铌酸锂将主导40G调制器市场

铌酸锂将主导40G调制器市场
铌酸锂将主导40G调制器市场

铌酸锂将主导40G调制器市场

40Gb/s传送系统面世伊始所遭遇的众多技术问题现在都差不多得到解决。其中推动DWDM网络向40Gb/s传送速率升级的关键因素之一便是光信号产生技术的进步。

调制器是产生光信号的关键器件。在TDM和WDM系统的发射机中,从连续波(CW)激光器发出的光载波信号进入调制器,高速数据流将迭加到光载波信号上从而完成调制。

近些年来,由于铌酸锂(LiNbO3)波导的低损耗、高电光效率等特性,铌酸锂在2.5Gb/s及更高速率的光调制器中得到越来越广泛的使用。基于马赫-曾德(MZ)波导结构的LiNbO3行波调制器差不多成为现有系统中使用最广泛的调制器。

LiNbO3调制器通常分为X切和Z切两种规格,各有优缺点。前者的要紧优点在于工作时无啁啾产生,因而发送机设计比较简单;后者的要紧优点是驱动电压较低、带宽较大。传统观点认为,与Z切调制器相比,X切调制器由于带宽和电光系数的限制,不适用于10Gb/s以上的调制。

即便如此,CorningOTI(现为Avanex)的调制器研究组仍然提出了用于40Gb/s传送系统的X切调制器设计方案。通过多个高比特率传送系统的实验,我们发觉,与其它基于LiNbO3的技术相比,单驱动的X切LiNbO3MZ调制器能够在更高比特速率上支持性能更高、成本更低的传送方案。X切调制器差不多通过了包括Mintera公司在内众多系统实验

室的40Gb/s传送实验的验证。

在去年三月的OFC2003上,Mintera公司的10,000km、40Gb/sDWDM传送演示系统使用的确实是X切调制器。Mintera公司评价讲,单驱动的X切LiNbO3MZ调制器适用于需要无啁啾光调制的系统,例如基于差分相移键控(DPSK)调制的超远程(ULH)传送系统和基于双二进制调制的超高谱效率传送系统。

40G长距离DWDM传送系统与高级调制技术

“高级调制格式”能够克服常见的40Gb/s系统缺陷。40Gb/s技术最初将被用于中短距离传送系统,因此简单且带宽利用率较高的不归零码(NRZ)比较适合。然而在长距离传送系统中,归零码(RZ)由于不易受光纤非线性效应和偏振模色散(PMD)的阻碍,因而更具有吸引力。特定的RZ格式,例如载波抑制RZ(CS-RZ),有助于消除RZ格式占用频谱较宽的问题。

RZ-DPSK调制格式能够进一步提高ULH系统的传送性能。与RZ和CS-RZ 调制格式相比,这种格式的要紧优点是能够使接收机具有更高的灵敏度(提高3dB)。在特定系统中,最佳调制格式的选择需要考虑到一整套系统参数,其中包括成本、传送距离、比特率和PMD。因此器件提供商差不多开发出多种40Gb/s调制器。

由于需要更大的带宽,在10Gb/s系统中使用的电RZ脉冲产生方式差不多不再适用于40Gb/s系统。因此,必须将NRZ数字调制器和一个光门级联,以光的方式产生40Gb/s的RZ信号。光门的开启时长仅仅是NRZ 比特时长的几分之一。光RZ调制格式甚至能够降低对电带宽的要求。

在某些情况下,使用“半比特率”的RF信号来驱动20GHz调制器就能够产生40Gb/s的RZ光脉冲。额外的RZ脉冲时长能够用于实现多种基于RZ的复杂的调制方式,例如CS-RZ。MZ干涉仪(MZI)的固有特性也专门适合于实现刚刚提到的RZ-DPSK传送系统。

高质量的信号产生方式

在40Gb/s传送系统中,只能使用外调制方式对CW激光源进行调制。这是由于外调制方式对光载波(CW激光)的光谱特性的阻碍专门小。而基于LiNbO3的电光操纵MZI调制器是性能最好的工业用40Gb/s外调制器。

专门多高级的调制格式都采纳相位调制而非幅度调制。MZI调制器是无啁啾CS-RZ-DPSK调制器的关键组成部分。这种调制器不仅能够完成DPSK调制,还具有CS-RZ脉冲形成功能。

而基于半导体的电汲取调制器(EAM)不适于产生如此复杂的调制格式。它具有啁啾较大和输出功率较低两大缺陷。因此决定了EAM不适用于长距离传送系统。

LiNbO3调制器的工作方式与波长无关,因此它也适用于波长可调收发机。以后,基于LiNbO3的发射机的卓越性能将使之成为性价比最高的解决方案。因此,许多系统制造商正在打算使用LiNbO3技术取代短距离通信中使用的传统的EAM技术。这种改进能够使光功率至少提高

10dB,从而延长无放大距离(>100km)。

LiNbO3调制器的性能要求

除了眼图特性(图1)之外,“啁啾”也是阻碍系统性能的重要调制参数。啁啾是在强度调制过程中引入的一种相位/频率调制现象。在大多数情况下,啁啾将给传送质量带来负面阻碍。最重要的是,啁啾会造成频谱展宽,这将对WDM信道间隔提出严格限制,同时也使信号对色度色

散更加敏感。

假如在干涉仪的两臂上信号

推拉相位偏移量一样,那么关

于所有状态的干涉,输出信号的相位将是一个常量,因此也就可不能发生相位调制。利用LiNbO3晶体的专门取向(X切)能够使MZI的配置达到完全对称──这是无啁啾信号产生的差不多条件。因此能够采纳X切LiNbO3调制器来实现无啁啾的调制。

在10Gb/s系统中,在特定系统配置下啁啾能够对系统产生有益的阻碍。啁啾能够利用它的正色散系数来补偿光纤中的脉冲展宽,从而将无中继传送距离从典型的80km延长到100km(单模光纤)。然而,当传送距离超过100km(例如LH/ULH)时,啁啾信号的脉冲展宽速度将远远超过无啁啾信号。此外,在不断变化或不可预测的复杂格形网传送系统中,采纳无啁啾信号有助于使网络运行更加可靠。

Mintera公司发觉,X切调制器由于其固有的无啁啾工作特性,更适合于大批量生产。而传统的解决方案──推拉Z切双驱动MZ调制器,则要求放大器、波导电路以及调制器本身达到高度对称。只有LiNbO3外

调制器才能够充分满足40Gb/s长途和超长途传送系统的要求。

40GLiNbO3调制面临的挑战

在“高端”应用领域,LiNbO3仍然被认为是最要紧的调制技术。然而,合格的大批量生产必须通过对材料性质的深刻理解、设计、测试、投产、Telcordia鉴定、售后保障以及逐步量产等一系列长期过程。

40Gb/s调制器不仅仅是10Gb/s器件的演进。技术上的“量子飞跃”必须面临设计上的挑战。开发和生产40Gb/s调制器不仅需要设计光路和微波电路的综合专业知识,还需要先进的封装和组装技术。

要提供产生40Gb/s信号所需要的30GHz以上的带宽,最差不多的条件是通过波导的光波和毫米波必须完成严格的速率匹配。为了在最高频率成分(约60GHz)中实现有效的相互作用,电脉冲沿电极传播的群速度必须和光脉冲传播的群速度相同(容差<2%)。关于超高频带则必须进一步要求在整个相互作用长度上始终保持转换效率。因此,必须设计共面带状波导结构,以保证电波传播的超低损耗。此外,器件的封装对器件的整体电光特性具有重大阻碍。

考虑到前向纠错编码会扩展数据速率,一些40Gb/sX切调制器的驱动电压需要5.4V(Vamp),而且标定带宽为33GHz。而其光插入损耗仅有3dB。与X切调制器相比,原来单驱动的Z切调制器的驱动电压优势将不复存在。在这些调制器中集成监控PIN光电二极管差不多成为了标准。在使用了商用驱动放大器之后,这些40Gb/sX切调制器能够将消光比提高到13dB以上,达到了10Gb/s调制器的标准水平。

成熟的技术

如何选择40Gb/s调制的具体格式,将要紧取决于特定的系统应用。然而无啁啾的X切调制器差不多成为所有调制格式的首选。它不但适用于原有的NRZ、RZ、CS-RZ,还适用于长途和超长途DWDM传送系统中诸如RZ-DPSK等复杂格式的调制。

铌酸锂是覆盖了从城域/NRZ到超长途/RZ所有应用场合的唯一的成熟技术。因此,随着“通用收发机”时代的到来,铌酸锂将成为标准的调制器解决方案。

铌酸锂将主导40G调制器

铌酸锂将主导40G调制器市场 40Gb/s传送系统面世伊始所遭遇的众多技术问题现在都已经得到解决。其中推动DWDM 网络向40Gb/s传送速率升级的关键因素之一便是光信号产生技术的进步。 调制器是产生光信号的关键器件。在TDM和WDM系统的发射机中,从连续波(CW)激光器发出的光载波信号进入调制器,高速数据流将迭加到光载波信号上从而完成调制。 近些年来,由于铌酸锂(LiNbO3)波导的低损耗、高电光效率等特性,铌酸锂在2.5Gb/s 及更高速率的光调制器中得到越来越广泛的使用。基于马赫-曾德(MZ)波导结构的LiNbO3行波调制器已经成为现有系统中使用最广泛的调制器。 LiNbO3调制器通常分为X切和Z切两种规格,各有优缺点。前者的主要优点在于工作时无啁啾产生,因而发送机设计比较简单;后者的主要优点是驱动电压较低、带宽较大。传统观点认为,与Z切调制器相比,X切调制器由于带宽和电光系数的限制,不适用于10Gb/s以上的调制。 即便如此,CorningOTI(现为Avanex)的调制器研究组仍然提出了用于40Gb/s传送系统的X切调制器设计技术方案。通过多个高比特率传送系统的实验,我们发现,与其它基于LiNbO3的技术相比,单驱动的X切LiNbO3MZ调制器能够在更高比特速率上支持性能更高、成本更低的传送技术方案。X切调制器已经通过了包括Mintera公司在内众多系统实验室的40Gb/s传送实验的验证。 在去年三月的OFC2003上,Mintera公司的10,000km、40Gb/sDWDM传送演示系统使用的就是X切调制器。Mintera公司评价说,单驱动的X切LiNbO3MZ调制器适用于需要

铌酸锂的性质及应用

铌酸锂的性质及应用 一、晶体基本介绍 铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。基于准相位匹配技术的周期极化铌酸锂(PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。 二、基本化学性质 铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。分子式为LiNbO3,分子量为147.8456。相对密度4.30,晶格常数a=0.5147 nm,c=1.3856 nm,熔点1240℃,莫氏硬度5,折射率n0=2.797,ne=2.208(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,

铌酸锂晶体电光调制器的性能测试_OK

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ΛΛ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

铌酸锂晶体电光调制器的性能考试OK

铌酸锂晶体电光调制器的性能测试---OK

————————————————————————————————作者:————————————————————————————————日期:

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体内部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

2 相位调制器的结构

2 相位调制器的结构 2.1 “lxl”形式的光相位调制器 传统的光学相位调制器 (体相位调制器或波导相位调制器),只有一条基本的光路,仅考虑单频光通过一个相位调制器的基本结构,即如图3所示的形式,我们称之为“lxl”形式的光相位调制器。 图3 相位调制器的基本结构图 当光信号通过相位调制器之后,输出光场的表达式为公式为: () () 0+2+=A =A m j t jf t j f t jf t LW LW out E e e ωπ (4) 本论文中,假设f(t)是单频正弦波信号,即: ()()() 00sin 2sin RF RF m m f t A f t A t π?ω?=+=+ (5) 2.1.1 体相位调制器 我们知道单轴晶体妮酸铿晶体 (3LiNbO ) 以及与之同类型的 3L iT aO 、3 BaTaO 酸铿等晶体,属于同一类晶体点群。它们光学均匀性好,不潮解,因此在光电子技术中经常使用。并且此类晶体在被施加外加电场之后,其折射率椭球就会发生“变形”。 以妮酸铿电光材料为例,将该晶体用于相位调制器,可以有以下几种基本的应用方式: 情况1:入射光沿 1 x 方向入射 精况1.l :入射光沿3x 方向偏振 情况1.2:入射光沿 2 x 方向偏振 情况2:入射光沿3x 方向入射 这里只讨论情况1.1,如下图(图4)所示:

图4 体相位调制器的基本结构图 如果入射光是万方向的线偏振光,外加电场信号V(t),则在该方向上的折射率变为: ' 3 23333 12 e e n n n n E γ==- (7) 光通过该调制器后的相位变化为: ()3 23312z e e V t n l n n l c c d ω ω?γ? ?= = - ??? (8) 体相位调制器是一种电光调制器,具有较大体积的分离器件。为了使通过的光波受到调制,需要改变晶体的光学性质,而这需要给整个晶体施加外加相当高的电压。 2.1.2 波导相位调制器 光波导相位调制器件可以把光波限制在微米量级的波导区中,并使其沿一定的方向传播。 光波导相位调制器是通过使用电光材料(如 lithium niobate(LN), lithium tantalate(LT),gallium arsenide(GaAs)等等)的电光特性以及一定的光波导结构,来实现光的相位调制的。 光波导相位调制器能使介质的介电张量(折射率)产生微小的变化,从而使两传播模式之间有一定的相位差,并且由于外场的作用导致波导中本征模传播特性的变化以及两不同模式之间的藕合。 以 3 LiNbO 晶体为例子,实际应用中常见的光波导相位调制器结构如下图(图5)所示:

什么是调制器

什么是调制器? 中文名称: 调制器 英文名称: Modulator 定义1: 使光、电信号的某些参数(如振幅、强度、频率或相位)按照另一信号的变化规律而变化的部件。 定义2: 一种制约振荡或波的某一特征量,使其随着信号或者另一振荡波的变化而变化的非线性器件。 所属学科: 通信科技(一级学科);通信原理与基本技术(二级学科); 调制器定义 调制器是邻频调制器的简称,也常被称作射频调制器或电视调制器,现也有俗被称为共享器、是有线前端电视机房的主要设备之一; 调制器是调制式直流放大电路中的一个重要环节。由下图的方框可见:欲放大的直流信号ui经过调制器后,变为交流信号UA;再经过交流放大器放大后,最后由解调器转换成直流输出信号UO;振荡器产生开关信号UC;用于控制调制器的取样动作。由于信号的放大任务主要由交流放大器完成,而交流放大器的零点漂移小到可以忽略不计,调制器与解调器的零漂也可以做得很小,所以,调制式直流放大器可用来放大微弱的直流信号,

调制器通常有三种形式:机械调制器(机械斩波器)、晶体管调制器、场效应管调制器。按电路形式可分为并联调制器和串、并联调制器两种,后者比前者性能优越,但结构复杂。 功能 调制器最基本功能是信号调制功能。即将视频/音频信号尽可能不失真地调制到载波上,以满足长距离传送和分配的要求。所以,国标规定正常的调制度为87.5%。伴音信号要于图像信号同时调制。为避免对图像信号的干扰,将伴音信号先调制在调频副载波上,然后放在图像频率的6.5MHz频点上,组成一个完整的电视频道。电视频道总带宽不能超过8MHz.,这就要求调制器有良好的滤波功能,滤波特性不仅要保证每个频道具有标准的残留边带特性,还要保证带外(包括邻频道内)没有任何杂散信号。 制式 根据世界上彩色电视制式的不同,调制器也有PAL制调制器,NTSC制调制器,SECAM制调制器三种制式,我国采用的是PAL-D制式。 邻频调制器采用在48MHz-750MHz频段内PAL-D制式邻频调制方式固定频道输出,在电路设计上采用图像频率﹑伴音频率CPU双锁相环路(PLL)设计的思路,在器件上采用进口优质广播级调制芯片(TOSHIBA、MOTOROAL、

电光调制器工作点控制课程设计论文

基于锁相放大器的电光调制器工作点放大 摘要: 关键词: 引言:基于光时域反射(OTDR)技术的分布式光纤传感系统不仅具有无电磁辐射、抗干扰能力强、化学稳定性好等优点,而且其传感元件仅为光纤,单端测量即可同时获得被测量在时间和空间上的分布状况,空间分辨率可以达到米量级。相对于传统的电传感仪器,具有其自身独特的优势。 其中电光调制器EOM产生的光脉冲具有更快的上升沿,可以获得更高的空间分辨率,其消光比通常也比较高,可以达到30~40dB,且调制过程中无啁啾效应。由于基于光时域反射技术的分布式光纤传感系统常常需要达到米量级的空间分辨率,所以常采用EOM作为探测光脉冲的发生器。然而EOM的工作点在长期工作时易发生漂移现象,从而引起探测光脉冲消光比的波动,降低传感系统的信噪比。因此需要采用自动控制装置对EOM工作点进行锁定。本文在分析EOM调制特性及传统EOM工作点锁定方法局限性的基础上,提出一种基于所想放大器反馈的EOM工作点控制方法,以期实现消光比高、稳定性好的光脉冲输出,降低EOM 工作点漂移对基于光时域反射技术的分布式光纤传感系统性能的影响。 2 基于EOM的脉冲光调制原理 2.1 EOM的工作点选取 EOM 是利用某些晶体的电光效应对光信号进行调制的器件。对一个典型的铌酸锂MZ 电光调制器来说,它的传递函数可以用公式(1)来描述[1]: p=1 ?[1+cos?( π ?Vbias+VRF+ψoffset] 其中,p是归一化的输出光功率,Vbias与VRF分别是给EOM加的直流偏置电压和射频调制电压;Vπ是EOM的半波电压,ψoffset是初始的偏移相位。 为EOM输出特性曲线漂移示意图,EOM光功率-电压传递函数曲线如图1中实线所示

浅议铌酸锂电光调制器的应用差异

浅议铌酸锂电光调制器的应用差异目前市面上常见的10G调制带宽的铌酸锂调制器按结构可大致分为2种, 分别是相位调制器和强度调制器. 其中强度调制器的细分种类又更多, 按应用类型划分其中用于数字光通信的可以分为固定啁啾和零啁啾的类型; 而用于光载微波通信的又有模拟强度调制器;在传感领域为了获得极窄和极高的消光比光脉冲, 又有专门工作于脉冲模式下的调制器. 一般我们在对调制器进行选型, 主要考虑应用场景(模拟or数字系统), 调制速率, 调制格式, 半波电压, 啁啾特性, ON/OFF消光比等. 因诺尔可提供远比Thorlabs更为丰富类型的铌酸锂调制器, 欢迎联系咨询. 以下是Thorlabs对数字光通信的强度调制器的关于固定啁啾和零啁啾详细描述,最后是相位调制器的细节阐述. 10 GHz强度调制器,固定啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB (Typical) Bit Rate Frequency9.953 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。 伪随机二进制序列 特性 C波段和L波段工作范围 低光学损耗:0 dB(典型) 钛扩散Z切面铌酸锂 驱动电压低

长期偏置稳定 Telcordia GR-468兼容 集成的光电探测器 LN82S-FC是10 GHz的LiNbO3强度调制器,0.7固定啁啾,集成光电二极管。它带有PM输入光纤尾纤和SM输出尾纤,终端为FC/PC接头。PM光纤与慢轴对齐,慢轴与e光模式对齐。集成的光电探测器可用于光学功率监测和调制器偏置控制,消除对外部光纤分路器的需要。RF输入通过一个GPO?接头输入调制器。 这些调制器是由钛扩散Z切面LiNbO3制成的,在马赫-曾德尔干涉仪的两个臂之间产生不同的推-拉相移。除了强度调制,这也导致输出信号的相位/频率(线性调频)的偏移。这种固定啁啾调频的调制器将脉冲啁啾降低,当光纤所在的网络的分散系数为正时很有用。啁啾降低的脉冲通过具有正分散系数的光纤时将被压缩,直到达到最小值。超过该点色散项将占主导。因为啁啾脉冲会增加脉冲的谱宽,所以穿过同一段光纤后,线性调频的脉冲最终会比未线性调频的脉冲宽。相比零线性调频设备,这些固定线性调频强度调制器是要求提高功率损耗(对于+1600ps/nm小于2 dB)性能的应用的理想选择。对于电信应用,该LN82S-FC 易于集成到300引脚的兼容MSA的应答器中。 10 GHz强度调制器,零啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB(Typical) Bit Rate Frequency12.5 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

铌酸锂电光调制器在低频调制中的应用

铌酸锂电光调制器在低频调制中的应用 因为其高带宽的特性,铌酸锂电光调制器(LiNbO3 Modulators)被广泛应用于高速数据光通讯(up to 40 Gb/s)与高频模拟信号传输(20GHz)。铌酸锂电光调制器(LiNbO3 Modulators)较少被用于1GHz以下的低频调制应用中。然而,铌酸锂电光相位调制器(LiNbO3 Phase Modulators)与基于其他替代技术的调制器相比在低频调制方面却有着明显的优势,例如体积更紧凑、操作更容易、驱动电压更低等。因此铌酸锂电光相位调制器甚至被认为是在kHz到MHz调制频率范围的理性器件! 当要把铌酸锂相位调制器与具有较快上升沿与下降沿、低重复频率或长脉宽脉冲信号一起使用的时候,使用者需要十分谨慎。“高带宽”相位调制器(这里的“高带宽”是指>1GHz的带宽)在上述调制信号的应用中性能并非最佳。为了得到高带宽性能,“高带宽”调制器的微波线阻抗是与~50欧姆匹配的,并且负载电阻终端与射频线端相连以减少或避免电子射频信号反射。因此,较高的电流经过射频电极将因为Joule效应导致温度升高。当重复周期或脉冲宽度比热效应的时间长度更长的时候(如1kHz频率以内),发热与热耗散就成为了一个问题。在加热与冷却周期内,电极与波导的物理性质将发生改变,从而导致产生意外的相位漂移。因此5GHz, 10GHz或20GHz的铌酸锂相位调制器不适合非常低重频的应用。 为了抑制上述现象,一个有效的方法是采用带有较高输入阻抗(typ 10KΩ)或直接开路(MΩ)的调制器。有效电光带宽将被降低至几百MHz,这样的调制频率对于大多数应用尤其光纤传感方面应用是足够了,但是因为Joule效应产生的热效应将会显著降低至可以忽略。法国Photline公司为低重频的调制信号开发了一系列性能优化的相位调制器,例如可适用于800nm, 1000nm, 1300nm, 1500nm 的MPX-LN-0.1系列铌酸锂电光相位调制器。 MPX-LN-0.1系列调制器已经通过高低温测试,其在-400C~+850C范围内或

PZT型相位调制器1

OPE A K ? PZT-LSM 型相位调制器是一款光纤缠绕在压电陶瓷(PZT ) 上,利用PZT 压电效应所构成的相位调制器件,采用独特的多层缠绕方法,使得该产品具有高稳定性、高速调制特性,可选配多种类型光纤(见订购信息),可应用于开环相位调制解调、可变光纤延迟线、光纤干涉仪、& OTDR 、光纤震动校准等光学传感领域。该模块外形紧凑小巧,方便客户进行系统集成。低的电压驱动能力,适用于标准信号源驱动能力。 ? 极小封装尺寸。 ? 多种光纤类型可选(SM/PM )。 ? 高速调制速率。 ? 低电压驱动能力。 ? 独特缠绕方式。 应用领域 ? 光学(光纤)干涉仪 ? 相位调制器 ? 光纤延迟线 ? &OTDR ? 光纤传感

测试图谱 性能参数 最小值 典型值 最大值 备 注 1注:插入损耗在单模时含连接器损耗,保偏时不含连接器损耗。 性能指标 图1搭建等臂长马赫曾德干涉仪测试图谱 测试数据 图2 驱动频率29KHz 时,驱动电压与光纤膨胀量

订购参数 ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment. Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993. 外形尺寸

电光调制器

电光调制器的原理 要用激光作为传递信息的工具,首先要解决如何将传输信号加到激光 辐射上去的问题,我们把信息加载于激光辐射的过程称为激光调制,把完成这一过程的装置称为激光调制器.由已调制的激光辐射还原出所加载信息 的过程则称为解调.因为激光实际上只起到了"携带"低频信号的作用,所以称为载波,而起控制作用的低频信号是我们所需要的,称为调制信号,被调 制的载波称为已调波或调制光.按调制的性质而言,激光调制与无线电波调制相类似,可以采用连续的调幅,调频,调相以及脉冲调制等形式,但激光调制多采用强度调制.强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射的强度按照调制信号的规律变化.激光调制之所以常采用强度调制形式,主要是因为光接收器一般都是直接地响应其所接受的 光强度变化的缘故. 激光调制的方法很多,如机械调制,电光调制,声光调制,磁光调制和电源调制等.其中电光调制器开关速度快,结构简单.因此,在激光调制技术及混合型光学双稳器件等方面有广泛的应用.电光调制根据所施加的电场方 向的不同,可分为纵向电光调制和横向电光调制.利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制编辑本段电光调制器的应用 在电通信系统中,原始率数字信号电平的峰-峰值只有0.8V。因为数据率大于2.5Gb/s的铌酸锂调制器的半波电压(Vp)较高,故都需要用驱动器来推动调制器。驱动器不仅要有很宽的工作频带,并且要能提供足够大的微波输出功率。例如:对于10Gb/s、Vp=5.5V的调制器,需要驱动器具有75KHz 到8GHz的工作频带及20dBm(100mW)的1dB输出功率。制作率的驱动器是非常困难的,因此制作具有低Vp的调制器是很受欢迎的。 当然,也要求调制器有良好的其他性能,如低的光插入损耗、大的消光比、小的光反射损耗、弱的电反射损耗和合适的啁啾(chirp)参量。 电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。 电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。 电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。

LiNbO3马赫曾德调制器..

LiNbO3马赫曾德调制器在信号调制中的应用 电子信息工程学院 110421305 刘继鹏 摘要:铌酸锂马赫曾德调制器是目前广泛使用的波导型光调制器件。本文从原 理和应用两个方面对马赫曾德调制器进行分析研究,并且对由马赫曾德调制器调制的各种码型信号进行了软件仿真,通过仿真结果验证其可行性,最后给出了应用于大容量DWDM 光通信系统的载波抑制归零-差分相位键控(CSRZ-DPSK)信号的实现和特点。 关键词:LiNbO3马赫曾德调制器,NRZ,RZ,ASK,CSRZ-DPSK 1. 引言 调制器是产生光信号的关键器件。在TDM 和WDM 系统的发射机中,从连续波(CW)激光器发出的光载波信号进入调制器,高速数据流以驱动电压的方式迭加到光载波信号上从而完成调制。 在网络容量呈指数增长和全球一体化的驱动下,光通信系统正朝着大容量高速率长距离传输的方向快速发展。而调制器的性能和效率首要的决定着光通信系统能否实现这个目标。近年来,由于铌酸锂(LiNbO3)波导的低损耗、高电光效率等特性,铌酸锂在2.5Gb/s 及更高速率的光调制器中得到越来越广泛的使用。基于马赫曾德波导结构的LiNbO3 调制器(简称LiNbO3 马赫曾德调制器)更是以其啁啾可调,驱动电压低以及带宽大等优点成为光通信系统中使用最广泛的高速调制器。本文从原理和应用两个方面对马赫曾德调制器(MZM)进行分析讨论。 2. 马赫曾德调制器的原理 马赫曾德调制器是基于马赫曾德干涉原理的波导型电解质光调制器件。其结构示意下图所示 图1 马赫曾德调制器的结构示意图

在马赫曾德调制器中,输入的光信号在Y 分支器(3dB 分束器)上被分成振幅和相位完全相同的两束光,并且随着光波导在上下两支路上进行传输。如果两平行臂完全对称,在不加调制电压时,两支路光束在输出Y 分支器内重新合并成与原输入光信号相同的光束,单模波导输出。如果在调制区上加调制电压,则由于等离子体色散效应,光波导折射率发生改变,从而使得两平行臂中两束光的相位发生改变。设两臂相位差为Δφ,当Δφ为0°(相移为0)时,则光束在输出Y 分支器内发生相长干涉,此时得到代表逻辑‘1’的“开状态”信号;当Δφ为180°(相移为π)时,光束在输出Y 分支器内发生相消干涉,此时得到代表逻辑‘0’的“关状态”信号。这样,通过对调制电压进行调节可以产生不同的信号,从而实现对信号的编码。 在输出端的Y 分支器的信号可以用如下公式表示: (1) 习惯上使用信号光强来表示马赫曾德调制器的传输特性: (2) 这里E o 和E i 分别表示光波的输出电场和输入电场,V(t)是驱动电压(包括直流偏置和电调制信号), Vπ是半波电压,用于产生光波的π相位偏移。 3.马赫曾德调制器的应用 由于马赫曾德调制器的传输特性是余弦曲线形式的,如下图所示,则调制器可以被偏置在不同的区域并且驱动信号可以层叠在偏置电压上。通过调节偏置电压和驱动信号可以产生NRZ-ASK/NRZ-DPSK 信号,RZ-ASK/RZ-DPSK(包括载波抑制RZ-DPSK)信号等。

铌酸锂的性质及应用

铌酸锂的性质及应用 The Standardization Office was revised on the afternoon of December 13, 2020

铌酸锂的性质及应用 一、晶体基本介绍 铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。基于准相位匹配技术的周期极化铌酸锂 (PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。 二、基本化学性质 铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。分子式为LiNbO3,分子量为。相对密度,晶格常数a= nm,c= nm,熔点1240℃,莫氏硬度5,折射率n0=,ne=(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,γ33=32×10m/V.Γ22=-γ12=-

铌酸锂电光调制器应用于低频调制

Use of LiNb03 modulators at low frequencies LiNb03modulators are widely used for their high bandwidth performances that make them favored devices for high data rate optical communications (up to 40 Gb/s) and high frequency (20 GHz) analog transmission. They are less often used at low frequencies under 1 GHz. However LiNb03phase modulators have also strong benefits at low frequencies (compactness, ease of use, low drive voltage) compared to devices based on alternative technologies and are thus components to be considered even for kHz to MHz frequency range applications. Users searching to implement LiNb03 phase modulators with modulation signals showing low and high frequency components, and the typical case is the one of a pulse signal with sharp rising and fall edges and low repetition rate or long pulse duration, must be very cautious. A “high bandwidth” phase modulator, and here “high bandwidth” means > 1 GHz typically, is not performing extremely well with such a modulation signal. The reason is that in order to get good high bandwidth performance, the impedance of the microwave line of the modulator is matched near to 50 ohms and a load resistance termination is connected at the end of the RF line to reduce or avoid electrical RF reflection. Thus, a significant level of current is traveling in the RF electrodes, leading to local temperature increases by Joule effect. Heating and thermal dissipation becomes a problem when the repetition period or the pulse duration becomes longer than the time constant of the thermal effects (in the range of 1kHz or below). Then the physical properties of the electrodes and waveguide are changing during the heat-on and cool-down periods, leading to unwanted phase drifts. Standard 5, 10 or 20 GHz phase modulators are not suitable for such applications involving very low repletion rate. To suppress that phenomenon, a solution is to use a modulator with a high input impedance load (typ 10 kΩ) or directly an opened electrode line (MΩ). The useful E-O bandwidth is then reduced to several hundred MHz which is sufficient for a large range of applications in particular for sensing applications, but the thermal effects are significantly reduced since the Joule effect becomes negligible. Photline has developed a family of phase modulators whose performances are optimized for low repetition rate modulation signals (MPX-LN-0.1 series are available at 800 nm, 1000 nm, 1300 nm, 1550 nm). MPX-LN-0.1 modulators has been tested in temperature and it has been demonstrated that they keep their performance in operating conditions covering a large temperature range (-40°C +85°C) and during temperature variations.

电光调制器工作基本知识是什么

电光强度调制器的设计 一、电光强度调制 利用晶体的电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,可控制光在传播过程中的强度。 强度调制是使光载波的强度(光强)随调制信号规律变化的激光振荡,如图下图所示。光束调制多采用强度调制形式,这是因为接收器一般都是直接响应其所接收的光强变化。 1、电光强度调制装置示意图及原理 它由两块偏振方向垂直的偏正片及其间放置的一块单轴电光晶体组成,偏振片的通振方向分别与x,y轴平行。

根据晶体光学原理,在电光晶体上沿z 轴方向加电场后,由电光效应产生的感应双折射轴'x 和'y 分别与x,y 轴成45°角。设'x 为快轴,'y 为慢轴,若某时刻加在电光晶体上的电压为V ,入射到晶体的在x 方向上的线偏振激光电矢量振幅为E ,则分解到快轴'x 和慢轴'y 上的电矢量振幅为'x E ='y E =E/2。同时,沿'x 和'y 方向振动的两线偏振光之间产生如下式表示的相位差 V 6330 2γμλ δπ = 0μ-晶体在未加电场之前的折射率 63γ-单轴晶体的线性电光系数,又称泡克尔系数

从晶体中出射的两线偏振光在通过通振方向与y 轴平行的偏振片检偏,产生的光振幅如下图分别为y E x'、y E y',则有y E x'=y E y'=E/2,其相互间的相位差为()πδ+。此二振动的合振幅为 () () ()δδπδcos 121 cos 21 41cos 22222''2 '2'2'-=-+= +++=E E E E E E E E E y y y x y y y x 因光强与振幅的平方成正比,所以通过检偏器的光强可以写成 令比例系数为1: 2 sin 2 sin 2 02 22'δ δ I E E I === 即 V I I λ γπμ63 302 0sin = 显然,当晶体所加电压V 是一个变化的信号电压时,通过检偏器的光强也随之变化。如下图I/0I -V 曲线的一部分及光强调制的工作情形。

单晶铌酸锂薄膜上光栅耦合器研究

单晶铌酸锂薄膜上光栅耦合器研究 铌酸锂晶体(LN)是一种多功能光电材料,具有很多优良的物理性质,如电光、声光、光折变、非线性光学、压电、介电、铁电、热释电等,并且其机械稳定性好,本征带宽大,波长透光范围宽。铌酸锂在非线性光学和集成光学领域有重要应用。近年来,基于离子注入和晶圆键合技术,人们制备了单晶铌酸锂薄膜(Lithium niobate on insulator,LNOI),这种薄膜材料具有可以与晶体材料接近的物理性质。并且,由于LN和二氧化硅(Si02)隔离层之间的高折射率对比,使得以其为基底制作的各类薄膜光电器件具有更好的限光能力,更小的横截面尺寸,能够实现更高密度的集成。 利用LNOI材料人们制备了一系列性能优异的光电器件,如频率转换器、电光调制器、二次谐波产生器,以及周期性极化的铌酸锂(PPLN)上的倍频器件等。光纤与LNOI器件间的耦合是集成光学一个重要的研究方向,具有重要应用价值。为了实现光纤与LNOI波导器件的耦合,可以有多种耦合方式,如端面耦合法和表面耦合法。一般LN薄膜的厚度在0.5 μm左右,而单模光纤的纤芯直径为8-10μm,模式不匹配导致光纤与波导间的耦合变得比较困难。 通过应用锥形波导结构、拉锥透镜光纤结构可以提高端面的模式匹配,进而提高耦合效率。但是端面耦合需要对波导进行端面抛光,有时还需要外接透镜光路或对光纤头进行特殊处理,这增加了耦合系统的复杂性。利用周期性刻蚀的光栅结构,可以对衍射场进行相位调制,制作光栅耦合器。这种波导光栅耦合器具有可以加载在LNOI基片上的任意位置,所需光栅尺寸小,不需要对LNOI波导进行后续端面抛光,不需要对光纤进行磨锥等特殊处理的优点,能够满足集成光路对单芯片上器件集成和测试的需求。 波导光栅耦合器的制备方法有很多,如反应离子束刻蚀、氩离子刻蚀、感应耦合等离子体刻蚀等。这些方法都需要与紫外光刻或电子束曝光结合来完成光栅图形的制样,形成的光栅对光刻精度的依赖性很大。聚焦离子束刻蚀(Focused ion beam etching,FIB)法是一种微加工技术,利用静电透镜系统将离子束进行聚焦来实现图像显微、微结构刻蚀。FIB不需要像其他方式那样对样品进行光刻掩膜,使用聚焦的离子束可以直接对样品进行刻蚀。 FIB通过采集低能的离子感生电子成像,因此在刻蚀过程中可以同时实现对

电光调制器工作原理是什么

电光调制器工作原理是什么

————————————————————————————————作者:————————————————————————————————日期:

电光强度调制器的设计 一、电光强度调制 利用晶体的电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,可控制光在传播过程中的强度。 强度调制是使光载波的强度(光强)随调制信号规律变化的激光振荡,如图下图所示。光束调制多采用强度调制形式,这是因为接收器一般都是直接响应其所接收的光强变化。 1、电光强度调制装置示意图及原理 它由两块偏振方向垂直的偏正片及其间放置的一块单轴电光晶体组成,偏振片的通振方向分别与x,y轴平行。

根据晶体光学原理,在电光晶体上沿z 轴方向加电场后,由电光效应产生的感应双折射轴'x 和'y 分别与x,y 轴成45°角。设'x 为快轴,'y 为慢轴,若某时刻加在电光晶体上的电压为V ,入射到晶体的在x 方向上的线偏振激光电矢量振幅为E ,则分解到快轴'x 和慢轴'y 上的电矢量振幅为'x E ='y E =E/2。同时,沿'x 和'y 方向振动的两线偏振光之间产生如下式表示的相位差 V 6330 2γμλ δπ = 0μ-晶体在未加电场之前的折射率 63γ-单轴晶体的线性电光系数,又称泡克尔系数

从晶体中出射的两线偏振光在通过通振方向与y 轴平行的偏振片检偏,产生的光振幅如下图分别为y E x'、y E y',则有y E x'=y E y'=E/2,其相互间的相位差为()πδ+。此二振动的合振幅为 () ()() δδπδcos 121 cos 21 41cos 22222''2 '2'2'-=-+= +++=E E E E E E E E E y y y x y y y x 因光强与振幅的平方成正比,所以通过检偏器的光强可以写成 令比例系数为1: 2 sin 2 sin 2 02 22'δ δ I E E I === 即 V I I λ γπμ63 302 0sin = 显然,当晶体所加电压V 是一个变化的信号电压时,通过检偏器的光强也随之变化。如下图I/0I -V 曲线的一部分及光强调制的工作情形。

相关文档
最新文档