中考数学动点问题之将军饮马问题

中考数学动点问题之将军饮马问题
中考数学动点问题之将军饮马问题

中考数学“将军饮马”类题型大全

一.求线段和最值

1(一)两定一动型

例1:如图,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一点,则PA+PB的最小值是______m.

分析:

这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B,最短.而要求A’B,则需要构造直角三角形,利用勾股定理解决.

解答:

作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C.易知A’M=AM=NC=5m,BC=9m,A’C=MN=12m,在Rt⊥A’BC中,A’B=15m,即PA+PB的最小值是15m.

变式:如图,在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则⊥BPG周长的最小值为_________.

分析:

考虑到BG为定值是1,则⊥BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.

解答:

连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG=BA,此时最短,BA=2,BG=1,即⊥BPG周长最短为3.

2

(二)一定两动型

例2:

如图,在⊥ABC中,AB=AC=5,D为BC中点,AD=5,P为AD上任意一点,E为AC 上任意一点,求PC+PE的最小值.

分析:

这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型,由于⊥ABC是等腰三角形,AD是BC中线,则AD垂直平分BC,点C关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短.但此时还不是最短,根据“垂线段最短” 只有当BE⊥AC时,BE最短.求BE时,用面积法即可.

解答:作BE⊥AC交于点E,交AD于点P,易知AD⊥BC,BD=3,BC=6,

则AD·BC=BE·AC,

4×6=BE·5,BE=4.8

变式:如图,BD平分⊥ABC,E,F分别为线段BC,BD上的动点,AB=8,⊥ABC的周长为20,求EF+CF的最小值________.

分析:这里的点C是定点,F,E是动点,属于一定两动的将军饮马模型,我们习惯于“定点定线作对称”,但这题这样做,会出现问题.因为点C的对称点C’必然在AB上,但由于BC长度未知,BC’长度也未知,则C’相对的也是不确定点,因此我们这里可以尝试作动点E关于BD的对称点.

解答:如图,作点E关于BD的对称点E’,连接E’F,则EF+CF=E’F+CF,当E’,F,C三点共线时,E’F+CF=E’C,此时较短.过点C作CE’’⊥AB于E’’,当点E’ 与点E’’重合时,E’’C最短,E’’C为AB边上的高,E’’C=5.

(三)两定两动型

例3:如图,⊥AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,求CF+EF+DE的最小值.

分析:这里的点C,点D是定点,F,E是动点,属于两定两动的将军饮马模型,依旧可以用“定点定线作对称”来考虑.作点C关于OB的对称点,点D关于OA的对称点.

解答:作点C关于OB的对称点C’,点D关于OA的对称点D’,连接C’D’.CF+EF+DE=C’F+EF+D’E,当C’,F,E,D’四点共线时,CF+EF+DE=C’D’最短.易知⊥D’OC’=90°,OD’=12,OC’=5,C’D’=13,CF+EF+DE最小值为13.

变式:

(原创题)如图,斯诺克比赛桌面AB宽1.78m,白球E距AD边0.22m,距CD边1.4m,有一颗红球F紧贴BC边,且距离CD边0.1m,若要使白球E经过边AD,DC,两次反弹击中红球F,求白球E运动路线的总长度.

本题中,点E和点F是定点,两次反弹的点虽然未知,但我们可以根据前几题的经验作出,即分别作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,即可画出白球E的运动路线,化归为两定两动将军饮马型.

解答:

作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,连接E’F’,交AD于点G,交CD于点H,则运动路线长为EG+GH+HF长度之和,即E’F’长,延长E’E交BC于N,交AD于M,易知E’M=EM=0.22m,E’N=1.78+0.22=2m,NF’=NC+CF’=1.4+0.1=1.5m,则Rt⊥E’NF’中,E’F’=2.5m,即白球运动路线的总长度为2.5m.

小结:

以上求线段和最值问题,几乎都可以归结为“两定一动”“一定两动”“两定两动”类的将军饮马型问题,基本方法还是“定点定线作对称”,利用“两点之间线段最短”“垂线段最短”的2条重要性质,将线段和转化为直角三角形的斜边,或者一边上的高,借助勾股定理,或者面积法来求解.

当然,有时候,我们也需学会灵活变通,定点对称行不通时,尝试作动点对称.(二)求角度

例1:

P为⊥AOB内一定点,M,N分别为射线OA,OB上一点,当⊥PMN周长最小时,⊥MPN =80°.

(1)⊥AOB=_____°

(2)求证:OP平分⊥MPN

分析:

这又是一定两动型将军饮马问题,我们应该先将M,N的位置找到,再来思考⊥AOB的度数,显然作点P关于OA的对称点P’,关于OB的对称点P’’,连接P’P’’,其与OA交点即为M,OB交点即为N,如下图,易知⊥DPC与⊥AOB互补,则求出⊥DPC的度数即可.

(1)法1:

如图,⊥1+⊥2=100°,⊥1=⊥P’+⊥3=2⊥3,⊥2=⊥P’’+⊥4=2⊥4,则⊥3+⊥4=50°,⊥DPC =130°,⊥AOB=50°.

再分析:

考虑到第二小问要证明OP平分⊥MPN,我们就连接OP,则要证⊥5=⊥6,显然很困难,这时候,考虑到对称性,我们再连接OP’,OP’’,则⊥5=⊥7,⊥6=⊥8,问题迎刃而解.解答:

(1)法2:

易知OP’=OP’’,⊥7+⊥8=⊥5+⊥6=80°,⊥P’OP’’=100°,由对称性知,⊥9=⊥11,⊥10=⊥12,⊥AOB=⊥9+⊥10=50°

(2)

由OP’=OP’’,⊥P’OP’’=100°知,⊥7=⊥8=40°,⊥5=⊥6=40°,OP平分⊥MPN.

变式:

如图,在五边形ABCDE中,⊥BAE=136°,⊥B=⊥E=90°,在BC、DE上分别找一点M、N,使得⊥AMN的周长最小时,则⊥AMN+⊥ANM的度数为________.

分析:

这又是典型的一定两动型将军饮马问题,必然是作A点关于BC、DE的对称点A′、A″,连接A′A″,与BC、DE的交点即为⊥AMN周长最小时M、N的位置.

解答:

如图,

⊥⊥BAE=136°,

⊥⊥MA′A+⊥NA″A=44°

由对称性知,

⊥MAA′=⊥MA′A,

⊥NAA″=⊥NA″A,

⊥AMN+⊥ANM

=2⊥MA′A+2⊥NA″A=88°

思考题:

1.如图所示,正方形ABCD的边长为6,⊥ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______.

2.如图,在矩形ABCD中,AB=4,AD=3.P为矩形ABCD内一点,若矩形ABCD面积为⊥PAB 面积的4倍,则点P到A,B两点距离之和PA+PB的最小值为________.

中考数学压轴题专题复习:将军饮马问题----两线段和最小值专题讲解训练

将军饮马问题----两线段和最小值专题讲解训练知识链接 几何中最值问题的解题思路 轴对称最值图形 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN为直线l 上的一条动线段,求AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值 转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重合,然后 作其中一个定点关于定直线l的对称点 作其中一个定点关于定直线 l的对称点 折叠最值图形 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 例题精讲 例、如图,直线y=kx+b交x轴于点A(-1,0),交y轴于点B(0,4),过A、B两点的抛物线交x 轴于另一点C. (1)直线的解析式为_______; (2)在该抛物线的对称轴上有一点动P,连接PA、PB,若测得PA+PB的最小值为5,求此抛物线的解析式及点P的坐标; (3)在(2)条件下,在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

题型强化 1、在平面直角坐标系中,已知 2 12 y x bx c (b 、c 为常数)的顶点为 P ,等腰直角三角形ABC 的顶点A 的 坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过 A 、 B 两点,求抛物线的解析式. (2)平移(1)中的抛物线,使顶点P 在直线AC 上并沿AC 方向滑动距离为 2时,试证明:平移后的抛物线与 直线AC 交于x 轴上的同一点.(3)在(2)的情况下,若沿 AC 方向任意滑动时,设抛物线与直线AC 的另一交点为 Q ,取BC 的中点N ,试探究 NP+BQ 是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.

最值问题之将军饮马

最值问题之将军饮马学生姓名:年级: 科目: . 任课教师:日期: 时段: .

将军饮马问题 模型1两定一动 例:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点 则DN+MN的最小值为() A:6 B:8 C:2 D:10 解析:第一步—找:找定点、动点、动点所在的直线 第二步—作:作定点关于动点所在直线的对称点(从对称性入手) 第三步—连:连接对称点与另一个点 第四步—求:求解(一般勾股定理求解) 模型2一定两动 例:如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为() A.10 B.8 C.5 D.6 解析:第一步—找:找定点、动点、动点所在的直线 第二步—作:作定点关于动点所在直线的对称点(从对称性入手) 第三步—连:连接对称点与另一个点 第四步—造:构造垂直 第五步—求:求解(一般等积法或相似求解)

模型3求四边形的周长最小值 例:如图,当四边形PABN的周长最小时,a= . 解析:本题要求四边形周长最小值。因为AB、PN是定长,问题转化为求PA+NB的最小值,跟模型1类似,所以我们需要平移确定交点,转换成模型1去讲解 模型4 一定点、两定直线 例:点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小? 解析:第一步:分别画点P关于直线OM、ON的对称点P1、P2 第二步:联结P1P2,交OM、ON于点A、点B 跟踪练习 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN的周长的最小值为.

将军饮马

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的 周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小

D B C A A N 二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 2.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____. 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值

M B D A D A Part2、正方形 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 2.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .2 6 C .3 D . 6 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 4.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;

2020中考数学专题8——最值问题之将军饮马 -含答案

【模型解析】 2020 中考专题 8——最值问题之将军饮马 班级姓名 . 总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。 特点:①动点在直线上;②起点,终点固定; 方法:作定点关于动点所在直线的对称点。 【例题分析】 例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为( 1 ,0),点 2 P 为斜边OB 上的一动点,则PA+PC 的最小值为. 例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N. (1)当△AMN 的周长最小时,∠AMN+∠ANM=; (2)求△AMN 的周长最小值. 例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动. (1)求四边形BMNE 周长最小值; (2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.

例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标. 例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为. 【巩固训练】 1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为. 图1 图2 图3 图4 2.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是. 3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为. 4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为. 5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点, =6,则BD+DE的最小值为 (1)若AC=4,S △ABC (2)若∠BAC=30°,AB=8,则BD+DE 的最小值为. (3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.

初中数学之将军饮马的6种模型(培优)

初中数学之将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使P A+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△P AB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 类型一、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH= 在直角△BHE中,BE

2.如图,在锐角△ABC中,AB =BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 3.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值 解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N= MB'+MN = MB+MN. B'N的长就是MB+MN的最小值,则∠B'AN = 2∠BAC= 60°,AB' = AB = 2, ∠ANB'= 90°,∠B' = 30°。∴AN = 1,在直角△AB'N中,根据勾股定理B'N 类型二、正方形 1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为_________。 即在直线AC上求一点N,使DN+MN最小。 解:故作点D关于AC的对称点B,连接BM,交AC于点N。则DN+MN=BN+MN=BM。线段BM的长就是DN+MN的最小值。在直角△BCM中,CM=6,BC=8,则BM=10。故DN+MN的最小值是10

将军饮马系列---最值问题教案资料

将军饮马系列---最 值问题

1.两点之间,线段最短. 2.点到直线的距离,垂线段最短. 3.三角形两边之和大于第三边,两边之差小鱼第三边. 4.A B 、分别为同一圆心O 半径不等的两个圆上的一点,R r AB R r -≤≤+ 当且仅当A B O 、、三点共线时能取等号. 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题. 下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若A B 、 在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解. “将军饮马”系列最值问题 知识回顾 知识讲解

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如等腰ABC ?是轴对称图形. 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图,ABC ?关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C ?与''' A B C 是对称点.

初中数学:将军饮马问题习题

l A l l B A l l B A l P l l A 将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点 模型 作法 结论 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。 连接AB 交直线l 于点P ,点P 即为所求作的点。 PA+ PB 的最小。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA+PB 最小。 作点B 关于直线l 的对称点 B ′,连接AB ′交直线于点P ,点P 即为所求作的点。 PA+PB 的最小值为AB ′。 当两定点A 、B 在直线l 同侧 时,在直线l 上找一点P ,使 PA PB -最大。 连接AB 并延长交直线l 于点P ,点P 即为所求作的点。 PA PB -的最大值为AB 。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最大。 作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB ′。

P E D C B A P D C B A E D C B A 模型实例 例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD+PE 的最小值为 。 例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少? 热搜精练 1.如图,在△ABC 中,AC=BC=2,∠ACB-90°,D 是BC 边的中点,E 是AB 边 上一动点,则EC+ED 的最小值是 。

初中数学将军饮马问题的六种常见题型汇总

第 6 页 共 10 页 初中数学将军饮马问题的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1. 如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠ MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P , Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

第 6 页 共 10 页 6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 【1】、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

将军饮马系列---最值问题

实用标准 “将军饮马”系列最值问题 1. 两点之间,线段最短. 2. 点到直线的距离,垂线段最短. 3. 三角形两边之和大于第三边,两边之差小鱼第三边. - 知识讲解 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题: 饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索, 作了完善的回答.这个问题后来被人们称作“将军饮马”问题. F 面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若A 、B 在河流的异侧,直接连接 AB , AB 与I 的交点即为所求. 若A 、B 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解. 4. A B 分别为同一圆心0半径不等的两个圆上的一点, 如图,将军从A 出发到河边

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠, 如果直线两旁的部分能够互相重合, 那么这个图形就叫做轴对称图 形.这条直线就是它的对称轴. 这时我们就说这个图形关于这条直线 (或轴)对称.如等腰 ABC 是轴对 称图形. 把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合, 那么就是说这两个图形关于这条 直线对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图, ABC 与 A'B'C'关于直线I 对称,I 叫做对称轴.A 和A , B 和B' , C 和C'是对称点. 轴对称的两个图形有如下性质: ① 关于某条直线对称的两个图形是全等形; ② 对称轴是任何一对对应点所连线的垂直平分线; ③ 两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上. 线段垂直平分线: 垂直平分线上点到线段两个端点的距离相等; 到线段两个端点距离相等的点在线段的垂直平分线上. AP-aP^A B

将军饮马的六种模型

第 1 页 共 10 页 将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 Part1、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH = 22 BC CH -=22 63 -=33 在直角△BHE中,BE = 22 BH EH - =22 (33)1 +=27 2.如图,在锐角△ABC中,AB =42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM +MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 第 2 页共10 页

人教版数学八年级上册将军饮马—最短路径最值问题教学设计

将军饮马—最短路径最值问题教学设计 一、教学内容解析 为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问 题. 初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段 中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究. 本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题—— “将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历 将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作, 经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间, 数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的 理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与 能力转化上起到桥梁作用。 基于以上分析,本节课的教学重点确定为: [教学重点] 利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题. 二、教学目标解析 新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下:[教学目标] 能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作 用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感. [目标解析] 达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的 两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对

将军饮马强方法

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等) 一、基本图形 最值问题在几何图形中分两大类: ①[定点到定点]:两点之间,线段最短; ②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边; ④[定线到定线]:平行线之间,垂线段最短; ⑤[定点到定圆]:点圆之间,点心线截距最短(长); ⑥[定线到定圆]:线圆之间,心垂线截距最短; ⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。 简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2020中考将军饮马+变式最值

讲“将军饮马”型最值问题

例 1 (中考题 - 改编)如图,已知点 A(-4 ,8)和点 B(2 ,n )在抛物线y ax2上. ( 1 )求 a 的值; (2)在 x 轴上找一点 Q,使得 AQ+BQ 最短,求出点 Q 的坐标; (3 )平移抛物线,记平移后 A 的对应点为A,点 B 的对应点为B ,当抛物线向左平移到某个位置时,AC CB 最短,求此时抛物线的函数解析式

例 2 如图,抛物线y 3x2 18x 3和 y 轴的交点为 A,M 为OA 的中点,若有一动点 P,自 M 点处出发,55 沿直线运动到 x 轴上的某点(设为点 E ),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直 例 3 (2017 花都一模 16 题)如图,四边形 ABCD 中,∠ BAD=120 °,∠ B= ∠ D=90 °,在 BC、CD 上分别找一点 M、N,使△ AMN 周长最小时,则∠ AMN+ ∠ANM 的度数为 . 例 4 如图,∠ MON=20 °, A 为射线 OM 上一点, OA=4 , D 为射线 ON 上一点, OD=8 , C 为射线 AM 上线运动到点 A ,求使点 P 运动的总路程最短的点 E,点 F 的坐标,并求出这个最短路程的长 .

任意一点, B 是线段 OD 上任意一点,那么折线 ABCD 的长 AB+BC+CD 的最小值是 . 例 5 如图,在平面直角坐标系中, Rt △ OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为( 3 ,3 ),1 点 C的坐标为(,0),点 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为 __________ . 2

初中数学将军饮马

初中数学将军饮马 第六章将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点模型作法结论当两定点A、B在直线异侧时,在直线上找一点P,使PA+PB最小。 连接AB交直线于点P,点P即为所求作的点。 PA+ PB的最小。 当两定点A、B在直线同侧时,在直线上找一点P,使PA+PB 最小。 作点B关于直线的对称点B′,连接AB′交直线于点P,点P 即为所求作的点。 PA+PB的最小值为AB′。 当两定点A、B在直线同侧时,在直线上找一点P,使最大。 连接AB并延长交直线于点P,点P即为所求作的点。 的最大值为AB。 当两定点A、B在直线同侧时,在直线上找一点P,使最大。

作点B关于直线的对称点B′,连接AB′并延长交直线于点P,点P即为所求作的点。 的最大值为AB′。 当两定点A、B在直线同侧时,在直线上找一点P,使最小。 连接AB,作AB的垂直平分线交直线于点P,点P即为所求作的点。 的最小值为0。 模型实例例1.如图,正方形ABCD的面积是12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为 。 例2.如图,已知△ABC为等腰直角三角形,AC=BC=4, ∠BCD=15°,P为CD 上的动点,则的最大值是多少?热搜精练 1.如图,在△ABC中,AC=BC=2,∠ACB-90°,D是BC边的中点,E是AB边 上一动点,则EC+ED的最小值是。 2.如图,点C的坐标为(3,),当△ABC的周长最短时,求的值。 3.如图,正方形ABCD中,AB-7,M是DC上的一点,且DM-3,N是AC上的一

(完整版)将军饮马系列最值问题-教师版

同步课程˙“将军饮马”系列最值问题 将军饮马”系列最值问题 1. 两点之间,线段最短. 2. 点到直线的距离,垂线段最短. 3. 三角形两边之和大于第三边,两边之差小鱼第三边. 4. A 、B 分别为同一圆心 O 半径不等的两个圆上的一 点, 当且仅当 A 、B 、O 三点共线时能取等号 古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦. 有一天, 有位将军不远千里专程前来向海伦求教一个百思不得其解的问题: 如图,将军从 A 出发到河边 饮马,然后再到 B 地军营视察, 显然有许多走法. 问怎样走路线最短呢?精通数理的海伦稍加思索, 便 作了完善的回答.这个问题后来被人们称作“将军饮马”问题. 下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短. 若 A 、B 在河流的异侧,直接连接 AB , AB 与 l 的交点即为所求. 知识回顾 R r AB R

若A 、B 在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.

海伦解决本问题时,是利用作对称点把折线问题转化成直线 现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想 轴对称及其性质: 把一个图形沿某一条直线折叠, 如果直线两旁的部分能够互相重合, 形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线 称图形. 把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合, 直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图, ABC 与 A' B' C '关于直线 l 对称, l 叫做对称轴. A 和A',B 和B',C 和C'是对称点. 轴对称的两个图形有如下性质: ① 关于某条直线对称的两个图形是全等形; ② 对称轴是任何一对对应点所连线的垂直平分线; ③ 两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上. 那么这个图形就叫做轴对称图 (或轴)对称.如等腰 ABC 是轴对 那么就是说这两个图形关于这条

初中将军饮马问题题型总结(全)

初中涉及将军饮马问题题型总结 题型一:将军饮马之单动点 1. 三角形中的将军饮马 【真题链接1.】(2017?天津) 如图,在ABC ?中,AB AC =,AD 、CE 是ABC ?的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( ) A .BC B .CE C .AD D .AC 【解析】 解:如图连接PC , AB AC =,BD CD =, AD BC ∴⊥, PB PC ∴=, PB PE PC PE ∴+=+, PE PC CE +, P ∴、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度,故选:B . B B

【真题链接2.】(2020?天津一模) 如图,ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( ) A .1 B .2 C D . 【解析】 解:如图, 连接BE 交AD 于点P ', ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点, AD ∴、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, P B P C ∴'=', P E P C P E P B BE '+'='+'=, 根据两点之间线段最短, 点P 在点P '时,PE PC +有最小值,最小值即为BE 的长. BE == 所以P E P C '+' 故选:C . B B

【真题链接3.】(2019秋?东至县期末) 如图,在ABC ?中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ?周长的最小值为( ) A .6 B .8 C .10 D .12 【解析】解:连接AD ,AM . ABC ?是等腰三角形,点D 是BC 边的中点, AD BC ∴⊥, 11 41622 ABC S BC AD AD ?∴= =??=,解得8AD =, EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , MA MC ∴=, AD AM MD +, AD ∴的长为CM MD +的最小值, CDM ∴?的周长最短11 ()84821022 CM MD CD AD BC =++=+ =+?=+=. 故选:C . A A

将军饮马问题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

2018年数学中考专题复习—— 将军饮马

l A l B A B' l l B A l P 第六章 将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点 模型 作法 结论 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。 连接AB 交直线l 于点P ,点P 即为所求作的点。 PA+ PB 的最小。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA+PB 最小。 作点B 关于直线l 的对称点B ′,连接AB ′交直线于点P ,点P 即为所求作的点。 PA+PB 的最小值为AB ′。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA PB -最大。 连接AB 并延长交直线l 于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB 。

l l A P E D C B A A 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA PB -最大。 作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB ′。 模型实例 例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角 线AC 上有一点P ,则PD+PE 的最小值为 。 例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少?

初中数学:将军饮马问题习题

将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 当两定点A、 B 在直线l 异侧时,在直线l 上找一点P,使PA+PB最小。连接AB交直线l 于点P,点P即为所求作的点。 当两定点A、B在直线l 同侧时,在直线l 上找一点P,使PA+PB最小。 A B l 当两定点A、B在直线l 同侧时,在直线l 上找一点 P,使PA PB 最大。 A 作点 B 关于直 线l 的 对称点 B′,连 接AB′ 交直线 于点 P,点P 即为所 求作的 点。 连接AB并延长交直线l 于点P,点P 即为所求作的点。 模型 1 定直线与两定点 模型 A l 作法结论 PA+ PB 的最 小。 PA+PB 的最小 值为AB′。 PA PB 的最大 值为AB。

l B 当两定点A、B在直线l 同侧时,在直线l 上找一点P,使PA PB 最大。 作点B关于直线l 的对称点B′,连接AB′并延长交直线于点P,点P 即为所求作的点。 PA PB 的最 大值为AB′。B

模型实例 例 1.如图,正方形 ABCD 的面积是 12,△ ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,则 PD+PE 的最小值为 。 例 2.如图,已知△ ABC 为等腰直角三角形, AC=BC=,4 ∠ BCD=15°, P 为 CD 上的动点,则 PA PB 的最大值是多少? 热搜精练 1.如图,在△ ABC 中, AC=BC=,2 ∠ ACB-90°, D 是 BC 边的中点, E 是 AB 边 上一动点,则 EC+ED 的最小值是 。 D C B

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020 年中考数学压轴题线段和差最值问题汇总 ---- 将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢? 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: 1. 定起点的最短路径问题:即已知起始结点,求最短路径的问题. 2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. 3. 定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 4.全局最短路径问题:求图中所有的最短路径. 问题原型】“将军饮马”,“造桥选址”。 涉及知识】“两点之间线段最短” ,“垂线段 最短” ,“三角形三边关系” ,“轴 对称” 平移”. 出题背景】直线、角、三角形、菱形、矩形、正 方形、 圆、坐标轴、抛物线等. 解题思 路】 “化曲为直” 题型一:两定一动,偷过敌营。

例1:如图, AM⊥ EF, BN⊥EF,垂足为 M、N,MN=12m,AM=5m,BN= 4m, P 是 EF 上任 意一点,则 PA+ PB的最小值是 m. 分析: 这是最基本的将军饮马问题, A, B是定点, P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点 A关于 EF的对称点 A',根据两点之间,线段最短,连接A'B,此时A'P+PB即为 A'B,最短.而要求 A'B,则需要构造直角三角形,利用勾股定理解决. 解答: 作点 A关于 EF的对称点 A',过点 A'作A'C⊥BN的延长线于 C.易知A'M=AM=NC =5m,BC=9m,A'C =MN= 12m,在 Rt△A'BC中, A'B=15m,即PA+PB的最小值是 15m. 例2:如图,在等边△ ABC 中,AB = 6,AD ⊥BC,E是AC 上的一点, M是AD 上的一点, 且 AE = 2 ,求 EM+EC 的最小值 解:点 C 关于直线 AD 的对称点是点 B,连接 BE,交 AD 于点 M ,则 ME+MD 最小,过点 B 作 BH ⊥AC 于点 H, 则 EH = AH – AE = 3 – 2 = 1,BH = BC2 - CH2 = 62 - 32 = 3 3 在直角△ BHE 中,BE = BH2 + HE2 = (3 3)2 + 12 = 2 7

相关文档
最新文档