0.08kg ,摆杆质心到转动轴心距离L=0,.2m ,摆杆与垂直向下方向的夹角为,小车华东摩擦系数 f c =0.1。 摆杆 θ 传送带 导轨 直线单级倒立摆 2. 倒立摆控制系统数学模型的建立方法利用PID 控制和拉格朗日方程两种建模。 一级倒立摆系统的拉格朗日方程应为 L (q ,。 .q )=V (q ,。 q )—G (q ,。 q ) (1) 式中:L 是拉格朗日算子,V 是系统功能;G 系统势能。 dt d x ??L — x ??L + x ??D = fi (2)

式中:D 是系统耗散能, f c 为系统的第i 个广义坐标上的外力。 一级倒立摆系统的总动能为: V=θθcos x ml ml 3 2)(212 22。。。+++x m M (3) 一级倒立摆系统的势能为: G=θcos mgl θ (4) 一级倒立摆系统的耗散能为: D= 2 2 1 。x f c (5) 一级倒立摆系统的拉格朗日方程为: 0=??+??-??θ θθD L L dt d (6) F X D X L X L dt d =??+??-?? (7) 将(1)到(5)式带入(6)式得到如下: 0sin sin sin cos m 3 422=-+。。。。。。 ——θθθθθθθθmgl x ml x ml x l ml (8) (M+m )F x ml ml x f c =+ +θθθθsin cos 2。 。 — (9) 一级倒立摆系统有四个变量:。 。,,, θθx x 根据(7)式中的方程写出系统的状态方程,并在平衡点进行线性化处理,得 到系统的状态空间模型如下: =。X ? ?????0 000 0189.000748 .01-- 579.20 386.00 ??????0100+x ? ???? ? ??? ???-8173.007467 .00

倒立摆PD控制

倒立摆PD控制 摘要:倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机 械系统,它的稳定控制是控制理论应用的一个典型范例[1]。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。有很多种倒立摆的研究方法,本文采用的是一种基于精确模型极点配制的PD控制器设计方法。 关键词:倒立摆、PD控制 Abstract: Inverted pendulum system is a complex of instability, multivariable, nonlinear and strong coupling features advanced mechanical system, its stability control is a typical example of control theory in [1]. Inverted pendulum system exists serious uncertainty, on the one hand is the uncertainty of the parameters of the system, on the one hand is the uncertainty of disturbance of the system.Through the study of it can not only solve the problem of control in theory, will also control theory involving major courses: mechanical, mechanics, mathematics, electrical and computer integrated application. In a variety of control theory and method of research and application, especially in engineering, there is a kind of feasible experiment, it effectively validation of the theory and method, an inverted pendulum system can be provided from the control theory, through the practice of the bridge. There are many kinds of research methods of inverted pendulum, this paper USES is a PD controller design method based on the precise model of pole configuration. 一、倒立摆的分类: 倒立摆系统诞生之初为单级直线形式,即仅有的一级摆杆一端自由,另一端铰接于可以在直线导轨上自由滑动的小车上。在此基础上,人们又进行拓展,产生了多种形式的倒立摆。 按照基座的运动形式,主要分为三大类:直线倒立摆、环形倒立摆和平面倒立摆,每种形式的倒立摆再按照摆杆数量的不同可进一步分为一级、二级、三级及多级倒立摆等[4]。摆杆的级数越多,控制难度越大,而摆杆的长度也可能是变化的。多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。目前,直线型倒立摆作为一种实验仪器以其结构相对简单、形象直观、构件参数易于改变和价格低廉等优点,已经广泛运用于教学[5]。关于直线倒立摆的控制技术已经基本趋于成熟,在该领域所出的成果也相当丰富。尽管环形倒立摆的基座运动形式与直线倒立摆有所差异,但二者相同之处是基座仅有一个自由度,可以借鉴比较成熟的直线倒立摆的研究经验,所以近几年来也产生了大量的理论成果。平面倒立摆是倒摆系统中最复杂的一类,这是因为平面倒立摆的基座可以在平面内自由运动,并且摆杆可

直线一级倒立摆控制系统设计(1)

内蒙古科技大学课程设计 内蒙古科技大学 控制系统仿真设计说明书 题目:直线一级摆的PID控制与校正 学生姓名:罗鹏飞 学号:0967112208 专业:测控技术与仪器 班级:2009-2班 指导教师:张勇

摘要 倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。 本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。 本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。 关键词:一级倒立摆,PID,MATLAB仿真

目录 摘要...................................................................I 目录..................................................................II 第1章 MATLAB仿真软件的应用.. (1) 1.1 MATLAB的基本介绍 (1) 1.2 MATLAB的仿真 (1) 1.3 控制系统的动态仿真 (2) 1.4 小结 (4) 第2章直线一级倒立摆系统及其数学模型 (5) 2.1 系统组成 (5) 2.1.1 倒立摆的组成 (6) 2.1.2 电控箱 (6) 2.1.4 倒立摆特性 (7) 2.2 模型的建立 (7) 2.2.1 微分方程的推导 (8) 3.2.2 传递函数 (10) 3.2.3 状态空间结构方程 (10) 2.2.4 实际系统模型 (12) 2.2.5 采用MATLAB语句形式进行仿真 (13) 第3章直线一级倒立摆的PID控制器设计与调节 (16) 3.1 PID控制器的设计 (16) 3.2 PID控制器设计MATLAB仿真 (18) 结论 (21) 参考文献 (22)

相关文档
最新文档