系统建模与仿真结课作业

系统建模与仿真结课作业
系统建模与仿真结课作业

第三章

1、

clear;

ST=900;Dt=2;NP=ST/Dt;R=1;

for i=1:1:6

if i==2

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;x60=0;x61=0 ;x70=0;x71=0;U10=0;U11=0;

dat=5.5;Ti=51;Td=7.6;

a1=Dt/(dat*Ti);a2=exp(-Dt/(0.1*Td));a3=exp(-Dt/10);

for j=1:NP

y(j)=x71;

U11=R-x70;

x11=x10+a1*U11;

x21=a2*x20+10*(a2-1)*U11/dat;

U21=1/dat*U11+x11+x21+10/dat*U11;

x31=a3*x30+(1-a3)*U21;

x41=a3*x40+(1-a3)*x31;

x51=a3*x50+(1-a3)*x41;

x61=a3*x60+(1-a3)*x51;

x71=a3*x70+(1-a3)*x61;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;x60=x61;x70=x71;

end

plot((1:NP)*Dt,y,'r')

hold on;

end

if i==3

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;x60=0;x61=0 ;x70=0;x71=0;U10=0;U11=0;

dat=5.5;Ti=43.2;Td=10.8;

a1=Dt/(dat*Ti);a2=exp(-Dt/(0.1*Td));a3=exp(-Dt/10);

for j=1:NP

y(j)=x71;

U11=R-x70;

x11=x10+a1*U11;

x21=a2*x20+10*(a2-1)*U11/dat;

U21=1/dat*U11+x11+x21+10/dat*U11;

x31=a3*x30+(1-a3)*U21;

x41=a3*x40+(1-a3)*x31;

x51=a3*x50+(1-a3)*x41;

x61=a3*x60+(1-a3)*x51;

x71=a3*x70+(1-a3)*x61;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;x60=x61;x70=x71;

end

plot((1:NP)*Dt,y,'r')

hold on;

end

if i==4

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;x60=0;x61=0 ;x70=0;x71=0;U10=0;U11=0;

dat=5.84;Ti=30;Td=10;

a1=Dt/(dat*Ti);a2=exp(-Dt/(0.1*Td));a3=exp(-Dt/10);

for j=1:NP

y(j)=x71;

U11=R-x70;

x11=x10+a1*U11;

x21=a2*x20+10*(a2-1)*U11/dat;

U21=1/dat*U11+x11+x21+10/dat*U11;

x31=a3*x30+(1-a3)*U21;

x41=a3*x40+(1-a3)*x31;

x51=a3*x50+(1-a3)*x41;

x61=a3*x60+(1-a3)*x51;

x71=a3*x70+(1-a3)*x61;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;x60=x61;x70=x71;

end

plot((1:NP)*Dt,y,'g')

hold on;

end

if i==5

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;x60=0;x61=0 ;x70=0;x71=0;U10=0;U11=0;

dat=5.2;Ti=45;Td=11;

a1=Dt/(dat*Ti);a2=exp(-Dt/(0.1*Td));a3=exp(-Dt/10);

for j=1:NP

y(j)=x71;

U11=R-x70;

x11=x10+a1*U11;

x21=a2*x20+10*(a2-1)*U11/dat;

U21=1/dat*U11+x11+x21+10/dat*U11;

x31=a3*x30+(1-a3)*U21;

x41=a3*x40+(1-a3)*x31;

x51=a3*x50+(1-a3)*x41;

x61=a3*x60+(1-a3)*x51;

x71=a3*x70+(1-a3)*x61;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;x60=x61;x70=x71;

end

plot((1:NP)*Dt,y,'g')

hold on;

end

end

0100200300400500600700800900

00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2、 clear;

ST=500;Dt=0.4;NP=ST/Dt;dat=0.43;dat2=0.05;Ig=1;Ti=98;R=1

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;U10=0;U11=0;U20=0;U21=0;

a1=Dt/(dat*Ti);a2=exp(-1/15*Dt);a4=exp(-1/30*Dt);

for j=1:NP

y1(j)=x51;

y2(j)=x31;

U11=Ig-0.1*x51;

x11=x10+a1*U11;

U21=(x11+U11/dat-0.1*x30)/dat2+R;

x21=a2*x20+(10-10*a2)*U21;

x31=a2*x30+(1-a2)*x21;

x41=a4*x40+(1-a4)*x31;

x51=a4*x50+(1-a4)*x41;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;

end

plot((1:NP)*Dt,y1)

hold on ;

plot((1:NP)*Dt,y2,'g')

050100150200250300350400450500

05

10

15

20

25

30

35

40

第四章

1、 clear;

num=[4 1.8];

den=[4800 1840 83 1];

G=tf(num,den)

G1=zpk(G)

G =

4 s + 1.8

------------------------------

4800 s^3 + 1840 s^2 + 83 s + 1

Continuous-time transfer function.

G1 =

0.00083333 (s+0.45)

----------------------

(s+0.3333) (s+0.025)^2

clear;

ST=1000;Dt=0.2;NP=ST/Dt;dat=0.19;Ti=151;

x10=0;x11=0;x20=0;x21=0;x30=0;x31=0;x40=0;x41=0;x50=0;x51=0;

d10=0;d11=0;d20=0;d21=0;e10=0;e11=0;e20=0;e21=0;e30=0;e31=0;e40=0;e41=0;e50=0;e51=0;

Ig=1;

for i=1:NP

y1(i)=x21+x41+x51;

y2(i)=Ig-y1(i);

d10=Ig-(x20+x40+x50);

e10=1/(dat*Ti)*d10;

x11=x10+Dt*e10;

d20=d10/dat+x10;

e20=-0.3333*x20+0.0010*d20;

x21=x20+Dt*e20;

e30=-0.025*x30+0.0011*d20;

x31=x30+Dt*e30;

e40=x30-0.025*x40

x41=x40+Dt*e40;

e50=-0.025*x50-0.0010*d20;

x51=x50+Dt*e50;

x10=x11;x20=x21;x30=x31;x40=x41;x50=x51;

end

plot((1:NP)*Dt,y1)

hold on ;

plot((1:NP)*Dt,y2,'g')

01002003004005006007008009001000

-0.4-0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

2、

clear;

ST=1200;Dt=1.2;NP=ST/Dt;dat=1.2;Ti=50000;

x10=0;x11=0;x101=0;x20=0;x21=0;x201=0;x30=0;x31=0;x301=0;x40=0;x41=0;x4 01=0;

d10=0;d11=0;d20=0;d21=0;e10=0;e11=0;e20=0;e21=0;e30=0;e31=0;e40=0;e41=0 ;

a1=1/(dat*Ti);R10=1;R11=1;

for i=1:NP

y(i)=x41;

d10=R10-x40;

e10=a1*d10;

x101=x10+Dt*e10;

d11=R11-x40;

e11=a1*d11;

x11=x10+Dt/2*(e10+e11);

d20=1/dat*d10+x10;

e20=-1/20*x20+1.125/20*d20;

x201=x20+Dt*e20;

d21=1/dat*d11+x11;

e21=-1/20*x201+1.125/20*d21;

x21=x20+Dt/2*(e20+e21);

e30=-1/20*x30+1/20*x20;

x301=x30+Dt*e30;

e31=-1/20*x301+1/20*x21;

x31=x30+Dt/2*(e30+e31);

e40=-1/20*x40+1/20*x30;

x401=x40+Dt*e40;

e41=-1/20*x401+1/20*x31;

x41=x40+Dt/2*(e40+e41);

x10=x11;x20=x21;x30=x31;x40=x41;

end

plot((1:NP)*Dt,y)

02004006008001000120000.1

0.2

0.3

0.4

0.5

0.6

0.7

工业电力系统动态建模和仿真分析

工业电力系统动态建模和仿真分析 (Industrial power system dynamic modeling and simulation analysis) 一、概述 工业电力系统: 大型电力系统复杂性:本身有发电机、电动机 中型工业电力系统:即使无发电机,也包括大量中压电动机 意义、内容: 1、确定通过动态建模与仿真分析验证: 1、机组的暂态稳定(极限切除时间) 2、特定的大容量电动机的电压稳定 3、校验电流电压型保护的定植 4、确定低频减载与孤网运行 二、介绍原件与组成: (一)、同步电机实用模型: 1、意义:对于dq0坐标下同步电机方程,如果单独考虑与定子d绕组、q绕组相独立的零轴绕组,则在计及d,q,f,D,Q5个绕组的电磁过渡过程(以绕组磁链或电流为状态量)以及转子机械过渡过程(以ω及δ为状态量)时,电机为七阶模型。对于一个含有上百台发电机的多机电力系统,若再加上其励磁系统、调速器和原动机的动态方程,则将会出现“维数灾”给分析计算带来极大的困难。因此在实际工程问题中,常对同步电机的数学模型作不同程度的简化,以便在不同的场合下使用。 2、对派克方程中的转子变量 若,则 可用定子侧等效量取代原来的转子量,得到用这些实用等效量表示的同步电机实用方程。原派克方程中的定子量,保留易测量及计算的和及和,而消去和两个变量。 3、三阶实用模型 其简单而又能计算励磁系统动态,因而广泛的应用于精度要求不十分高,但仍需计及励磁系统动态的电力系统动态分析中,较适用于凸极机。 模型导出基于: (1)、忽略定子d绕组、q绕组的暂态,即定子电压方程中取P=P=0 (2)、在定子电压方程中,设ω≈(p.u.)在速度变化不大的过渡过程中,其引起的误差很小。 (3)、忽略D绕组、Q绕组,其作用可在转子运动方程补入阻尼项来近似考虑。 及以下三个定子侧等效实用变量: 为消除转子励磁绕组的变量 、 定子励磁电动势 电机(q轴)空载电动势 电机瞬变电动势 (二)、励磁系统数学模型: 描述同步发电机励磁系统(包括励磁调节器)物理过程的数学方程。是电力系统机电暂态过程数学模型的重要组成部分,主要应用于电力系统稳定计算。

物流仿真大作业.doc

物流系统仿真 期末作业 题目:Manufacturing System Planning and Scheduling 班级:物流工程131 学号:1311393003 1311393008 姓名:黎宇帆张力夫 日期:2015-09-19 成绩:

制造系统规划与调度 翻译 2.1引言 现代生产调度工具是非常强大的,提供了广阔的范围内调整工具的行为的真实过程要求的选项和参数。 然而,更多的选项的存在,它就在实践中找到的工具的最佳配置更加困难。 即专家们经常无法预测的多种可能性的影响。 测试甚至一小部分在现实中可能的配置,对实际生产过程的影响可能需要几个月的时间,可能会严重降低整体性能。 因此,这样的试验在实践中是不可行的。 优化的生产调度仿真模型比使用真正的过程更安全,更便宜,更快,更容易测试。为了在一个中等规模的制造公司充分使用先进的调度工具的优势,找到它的一个最佳的规则和参数的优化配置。 模块化仿真模型的整个业务的制造系统和生产过程中阳极氧化阶段是建立以测试不同的调度配置的影响。调度工具的配置测试和优化进行了离线使用的仿真模型。实际生产过程不受干扰,可以非常快速、低成本的找到最优配置。 2.2问题描述 位于英国的一个中型制造商,生产一系列的不同的小压铝零件和一系列大批量的其他面向消费者的产品。典型的应用包括香水的喷雾组件和哮喘患者的分配器。这是一个高度竞争的行业,成功取决于是否能实现高效率和低成本制造。所以生产调度是非常重要的。 在过去,该公司安装的软件工具可以支持生产过程中的各个区域调度。全面提高公司绩效,增加产量和减少产品的交货时间,他们计划建立自动电抗器的供应链规划服务器–总调度系统协调当地所有的业务和生产区。为了提供最好的解决方案,调度工具供应商,预优国际(https://www.360docs.net/doc/882019508.html,)决定使用模拟求解调度工具的优化配置。 问题是建立一个仿真工具,它将接受的到来客户订单和生产订单排序以满足这些需求。一个重要的地方是模型的生产过程本身,以确保它的主要阶段的最佳时刻加载。阳极氧化阶段是整个生产过程中特别重要的,因此,它必须是非常详细的模拟,以测试到整体订单的交货时间可以通过阳极氧化过程阶段优化减少到什么程度。 在这种情况下的研究主要目标是以下几个: (1)为了确定公司模型间的相关业务和生产过程和确定订单和交货时间, (2)在规划部门分析和优化业务流程,为了处理传入的需求和规划生产订单。 (3)测试的整体生产时间,提高灵敏度,特别是确定是否引入特定排序规则的生产订单将减少在阳极氧化处理阶段总的处理时间。

系统仿真结课作业

系统仿真导结课作业 一、概述 建模与仿真技术已成功地应用于航空航天、生产制造、交通运输、信息、生物、医学、材料、能源、教育、军事、社会、经济等众多领域;并成功地应用于产品研制的全生命周期,包括需求分析、方案论证、概念设计、初步设计、详细设计、生产制造、试验试飞、运行、维护、训练等各个阶段。仿真科学与技术正是从其广泛的应用中获得了日益强大的生命力,而仿真技术的发展反过来使得其得到愈来愈广泛的应用。 广义而言,仿真是采用建模的方法和物理的方法对真实环境客观事物进行 抽象、映射、描述和复现。基于系统原理、理论、定律、系统数据等应用计算机技术、软件技术和信息技术建立仿真环境(虚拟环境) ,在仿真环境中对客观事物进行研究。客观事物包括真实环境中的实体/系统、自然环境(地形、大气、海洋、空间)、和人的行为(操作、决策、推理)。仿真环境包括模型、数据、软件、物理效应设备、计算机等。 计算机仿真的三要素是系统、模型、计算机,三个基本活动是模型设计、模型执行、模型分析。计算机仿真的三要素和三个基本活动的关系关系如图1 所示。 系统 模型设计模型分析 模型执行 模型计算机 图1 从模型设计到模型分析经历的过程,即对实物进行仿真可概括为以下几个方面: 1) 问题的描述; 2) 建立概念模型; 3) 建立仿真模型; 4) 收集数据; 5) 编写程序; 6) 在计算机进行模型试验; 7) 模型和数据的验证; 8) 仿真结果显示; 9) 仿真结果分析和评估。 仿真是建立模型在计算机上运行,但这属于数学仿真,随着技术的发展,许多应用 领域建立仿真系统时除了模型外还要求将实物和人员包含在仿真回路中。 由此可见,基于仿真设计与传统设计的方法和流程两者有很大区别(图2) ,基于仿真设计可以在计算机上建立虚拟样机,对产品的外形、结构、强度、动力

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

《生产系统建模与仿真》教学大纲

《生产系统建模与仿真》教学大纲 (理论课程) 开课系(部):工程学院课程编号:010396 课程类型:专业课总学时:48 学分:3 适用专业:工业工程开课学期:2014-2015学年第一学期 先修课程:概率论与数理统计、C语言程序设计、系统工程导论 一、课程简述 《生产系统建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。 本课程具有较强的理论性,同时具有较强的实践性和应用性,能够有效增强学生的系统仿真理论基础,提高学生对系统仿真、分析工作的适应性,培养其开发创新能力。 本课程的教学目标是培养学生的设计能力、创新能力和工程意识。课程以制造型生产企业为核心,通过理论教学和实践环节相结合,阐述了离散事件系统建模与仿真技术在生产企业分析中的基本原理和方法。其容涉及计算机仿真技术在生产系统分析中的作用和原理、仿真软件的介绍,重点介绍排队系统、库存系统、加工系统以及输入、输出数据分析。本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理;并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能;使学生了解计算机仿真的基本步骤。 二、课程要求 (一)教学方法 1、启发式课堂讨论 针对关键知识点、典型题和难题,通过教师提问,鼓励学生回答问题或请到讲台前做题,并请其他学生评判或提出不同的答案或不同的解决方法。目的是加强学生自主学习的能力和判断能力,培养主动思考的习惯,启发学生的探索精神。 2、重视在教学中加强知识演进的逻辑规律的讲解 提高学生的逻辑思维能力,培养学生分析问题、解决问题的能力。 3、加强计算机辅助设计、分析 将Flexsim仿真软件引入教学中。应用计算机辅助设计、分析,能方便的改变系统

信号与系统仿真作业

nGDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 课程名称课程号学院(系)信息学院 专业班级 学生姓名学号 实验地点04002 实验日期 实验一连时间信号的MATLAB表示 和连续时间LTI系统的时域分析 一、实验目的 1.掌握MATLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性; 2.运用MATLAB符号求解连续系统的零输入响应和零状态响应; 3.运用MATLAB数值求解连续系统的零状态响应; 4.运用MATLAB求解连续系统的冲激响应和阶跃响应; 5.运用MATLAB卷积积分法求解系统的零状态响应。 二、实验原理 1. 连续信号MATLAB实现原理 从严格意义上讲,MATLAB数值计算的方法并不能处理连续时间信号。然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号。

MATLAB提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。 三、实验内容 1.实例分析与验证 根据以上典型信号的MATLAB函数,分析与验证下列典型信号MATLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot()。 (1) 正弦信号:用MATLAB命令产生正弦信号2sin(2/4) ππ+,并会出时间0≤t≤3的波形图。 程序如下: K=2;w=2*pi;phi=pi/4; t=0:0.01:3; ft=K*sin(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('正弦信号')

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示:

基于MATLABsimulink的船舶电力系统建模与故障仿真【开题报告】

开题报告 电气工程及其自动化 基于MATLAB/simulink的船舶电力系统建模与故障仿真 一、综述本课题国内外研究动态,说明选题的依据和意义 1、本课题国内外研究动态 船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。 国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。 目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica 和SAS。MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。SAS 是一个模块化、集成

运动控制系统仿真作业

运动控制系统仿真作业 利用Matlab解运动控制系统习题 习题2-5在转速、电流双闭环调速系统中,两个调节器均采用PI调节器。当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压是否为零?为什么? 解:(一)结合电流、转速调节器的设计建立转速、电流双闭环调速系统模型。设有某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V,136A,1460r/min,e C=0.132V2min/r,允 许过载倍数λ=1.5; 晶闸管装置放大系数s K=40; 电枢回路总电阻R=0.5Ω; 时间常数l T=0.03s,m T=0.18s; 电流反馈系数β=0.05V/A(≈10V/1.5N I); 转速反馈系数α=0.007V2min/r(≈10V/N n)。 设计要求:设计电流调节器,要求电流超调量5%iσ=。设计转速调节器,要求转速无静差,空载起动到额定转速时的转速超调量10%iσ=,并检验转速超调量的要求能否得到满足。 1.设计电流调节器 1)确定时间常数 ①整流装置滞后时间常数s T。三相桥式电路的平均失控时间s

T=0.0017s。②电流滤波时间常数oi T。取oi T=0.002s。 ③电流环小时间常数之和£i T。按小时间常数近似处理,取£i s oi T T T=+=0.0037s。 2)选择电流调节器结构 根据设计要求10%iσ=,并保证稳态电流无差,可按典型I型系统设计电流调节器。电流环控制对象是双惯性的,因此可用PI型电流调节器,其传递函数为 (1)()i i ACR i K s W s s ττ+=检查对电源电压的抗扰性能: £i l T T=0.030.0037s s=8.11,由表1可知,各项指标都是可以接受的。 电流调节器超前时间常数:i l Tτ==0.03s。 电流环开环增益:要求10%iσ=时,根据表2可知,£i I K T =0.5,因此 1£i0.50.5135.10.0037I K s T s -===于是,ACR的比例系数为 £i135.10.030.5 1.013400.05 I i i K R K Tτ??===?4)校验近似条件

电力系统仿真作业(电子版)

电 力 系 统 仿 真 作 业 论 文 电控学院 电气0903 刘娟 0906060301

离散可编程三相电压源PLL和可变频率正序电压和功率测量 the Discrete 3-Phase Programmable Voltage Source PLL and Variable-Frequency Positive-Sequence Voltage and Power Measurements 线路图: 线路结构: 一个25KV,100MVA的短路等效电路网络给一个5MW,5Mvar的负载供电。电源的内部电压通过离散的三相可编程电压源装置来提供。三相电压电流测量装置用来检测三个负载电压和电流。 离散的三相PLL装置用来测量频率,也产生一个基于频率变化的系统电压信号。PLL用来驱动两个测量装置,并把变化的频率考虑在内。其中一个用来计算正序负载电压的标幺值,另外一个用来计算负载的有功和无功功率。这两个装置和PLL必须初始化,以保证初始处在稳态。 PLL和两个测量装置分别在Extras/Discrete in the Control Block 和 Extras/Discrete Measurements中可以找到。 整个系统(包括网络,PLL和测量装置)以50us的采集时间来离散。仿真时间4.0秒,仿真参数ode45(Dormand-Prince)。

基本原理: PLL的概念 PLL其实就是锁相环路,简称为锁相环。许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PLL)。目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。 PLL的特点 锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 PLL的组成 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如下图所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。

曾华艳组离散事件系统仿真大作业

新疆财经大学实验报告 课程名称:物流管理综合实验 实验项目名称:系统建模与仿真 学号: 2013104059 姓名:曾华艳 班级:物流管理11-1 指导教师:林秋平 2014年 6月 2日

新疆财经大学实验报告

《铁路局联通营业厅排队仿真分析实验报告》 一、实验目的 (一)通过对铁路局联通营业厅运作的观察,建立计算机仿真全过程,对营业厅运作进行数据采集、建模和仿真分析,为联通营业厅提出改进和优化方案的建议。 (二)通过这次实验活动,全面了解计算机仿真技术在物流领域、生产制造领域等离散事件系统中的应用,理解仿真技术如何辅助管理人员进行决策。 (三)通过分组合作的形式,提供一种系统仿真工作中常见的团队协作方式的实践体验,培养协调工作、共同完成任务的能力。 二、系统描述 人们进入联通营业厅,首先要通过取票系统拿到自己的号,先在等待区等待叫号系统报自己的号。一共有2个服务台,2个服务台同时工作,哪个服务台叫到几号,拿这个号码的人就去哪个服务台,叫号系统按顺序叫号,2个服务台叫号不会发生重复现象。我们组决定针对铁路局联通营业厅叫号排队办理业务的过程进行研究,因此我们采集了仿真模型相关数据。记录了每位顾客到达时间、等待时间和离开时间。将收集的数据整理,录入excel中,并计算出了顾客的到达时间间隔和被服务时间,再利用flexsim建立仿真模型进行仿真分析与优化。 三、小组分工 (一)本组成员 1.组长:曾华艳 2.组员:晁芙蓉、陈磊、阿尔孜姑丽、宗泽宁、张振恒 (二)小组分工 1.调查收集数据和模型优化:全体成员 2.数据录入:晁芙蓉、张振恒、阿尔孜姑丽 3.数据处理:宗泽宁、阿尔孜姑丽 4.仿真模型建立与分析:陈磊、曾华艳 5.实验报告:曾华艳、晁芙蓉、宗泽宁 6.PPT 制作:张振恒、陈磊

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

大作业题目

控制系统仿真大作业 1、曲线拟合的Matlab实现和优化度检验 通过一个实际的例子,介绍最小二乘曲线拟合法的基本原理,对最小二乘曲线拟合法的Matlab实现方法进行研究,并给出曲线拟合Matlab实现的源程序。论述了Matlab软件在做曲线拟合时的用法,并进行曲线的拟合和相应的图像。 2、基于Matlab的液位串级控制系统 运用组态王和Matlab混合编程的方法设计了一个双容(两个水箱串联)液位串级在线控制系统,由组态王编制人机交互界面,用Matlab完成控制算法,二者通过DDE进行实时数据交换;采用串级控制策略,减小二次干扰的影响,验证其方法的有效性。 3、基于Matlab的变压器差动保护闭环仿真研究 应用Matlab建立了微机保护仿真系统,并对不同原理的变压器差动保护进行了仿真和比较.仿真系统采用积木式结构,根据微机保护的实现原理构建模块,实现保护的闭环仿真,对保护的动作过程进行分析. 4、基于MATLAB/SIMULINK的交流电机调速系统建模与仿真 根据直接转矩控制原理,利用MATLAB/SIMULINK软件构造了一个交流电机调速系统,该系统能够很好地模拟真实系统,实现高效的调速系统设计。仿真结果验证该方法的有效性。 5、基于MCGS和MATLAB的薄膜厚度控制系统仿真 以MCGS组态软件和MATLAB为平台,设计和仿真了一个薄膜厚度控制系统.MCGS完成硬件接口的设置、数据的实时采集、人机对话、以动画的方式显示控制系统的运行情况,MATLAB完成PID参数的自动整定,并利用动态数据交换(DDE)技术建立两者间的通讯.并分析其仿真结果。 6、Matlab在动态电路分析中的应用 用Matlab计算动态电路,可得到解析解和波形图.一阶电路先计算3要素,后合成解

系统建模与仿真课后作业

、系统、模型和仿真三者之间具有怎样的相互关系 答:系统是研究的对象,模型是系统的抽象,仿真通过对模型的实验以达到研究系统的目的。 、通过因特网查阅有关蒲丰投针实验的文献资料,理解蒙特卡罗方法的基本思想及其应用的一般步骤。 答:蒲丰投针实验内容是这样的:在平面上画有一组间距为a的平行线,将一根长度为L(L

(1)实体流图

(2)活动循环图 、以第二章中图2-5所示的并行加工中心系统为对象,建立Petri 网模型。 3214所示Petri 网模型的运行过程,并将分析结果同例3-5相比较。

、任取一整数作为种子值,采用第三题中得到的随机数发生器生成随机数序列的前200项数据,并对其统计性能进行检验。 解:由第3题可得到一个随机数发生器: a=5 b=9 c=3 m=512 取种子值,生成的随机数序列前200项数据如下: n n 5000032458 4 t t P t P P P P t P (2)t3发 生后 t t P t P P P P t P (3)t2发 生后 (4)t1不能 发生 t t P t P P P P t P (5)t4发 生后

系统仿真II大作业

系统仿真II 大作业 自06A-2 赵众源 06101010215 1、考虑如下的微分方程: (1)试在Matlab 环境下采用Euler 法编制其仿真程序,给出在[0,10]秒区间上y 的变化曲线。 (2)试在Matlab —Simulink 环境下搭建仿真模型,给出在[0,10]秒区间上y 的变化曲线。 (3)考虑带有输入的情况: 在Matlab —Simulink 环境下进行仿真,给出在[0,10]区间上y 的变化曲线。 (1) 在M 文件中创建Euler 函数: function [t,y]=euler(odefun,tspan,y0,h) t=tspan(1):h:tspan(2);y(1)=y0; for i=1:length(t)-1 y(i+1)=y(i)+h*feval(odefun,t(i),y(i)); end t=t';y=y'; 在命令窗口得到y 的变化曲线: odefun=inline('2*y*sin(t)-abs(y^3)','t','y'); >> [t,y]=euler(odefun,[0,10],1,0.01); plot(t,y) 3 ()(,)2()sin |()|,(0)1dy t f t y y t t y t y dt ==-=3 ()(,)2()sin |()|(),(0)1,()2cos 2dy t f t y y t t y t u t y u t t dt ==-+==

0.2 0.4 0.6 0.8 1 1.2 1.4 (2)试在Matlab —Simulink 环境下搭建仿真模型,给出在[0,10]秒区间上y 的变化曲线。 (3)考虑带有输入的情况: 在Matlab —Simulink 环境下进行仿真,给出在[0,10]区间上y 的变化曲线。 3 ()(,)2()sin |()|(),(0)1,()2cos 2dy t f t y y t t y t u t y u t t dt ==-+==

电力系统仿真及建模课程设计任务书(v)

昆明学院 《电力系统建模及仿真》课程设计 任务书 适用于:电气工程及其自动化专业 (电气工程方向) 自动控制与机械工程学院电子电气教研室 2015年6月

一、课程设计的目的 该课程设计是在完成《电力系统分析》的理论教学之后安排的一个实践教学环节。其目的在于巩固和加深对电力系统潮流和短路电流计算基本原理的理解,学习和掌握应用计算机进行电力系统设计和计算的方法,培养学生独立分析和解决问题的能力。 二、课程设计的基本要求 掌握电力系统等值模型和参数计算,以及潮流和短路计算的基本原理,学会应用计算机计算系统潮流分布和短路电流的方法。 三、课程设计选题原则 该课程设计是根据电力系统分析课程内容,结合实际工程和科研的电力系统网络进行系统的潮流和短路电流计算。 四、课程设计的任务及要求 1、基本要求 (1)用Matlab中Simulink组件的SimPowerSystems工具箱构建设计要求所给的电力系统模型,在所给电力系统中K处选取不同故障类型(三相短路、单相接地短路、两相短路、两相接地短路进行仿真,比较仿真结果,给出自己的结论。(电力系统接线图见附录1,选做一题) (2)基于Matlab/Simulink,搭建附录2所示电力网络模型,并进行潮流计算。 2、课程设计论文编写要求 纸张A4、要求书写整齐,字数不少于2000字。 (1)封面包括:《电力系统建模与仿真课程设计》总结报告、专业、班级、学号、姓名、指导教师(具体格式附后) (2)论文包括目录、摘要、正文、参考文献、心得体会等。 要求:画出完整电路图、参数标注清楚;按照具体项目要求,完成仿真内容并记录仿真结果,给出自己的结论。 五、时间分配 1、查阅资料、熟悉Matlab中Simulink组件的SimPowerSystems工具箱(1天); 2、基于Matlab/Simulink的电力系统短路故障的仿真与分析(3天);

电力电子电路建模与分析大作业要点

西安理工大学 研究生课程论文/研究报告 课程名称:电力电子系统建模与分析 任课教师: 完成日期:2016 年7 月 5 日 专业:电力电子与电力传动 学号: 姓名: 同组成员: 成绩:

题目要求 某用户需要一直流电源,要求:直流输出24V/200W,输出电压波动及纹波均<1%。用户有220V交流电网(±10%波动变化)可供使用: (1) 设计电源主电路及其参数; (2) 建立电路数学模型,获得开关变换器传函模型; (3) 设计控制器参数,给出控制补偿器前和补偿后开环传递函数波特图,分 析系统的动态和稳态性能; (4) 根据设计的控制补偿器参数进行电路仿真,实现电源要求; (5) 讨论建模中忽略或近似因素对数学模型的影响,得出适应性结论(量化 性结论:如具体开关频率、具体允许扰动幅值及频率等)。 主要工作 本次设计主要负责电源主电路及其参数的的设计,以及建立电路数学模型并获得开关变换器传函模型这两部分内容,具体如下: (1) 本次设计电源主电路及其参数,采用从后向前的逆向设计思想。首先根据系统输出要求,设计了后级DC/DC型Buck电路的参数。接着设计了前级不控整流电路以及工频变压器的参数。考虑到主电路启动运行时的安全性,在主电路中加入了软启动电路; (2) 本次DC/DC变换器的建模并没有采用传统的状态空间平均方法,而是采用更为简单、直观的平均开关建模方法,建立了Buck变换器小信号交流模型。最后,推到出了开关变换器的传递函数模型,并给出了Buck电路闭环控制框图。

1 设计主电路及其参数 1.1主电路设计 根据题目要求,系统为单相交流220V/50Hz 输入,直流24V/200W 输出。对于小功率单相交流输入的场合,由于二极管不控整流电路简单,可靠性高,产生的高次谐波较少,广泛应用于不间断电源(UPS)、开关电源等场合。所以初步确定本系统主电路拓扑为:前级AC-DC 电路为电源经变压器降压后的二极管不控整流,后级DC-DC 电路为Buck 斩波电路,其中Buck 电路工作在电感电流连续模式(CCM ),前后级之间通过直流母线和直流电容连接在一起。系统主电路结构如图1-1所示。 AC 220V/50Hz L C 1 C 2R D S 图1-1 系统主电路结构图 1.2主电路参数设计 本次设计电源主电路参数,采用从后向前的逆向设计思想。先对后级DC/DC 型Buck 电路的参数进行设计,接着对前级不控整流电路以及工频变压器的参数进行设计。下面分别对后级的Buck 电路和前级经变压器降压后的不控整流电路各参数进行分析设计。 1.2.1 输出电阻计算 根据系统电路参数:220,50;24;200i o U V Hz U V P W ===,可计算: 输出电流: /200/248.33O O I P U W V A ==≈ (1-1) 负载等值电阻: /24/8.33 2.88O O R U I V A ==≈Ω (1-2)

相关文档
最新文档