用权函数法计算转子热应力

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

汽轮机热应力、热膨胀、热变形

汽轮机热应力、热膨胀、热变形 一、汽轮机启停和工况变化时的传热现象: 1、凝结放热: 当蒸汽与低于蒸汽饱和温度的金属表面接触时,在金属壁表面发生蒸汽凝结现象,蒸汽放出气化潜热,蒸汽凝结放热在金属表面形成水膜——膜状凝结,其放热系数达4652~17445w/m2·k,如果蒸汽在壁面上凝结,形不成水膜则这种凝结——珠状凝结,珠状凝结的放热系数是膜状凝结的15~20倍。 汽轮机冷态启动,从开始冲转2~3min内,剧烈的换热使汽缸表面很快上升到蒸汽的饱和温度,尤其是转子表面上升更快。 2、对流放热: 汽轮机部件的最大允许温差,由机组结构、汽缸转子的热应力、热变形以及转子与汽缸的胀差决定的。 汽轮机启停和工况变化由于高、中压缸进汽区温度较高,热交换剧烈,因而汽缸转子内形成的温差也大,因此监视好这些部件温差不超允许值,其它部件的温差就不超允许值。 当蒸汽的温升率一定时,随着启动时间的增长及蒸汽参数的提高,蒸汽对金属单位时间的放热量并不相等,在金属部件内部引起的温差也不是定值。当调节级的蒸汽温度升到满负荷所对应的蒸汽温度时(约为503℃)蒸汽温度不再变化,此时金属部件内部温差达到最大值,在温升率变化曲线上的这一点为准稳态点,准稳态附近的区域为准稳态区。经过一段时间热量从内壁传到外壁,不考虑外壁的散热损失,内外壁温度相同,汽轮机进入稳定状态。 在汽轮机启停和变工况运行时,在金属部件内引起的温差不仅与蒸汽的温升率有关还与蒸汽温度的变化量有关,温差随蒸汽的温升率增大而增加,随蒸汽温度变化量的增加而增大。 机组启动时暖机,有效的减少了金属部件内引起的温差,所谓暖机,就是在蒸汽参数不变的情况下,对汽缸、转子进行加热,此时蒸汽传给金属的热量等于金属内部的导热量,使金属内外壁温差减小,暖机结束时,金属部件的温差很小或接近于零,金属部件的温度接近暖机开始的温度。 二、热应力: 1、由于温度的变化引起零件的变形——热变形,如果热变形受到约束,则物体内就产生应力,这种应力称为热应力。 物体在加热或冷却时,物体内的温度时不均匀的,这是物体虽没有约束,物体各部分的膨胀是不同的,互相间受到约束,将产生热应力,高温区手压缩应力,低温区受拉伸应力。 2、汽轮机启停和工况变化时汽缸和转子的热应力: (1)汽轮机冷态启动时的热应力: 汽缸内壁受压应力,外壁受拉应力 转子外壁受压应力,内壁受拉应力 (2)汽轮机停机过程的热应力: 汽缸内壁受拉应力,外壁受压应力 转子外壁受压应力,外壁受拉应力 汽轮机从冷态启动,稳定工况下运行至停机过程中,转子表面的热应力由压缩变化拉伸,中心孔的热应力由拉伸变为压缩。汽缸内外壁变化也是如此,刚好完成一个交变热应力循环。在交变应力的反复作用下,金属表面出现疲劳裂纹,并逐渐扩展,以致断裂,由于汽轮机正常运行时间长,启停时产生的热应力的频率很低,故称这种交变热应力为低周波应力又称低周疲劳,一般机械的交变应力称为高周波应力。

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

汽轮机的热应力、热变形、热膨胀分析

汽轮机的热应力、热变形、热膨胀 主要内容:主要介绍汽轮机的热应力、热膨胀和热变形;汽轮机寿命及如何进行汽轮机的寿命管理。 Ⅰ汽轮机的受热特点 一、汽缸壁的受热特点 汽轮机启停过程是运行中最复杂的工况。在启停过程中,由于温度剧烈变化,各零部件中及它们之间形成较大的温差。导致零部件产生较大的热应力,同时还引起热膨胀和热变形。当应力达到一定水平时,会使高温部件遭受损伤,最终导致部件损坏。 1.汽缸的受热特点 (1)启动时,蒸汽的热量以对流方式传给汽缸内壁,再以导热方式传向外壁,最后经保温层散向大气,汽缸内外壁存在温差,内壁温度高于外壁温度,停机过程则产生相反温差。 (2)影响内外壁温差的主要因素: ①汽缸壁厚度δ,汽缸壁越厚,内外温差越大。 ②材料的导热性能; ③蒸汽对内壁的加热强弱。 加热急剧:温度分布为双曲线型,温差大部分集中在内壁一侧,热冲击时; 加热稳定:温度分布为直线型,温差分布均匀,汽轮机稳定运行工况; 缓慢加热:温度分布为抛物线型,内壁温差较大,实际启动过程中; 2.转子的受热特点 蒸汽的热量以对流方式传给转子外表面,再以导热方式传到中心孔,通过中心孔散给周围环境,在转子外表面和中心孔产生温差,温差取决于转子的结构、材料的特性及蒸汽对转子的加热程度。 Ⅱ汽轮机的热应力 一、热应力

热应力概念:当物体温度变化时,热变形受到其它物体约束或物体内部各部分之间的相互约束所产生的应力。 ①温度变化时,物体内部各点温度均匀,变形不受约束,则物体产生热变形而没有热应力。当变形受到约束时,则在内部产生热应力。 ②物体各处温度不均匀时,即使没有外界约束条件,也将产生热应力;在温度高的一侧产生热压应力,在温度低的一侧产生热拉应力。 二、汽缸壁的热应力 1.启动时,汽缸内壁为热压应力,外壁为热拉应力,且内外壁表面的热压和热拉应力均大于沿壁厚其他各处的热应力。 内壁;t E i ??-?-=μ ασ132 外壁:t E ??-? -=μασ1310 在停机过程中,内壁表面热拉应力,外壁表面热压应力。

应力计算

①叶片离心拉应力计算 1)对于涡轮增压器来说,等截面叶片根部截面上的拉应力公式为 20m 1=2u a σρσθ+ 2/N m 其中 ρ为叶片的材料密度(3 /kg m ); m u 为叶片中经处的圆周速度(m/s ); /m D l θ=为直径叶高比; m D 为叶片平均直径(m ); l 为叶片高度(m ); a σ为叶片附加应力,其表示式为: 2222p p t e a m m h m h D A D A u z D A D A πρσ????????=+ ? ????????? ,2/N m 其中 z 为叶轮叶片个数; t D 为叶冠中经(m ); p D 为叶片凸台或拉筋的中经(m ); h D 为叶根直径(m ); e A δ=?为叶冠截面面积(2m ); p A 为凸台或拉筋的截面积(2 m ); h A 为叶根截面面积(2m ); 如果叶片没有设置阻尼拉筋或凸台,则p A =0;如果叶片不带冠,则e A =0;当两者均不存在时,a σ=0. 2)叶片截面面积沿叶高按线性变化时的拉应力计算式: 212113m a u λλσρσθθ+-??=++ ??? 2/N m 式中,/t h A A λ=是叶顶叶根截面比。通常,对压气机叶片,λ=0.3~0.65 3)叶片截面面积沿叶高按某一任意规律变化时,任意一个截面上离心应力可

用数值积分法计算。对于第i 个几面,离心力i σ可按下式计算: 21i i ic i i V r A σρω?=∑ 2/N m 其中 ()112 i i i i im i V A A x A x -?=+?=?为叶片第i 个微段的体积(3m ); i A 和1i A -为叶片第i 个微段的内径与外径上的截面积(3m ); ic h i ic r r x x =++?为第i 个微段重心c 的半径(m ); ()1216i i ic i im A A x x A -+?=?为第i 个微段重心c 离第i 截面的间距(m ); ω为旋转角速度(rad/s ); ρ为材料密度(3/kg m ); ②叶片弯应力计算 1)由气体作用引起的弯矩 作用于叶片任意截面上的气体周向弯矩gu M 可以按下式计算: ()2gu i M B l x =- N m ? 而 ()122um um G B c c zl =+ N/m 式中 i x 为计算截面至叶根的距离(m ); z 为叶片个数; l 为叶片的高度(m ); 1um c ,2um c 为叶片中经处、出口气流周向分速(m/s ); G 为气体流量(kg/s )。 作用于叶片而难以截面上的气体周向弯矩ga M 的计算公式也表达为: ()2ga i M D l x =- N m ? 而 ()()12122m a a r G D c c p p zl z π=-+- N/m 式中 1a c ,2a c 为叶片进、出口中经截面上的周向分速(m/s ); 1p ,2p 为叶片进、出口中经截面上的气体压力(2 /N m );

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

发电机甩负荷,转子表面承受应力原因分析

发电机甩负荷,转子表面承受应力原因分析 机组甩负荷也要分多种情况,所以转子表面在不同情况不同时间所受应力也有不同,有时是受到交变应力的影响: (1) 当由电气原因造成机组甩负荷时,则发电机甩去全部或大部分负荷(仅剩下厂用电负荷),这时机组最显著的特征是转速升高,若汽轮机调速系统的动态特性不理想,就会造成汽轮机超速保护动作而停机。这时由于转速上升,使汽缸内鼓风摩擦热量增加,同时转子内部受到泊桑效应影响收缩变短,再加上转子表面暂时受热膨胀,所以瞬间是受到压应力。但是后期由于汽机调门的关小,转速下降且蒸汽量减少的同时转子又受到冷却,故此时转为收缩受阻,所以承受拉应力。 (2) 当由汽轮机保护动作造成机组甩负荷时,则发电机组会甩去全部负荷,此时机组转速与甩负荷前相比基本不变。由于高中压自动主汽门的关闭,切断了进入汽轮机的所有蒸汽,此时机组得以维持稳定转速全靠电网的返送电,即发电机组变为电动机运行模式,称为逆功率运行,在逆功率运行期间由于鼓风摩擦热量的存在,转子表面冷却影响不大。但目前大型机组一般都有逆功率保护联跳发电机,此时由于转速的下降再加上无蒸汽进入汽轮机,通过汽轮机通流部分的蒸汽温度将发生大幅度的降低,使汽缸、转子表面受到急剧冷却,致使其中产生很大的热应力,这时转子表面主要应该是受拉应力。 (3) 当由部分主汽门或部分调门突关造成机组甩负荷时,则发电机组仅甩去部分负荷,机组转速保持不变。其甩负荷量视突然关闭的主调门的通流量,占机组当时进汽量的份额而定,同时也与主调门的类别有关。此类甩负荷后机组负荷发生了大幅度的变化,则进入汽轮机的蒸汽量随之而减小,由于调速汽门的节流作用,通过汽轮机通流部分的蒸汽温度将发生大幅度的降低,使汽缸、转子表面受到急剧冷却,转子表面收缩受阻,故无疑同样是受拉应力。

地应力计算公式解读

地应力计算公式 (一)、井中应力场的计算及其应用研究(秦绪英,陈有明,陆黄生 2003年6月) 主应力计算 根据泊松比μ、地层孔隙压力贡献系数V 、孔隙压力0P 及密度测井值b ρ可以计算三个主应力值: ()001H v A VP VP μσσμ??=+-+??-?? ()001h v B VP VP μσσμ??=+-+??-?? H v b dh σρ=?? 相关系数计算: 应用密度声波全波测井资料的纵波、横波时差(p t ?、s t ?)及测井的泥质含量sh V 可以计算泊松比μ、地层孔隙压力贡献系数V 、岩石弹性模量E 及岩石抗拉强度T S 。 ① 泊松比 22 2 20.52()s p s p t t t t μ?-?=?-? ② 地层孔隙压力贡献系数 22222(34)12() b s s p m ms mp t t t V t t ρρ??-?=-?-? ③ 岩石弹性模量 222 2234s p b s s p t t E t t t ρ?-?=???-? ④ 岩石抗拉强度 22 (34)[(1)]T b s p sh sh S a t t b E V c E V ρ=???-????-+?? 注:,,,m ms mp t t ρρ??分别为密度测井值,地层骨架密度,横波时差和纵波时差值。,,a b c 为地区试验常数。 其它参数 不同地区岩石抗压强度参数是参照岩石抗拉强度数值确定,一般是8~12倍,也可以通过岩心测试获得。岩石内摩擦系数及岩石内聚力是岩石本身固有特性参数,可以通过测试分析获得。地层孔隙压力由地层水密度针对深度积分求取,或者用重复地层测试器RFT 测量。也可以通过地层压裂测试获得,测试时,当井孔压力下降至不再变化时,为储层的孔隙压力。

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

SiO2 薄膜热应力模拟计算

SiO2薄膜热应力模拟计算1 吴靓臻,唐吉玉 华南师范大学物电学院,广州(510006) E-mail:tangjy@https://www.360docs.net/doc/7415645567.html, 摘要:薄膜内应力严重影响薄膜在实际中的应用。本文采用有限元模型对SiO2薄膜热应力进行模拟计算,验证了模型的准确性。同时计算了薄膜热应力的大小和分布,分别分析了不同镀膜温度、不同膜厚和不同基底厚度生长环境下热应力的大小,得到了相应的变化趋势图, 对薄膜现实生长具有一定的指导意义。 关键词:热应力,SiO2薄膜,有限元,模拟 0 引言 二氧化硅(SiO2)薄膜因其具有优越的电绝缘性,传导特性等各种性能,加之其工艺的可行性,在微电子及光学和其它领域中有着非常广泛的应用[1]。随着光通信及集成光学研究的深入,在光学薄膜中占重要地位的多层介质SiO2光学薄膜,是主要的低折射率材料,对光学技术的发展起着举足轻重的作用[2]。然而,光学薄膜中普遍存在的残余应力是影响光学器件甚至整个集成光学系统性能及可靠性的重要因素。过大的残余应力会导致薄膜产生裂痕、褶皱、脱落等各种破坏,影响薄膜的使用性能[3]。此外,光学薄膜中的残余应力还会引起其基底平面发生弯曲导致其光学仪器发生畸变,从而导致整个光学系统偏离设计指标,甚至完全不能工作。因此有必要对SiO2薄膜残余应力进行深入细致的研究。 前人的研究表明:SiO2薄膜中的最终残余应力是淬火应力和热应力共同作用的结果[4] [5] [6],而热应力是薄膜应力中不可避免的。但是现有的热应力理论计算无法得到直观的热应力 分布规律,不利于选择最适合的生长环境;若采用实验测试,成本高且也不现实。本文利用计算机,采用有限元技术,以在BK7玻璃衬底上生长的SiO2薄膜为研究对象,利用有限元软件ANSYS对SiO2薄膜在冷却阶段产生的热应力进行计算与分析, 计算了薄膜热应力的大小和分布,分别分析了不同镀膜温度、不同膜厚和不同基底厚度生长环境下热应力的大小,得到了相应的变化趋势图。这些结果对SiO2薄膜的实际应用和薄膜应力产生机制的探讨都有一定的意义。 1 理论分析 薄膜应力的形成是一个复杂的过程。一般来说,薄膜应力起源于薄膜生长过程中的某种结构不完整性(如杂质、空位、晶粒边界、位错等)、表面能态的存在以及薄膜与基体界面间的晶格错配等。在薄膜形成后,外部环境的变化同样也可能使薄膜内应力发生变化,如热退火效应使薄膜中的原子产生重排,结构缺陷得以消除(或部分消除),或产生相变和化学反应等,从而引起应力状态的变化。 薄膜内应力可以写成: σ内=σ热+σ本征(1)影响热应力的物理参数有热膨胀系数、杨氏模量、泊松比、厚度、温度变化等。目前,薄膜热应力数学模型是基于传统的梁弯曲理论来计算的,假设涂层相对于基体非常薄,而且尺寸无限宽,根据Stoney方程[7]可知薄膜热应力计算公式为: 1本课题得到国家自然科学基金资助项目(项目号:10575039)的资助。

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为

m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

超长结构温度应力计算探讨

超长结构温度应力计算探讨 一、温度作用的特点: 温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。 二、温度作用的规范规定: 2.1什么时候需要进行温度作用计算 根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。材料确定的情况下,长度越长,温度作用越大。 在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm; 如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强

度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。 T 实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。 表2: 钢筋混凝土结构伸缩缝最大间距(m) 建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

05、基本知识 怎样推导梁的应力公式、变形公式(供参考)

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.360docs.net/doc/7415645567.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究梁的应力公式和变形公式。 ................................................... 2 3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 2 4 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) .................................................................... 5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................ 6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................ 7 7 2.1 梁剪切的应力公式推导 .................................................................................................... 8 8 2.2 梁弯曲的剪应力强度条件的建立 .................................................................................... 8 9 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9) 1 * 问题的提出 在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。 强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤、[]ττ≤; 刚度条件就是工作变形不超过许用变形,即,[]y y 许用变形工作变形≤、[]θθ≤。 如,梁 弯曲强度条件:[]σσ≤=W M max max ;剪切强度条件:[]τρτρ≤?= b I S F z Q * max ,max 刚度条件:挠度 ?? ? ???≤l y l y max ;转角[]??≤max 这里带方括号的,是材料的某种许用值。由材料实验确定出破坏值,再除以安全系数, 即得。 显然,不等式左侧的工作应力和工作变形计算公式,是十分重要的。如果把各种应力公式和变形公式的来历搞明白,对于如何进行强度分析和刚度分析(这是材料力学的主要内容)就会得心应手。 杆件的基本变形一共四种:轴向拉压、扭转、剪切和弯曲变形。它们分别在轴向拉压杆、扭转轴、梁的各章讲授。 其对应的公式各异,但是,推导这些公式的方法却是一样的,都要从静力、几何、物理三个方面考虑,从而导出相应的《应力公式》,在导出应力公式之后,就可以十分方便地获得《变形公式》。

热变形热应力以及热膨胀

Ⅰ汽轮机的受热特点 一、汽缸壁的受热特点 汽轮机启停过程是运行中最复杂的工况。在启停过程中,由于温度剧烈变化,各零部件中及它们之间形成较大的温差。导致零部件产生较大的热应力,同时还引起热膨胀和热变形。当应力达到一定水平时,会使高温部件遭受损伤,最终导致部件损坏。1.汽缸的受热特点 (1)启动时,蒸汽的热量以对流方式传给汽缸内壁,再以导热方式传向外壁,最后经保温层散向大气,汽缸内外壁存在温差,内壁温度高于外壁温度,停机过程则产生相反温差。 (2)影响内外壁温差的主要因素: ①汽缸壁厚度δ,汽缸壁越厚,内外温差越大。 ②材料的导热性能; ③蒸汽对内壁的加热强弱。 加热急剧:温度分布为双曲线型,温差大部分集中在内壁一侧,热冲击时; 加热稳定:温度分布为直线型,温差分布均匀,汽轮机稳定运行工况; 缓慢加热:温度分布为抛物线型,内壁温差较大,实际启动过程中;

2.转子的受热特点 蒸汽的热量以对流方式传给转子外表面,再以导热方式传到中心孔,通过中心孔散给周围环境,在转子外表面和中心孔产生温差,温差取决于转子的结构、材料的特性及蒸汽对转子的加热程度。二.热应力 由于温度的变化而引起物体的变形称之为热变形。如果物体的热变形受到约束,则在物体内部就会产生应力,这种应力称之为热应力。 当温度变化时,如果物体内各点的温度变化是均匀的,并且其变形不受约束,既可以自由膨胀或收缩,则物体只存在热变形,而不产生热应力。如果物体膨胀受到约束,则物体内将产生压应力;如物体冷却收缩受到约束,则物体内将产生拉应力。当物体加热或冷却不均匀,温度分布不均匀时,物体即使不受到外部约束,其内部也会产生热应力,高温区产生压应力,低温区产生拉应力。汽轮机转子和汽缸的热应力主要是由于温度分布不均匀引起的。在汽轮机启动及变工况时,由于掠过转子和汽缸表面的蒸汽温度是不断变化的,这就引起转子和汽缸内部温度分布不均匀且随工况变化。正是由于这种不均匀的温度分布,使得转子和汽缸内部产生了热应力。热应力的大小只与金属部件内的温度分布有关,温度分布越不均匀,产生的热应力就越大。而金属部件的温度分

涡轮导向叶片热应力计算

涡轮导向叶片热应力计算 【摘要】某航空发动机在长时间试验中发生了涡轮导向叶片裂纹的故障。本文利用数值方法分析了叶片裂纹位置的应力,开展了对涡轮导向叶片和燃气的流固耦合计算,最终得到了叶片的热应力分布情况。计算结果表明叶片的裂纹是由于局部热应力过高引起的。 【关键词】涡轮导向叶片;流固耦合;热应力;航空发动机 1.引言 某型发动机在工厂进行完长时间试验后,发动机分解检查时发现部分涡轮导向叶片有裂纹。裂纹位于排气边中部,并基本垂直于排气边。 本文使用CFX软件计算燃气的流场,然后将流场计算得到的温度场结果导入ANSYS中进行耦合计算,最终得到叶片的热应力分布情况。 2.导向叶片结构 导向叶片结构如图1所示。叶片从上到下可划分为挂钩、上缘板、叶身、下缘板、凸边五个部分。叶片上缘板上的两个挂钩挂在涡轮机匣内壁的环槽内限制导向叶片的径向位置。叶片下缘板的两条凸边共同组成一个圆锥面和一个环面,与内机匣配合。 导向叶片是空心的,但孔的下端焊接封闭,只起保持等壁厚、减重和减少热应力的作用。涡轮导向叶片上下缘板内表面构成燃气通道。 导向叶片的应力来源主要有如下三方面: (1)导向叶片在工作过程中承受着温度场引起的热应力。在工作过程中,冷却气流冷却叶片外缘板,燃气在径向方向温度变化也很大。所以叶片存在着一个温度场,承受着因温度不均所产生的热应力。 (2)导向叶片在工作过程中承受着气动载荷。由于高温高压燃气流经导向叶片,使导向叶片承受着燃气所致的气动载荷。 (3)导向叶片还可能受到机匣与内机匣的配合影响。叶片与机匣、内机匣之间的配合关系也能够改变叶片的应力场。 在以上三种载荷中,热应力是涡轮导向叶片设计中主要考虑的。由此可以拟定导向叶片应力场分析的步骤。首先计算流场,分析涡轮导向器内部的气动与传热情况。然后进行流固耦合计算,将叶片温度场导入应力计算中,得到叶片的热应力分布情况。

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力 为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位 角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样 直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式

23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28.平面应力状态下斜截面应力的一般公式 , 29.平面应力状态的三个主应力, , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力,, 33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力

某工程的温度应力计算

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地 区季节性平均温度变化(地下结构一般从设置后浇带、尽早回 填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷 载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。 当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚

至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t(天数)时混凝土已完成的收缩

相关文档
最新文档