第八讲概率统计解题技巧

第八讲概率统计解题技巧
第八讲概率统计解题技巧

第八讲 概率统计的解题技巧

【命题趋向】概率统计命题特点:

1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份, 增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用.

2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关. 【考点透视】

1.了解随机事件的发生存在着规律性和随机事件概率的意义.

2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.

3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】

考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:

(1)等可能性事件(古典概型)的概率:P (A )=)(A card =m ;

等可能事件概率的计算步骤:

① 计算一次试验的基本事件总数n ;

② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;

③ 依公式()m P A n

=求值;

④ 答,即给问题一个明确的答复.

(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );

特例:独立重复试验的概率:P n (k )=k n k

k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:

第一步,确定事件性质????

???等可能事件

互斥事件 独立事件 n 次独立重复试验

即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算??

?和事件积事件

即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.

第三步,运用公式()()()()()()()()(1)

k k n k n n m P A n

P A B P A P B P A B P A P B P k C p p -?

=???+=+?

??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.

例1.(2007年上海卷文)在五个数字12345,,,,

中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法.

[解答过程]0.3提示:1

33

5

C 33.54C 10

2

P ===?

例2.(2007年全国II 卷文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .

[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.

用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20

提示:51.10020P ==

例3 (2007年全国I 卷文)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分

别为(单位:g ):

492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499

根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.

[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204

=

点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.

例4. (2006年湖北卷)接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)

[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.

[解答提示]至少有3人出现发热反应的概率为

33244555550.800.200.800.200.800.94C C C ??+??+?=.

故填0.94. 例5.(2006年江苏卷)右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把

所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是

(A )45

4 (B )361 (C )154 (D )15

8

[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.

[解答提示]由题意,左端的六个接线点随机地平均分成三组有2

2

2

6423

3

15C C C A =种分法,同理右端

的六个接线点也随机地平均分成三组有222

6423

3

15C C C A =种分法;要五个接收器能同时接收到信

号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是1208225

15

P ==,所以选D.

点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.

例6. (2007年全国II 卷文)

从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.

(1)求从该批产品中任取1件是二等品的概率p ;

(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .

[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.

[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故

01()()P A P A A =+212

012()()(1)C (1)1.

P A P A p p p p =+=-+-=- 于是20.961p =-.

解得120.20.2p p ==-,(舍去).

(2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =.

若该批产品共100件,由(1)知其中二等品有1000.220?=件,故2

8002

100

C 316()C 495

P B ==.

00316179()()1()1.495495

P B P B P B ==-=-

=

例7.(2006年上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 (结果用分数表示). [考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.

[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是

44244288135

A A A P A ==

种.所以,填135.

例8.( 2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个

白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.

(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为4

3,求n.

[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.

[标准解答](I )记“取到的4个球全是红球”为事件A .

22

222245111().61060

C C P A C C =?=?=

(II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.4

4

P B =-=

211112

2222

12

222

4242

()n n n n C C C C C C P B C C C C ++??=?+?22;3(2)(1)n n n =++ 22

2

22242()n n C C P B C C +=?(1);6(2)(1)

n n n n -=

++ 所以, 12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=

+++++1

4

=,

化简,得271160,n n --=解得2n =,或37

n =-(舍去),

故 2n =.

例9. (2007年全国I 卷文)

某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.

(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.

[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力. [解答过程](Ⅰ)记

A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无

人采用一次性付款”.

2()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.

(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:

“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.

30()0.60.216P B ==,1

213()0.60.40.432P B C =??=.

01()()P B P B B =+ 01()()P B P B =+

0.2160.432=+ 0.648=.

例10.(2006年北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过; 方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.

(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.

[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C , 则P (A )=a ,P (B )=b ,P (C )=c.

(Ⅰ) 应聘者用方案一考试通过的概率

p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C ) =a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c =ab+bc+ca-2abc.

应聘者用方案二考试通过的概率

p 2=3

1P (A ·B )+ 3

1P (B ·C )+ 3

1P (A ·C )= 3

1×(a ×b+b ×c+c ×a)= 3

1 (ab+bc+ca)

(Ⅱ) p 1- p 2= ab+bc+ca-2abc-3

1 (ab+bc+ca)= 23

( ab+bc+ca-3abc)

≥23]3

abc

=0≥.

∴p 1≥p 2

例11.(2007年陕西卷文)

某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为5

4、5

3、52、5

1,且各

轮问题能否正确回答互不影响.

(Ⅰ)求该选手进入第四轮才被淘汰的概率;

(Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)

[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.

[解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5

P A =,

23()5

P A =

,32()5P A =,41()5P A =,

∴该选手进入第四轮才被淘汰的概率

412341234432496()()()()()5555625

P P A A A A P A P A P A P P ===???=

(Ⅱ)该选手至多进入第三轮考核的概率

3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++1424331015

55

555

125

=

+?+??=. 考点2离散型随机变量的分布列

1.随机变量及相关概念

①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.

②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列

①离散型随机变量的分布列的概念和性质

一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,

2,……)的概率P (i x =ξ)=i P ,则称下表.

为随机变量ξ的概率分布,简称ξ的分布列.

由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,...;(2)++21P P (1)

②常见的离散型随机变量的分布列: (1)二项分布

n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,

2,…n ,并且k

n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:

ξ),(~p n B ξp ),;(p n k b q p C k n k k n =- .

(2) 几何分布

在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量的概率分布为:

例12.(2007年四川卷理)

厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;

(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.

[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.

[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A

用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2.

()217220

1360190

C P C ξ===,()11

3172

20

511190

C C P C ξ===,(

)23220

32190

C P C ξ===

1365133

01219019019010

E ξ=?

+?+?=. 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率

()136271119095

P P B =-=-

=.

所以商家拒收这批产品的概率为2795

例13.(2007年陕西卷理)

某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为5

4、5

3、5

2,且各轮问题能否

正确回答互不影响.

(Ⅰ)求该选手被淘汰的概率;

(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)

[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.

[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则

14()5P A =

,23()5P A =,32

()5

P A =, ∴该选手被淘汰的概率

112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++

142433101555555125

=

+?+??=. (Ⅱ)ξ的可能值为123,,,11(1)()5

P P A ξ===,

1212428(2)()()()5525P P A A P A P A ξ====?=

12124312(3)()()()5525

P P A A P A P A ξ====?=

ξ∴的分布列为

1812571235252525

E ξ∴=?+?+?=

解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5

P A =,

23()5P A =

,32

()5

P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555

125

=-??=.

(Ⅱ)同解法一.

考点3 离散型随机变量的期望与方差

随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.

(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;

如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p

E 1=ξ,D ξ =2

p

q 其中q=1-p.

例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、

η,ε

则比较两名工人的技术水平的高低为 .

思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.

解答过程:工人甲生产出次品数ε的期望和方差分别为:

7.010

3210111060=?+?+?

=εE , 891.010

3

)7.02(101)7.01(106)7.00(222=?-+?-+?

-=εD ; 工人乙生产出次品数η的期望和方差分别为:

7.010

2

210311050=?+?+?

=ηE ,664.0102)7.02(103)7.01(105)7.00(222=?

-+?-+?-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比

较稳定.

小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.

例15.(2007年全国I 理)

某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.

(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;

(Ⅱ)求η的分布列及期望E η.

[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.

[解答过程](Ⅰ)由

A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.

知A 表示事件“购买该商品的3位顾客中无人采用1期付款”

2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.

(Ⅱ)η的可能取值为200元,250元,300元.

(200)(1)0.4P P ηξ====,

(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,

(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.

η的分布列为

2000.42500.43000.2E η=?+?+?240=(元)

. 小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考

查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.

例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是

A.70,25

B.70,50

C.70,1.04

D.65,25 解答过程:易得x 没有改变,x =70, 而s 2=48

1[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=48

1[(x 12+x 22+…+802+702+…+x 482)-48x 2] =

48

1[(75×48+48x 2-12500+11300)-48x 2] =75-

48

1200

=75-25=50. 答案:B

考点4 抽样方法与总体分布的估计 抽样方法

1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.

2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样). 3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计

由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.

总体分布:总体取值的概率分布规律通常称为总体分布.

当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.

当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题

例17.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= . 解答过程:A 种型号的总体是210

,则样本容量n=1016802

?=.

例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .

解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个

位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63. 例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )

如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 ⑴作出频率分布表;⑵画出频率分布直方图.

思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点. 解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。确定组距为3,组数为10,列表如下:

⑵频率分布直方图如下:

小结: 合理、科学地确定组距和组数,才能准确地制表及绘图,这是用样本的频率分布估计总体分布的基本功.

估计总体分布的基本功。 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念

如果连续型随机变量ξ 的概率密度函数为 2

22)(21)(σμπσ

--=

x e

x f ,x R ∈ 其中σ、μ为常数,

并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).

(2)期望E ξ =μ,方差2σξ=D .

(3)正态分布的性质 正态曲线具有下列性质:

①曲线在x 轴上方,并且关于直线x =μ对称.

②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.

③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高

瘦”.

(4)标准正态分布

当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式

①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-. (6)2(,)N μσ与(0,1)N 二者联系.

① 若2~(,)N ξμσ,则~(0,1)N ξμησ

-= ;

②若2~(,)N ξμσ,则()()()b a P a b μμξφφσ

σ

--<<=-.

2.线性回归

简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.

变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.

具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=?.其中

,

,)(1

2

21

x b y a x n x

y

x n y

x b n

i i

n

i i

i

?-=--=

∑∑==,其中y x ,分别为|i x |、|i y |的平均数.

例20.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( )

A.2Φ(1)-1

B.Φ(4)-Φ(2)

C.Φ(2)-Φ(4)

D.Φ(-4)-Φ(-2) 解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B

例21. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52).

(1)若d =90°,则ξ<89的概率为 ;

(2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01). 思路启迪:(1)要求P (ξ<89)=F (89),

∵ξ~N (d ,0.5)不是标准正态分布,而给出的是Φ(2),Φ(-2.327),故需转化为标准正态分布的数值.

(2)转化为标准正态分布下的数值求概率p ,再利用p ≥0.99,解d .

解答过程:(1)P (ξ<89)=F (89)=Φ(5

.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.

(2)由已知d 满足0.99≤P (ξ≥80),

即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01. ∴Φ(5

.080d -)≤0.01=Φ(-2.327).

∴5

.080d -≤-2.327.

∴d ≤81.1635.

故d 至少为81.1635.

小结:(1)若ξ~N (0,1),则η=σ

μξ-~N (0,1).(2)标准正态分布的密度函数f (x )

是偶函数,x <0时,f (x )为增函数,x >0时,f (x )为减函数.

例22.设),(~2σμN X ,且总体密度曲线的函数表达式为:4

122

21)(+--

=x x e x f π

,x ∈R.

(1)则μ,σ是 ;(2)则)2|1(|<-x P 及)22121(+<<-x P 的值是 .

思路启迪: 根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ.利用一般正态总体),(2σμN 与标准正态总体N (0,1)概率间的关系,将一般正态总体划归为标准正态总体来解

决.

解答过程:⑴由于2

22)2(2)1(4

1

22

2121)(--

+--?=

=x x x e

e

x f ππ

,根据一般正态分布的函数表达形式,

可知μ=1,2=σ,故X ~N (1,2).

)2121()2|1(|)2(+<<-=<-x P x P

(1(1F F φφ=-=-

(1)(1)φφ=--

2(1)120.84131φ=-=?-6826.0=.

又)21()221()22121(--+=+<<-F F x P

(2)(1)

φφφφ=-=-- (2)(1)10.97720.84131φφ=+-=+-8185

.0=.

小结:通过本例可以看出一般正态分布与标准正态分布间的内在关联.

例23. 公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如

果某地成年男子的身高ε~N (173,7)(单位:cm ),则车门应设计的高度是 (精确到1cm )?

思路启迪:由题意可知,求的是车门的最低高度,可设其为xcm ,使其总体在不低于x 的概率小于1%.

解答过程:设该地区公共汽车车门的最低高度应设为xcm ,由题意,需使P(ε≥x)<1%. ∵ε~N (173,7),∴99.0)7

173()(>-=≤x x P φε。查表得33.27

173>-x ,解得x>179.16,即

公共汽车门的高度至少应设计为180cm ,可确保99%以上的成年男子头部不跟车门顶部碰撞. 【专题训练与高考预测】 一.选择题

1.下面关于离散型随机变量的期望与方差的结论错误的是 ( )

A.期望反映随机变量取值的平均水平,方差反映随机变量取值集中与离散的程度.

B.期望与方差都是一个数值,它们不随试验的结果而变化

C.方差是一个非负数

D.期望是区间[0,1]上的一个数.

2.要了解一批产品的质量,从中抽取200个产品进行检测,则这200个产品的质量是 ( ) A. 总体 B.总体的一个样本 C.个体 D. 样本容量

3.已知η的分布列为:

设23-=ηξ则ξD 的值为 ( )

A. 5

B. 34

C. 32-

D.3-

4.设),(~p n B ξ,12=ξE ,4=ξD ,则n,p 的值分别为 ( ) A.18 ,3

1 B. 36 ,3

1 C. 3

2,36 D. 18,3

2

5.已知随机变量ξ 服从二项分布,)3

1,6(~B ξ,则)2(=ξP 等于 ( )

A. 16

3 B. 243

4 C. 24313 D. 243

80

6.设随机变量的分布列为15

)(k k P ==ξ,其中k=1,2,3,4,5,则)2

521(<<ξP 等于 ( )

A.5

1 B. 2

1 C. 91 D. 6

1

7.设15000件产品中有1000件废品,从中抽取150件进行检查,则查得废品数的数学期望为( )

A.15

B.10

C.5

D.都不对

8.某市政府在人大会上,要从农业、工业、教育系统的代表中抽查对政府工作报告的意见.为了更具有代表性,抽取应采用 ( )

A.抽签法

B.随机数表法

C.系统抽样法

D.分层抽样

9.一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是 ( ) A.0.1536 B.0.1808 C.0.5632 D.0.9728

10.某校高三年级195名学生已编号为1,2,3,…195,为了解高三学生的饮食情况,要按1:5的比例抽取一个样本,若采用系统抽样方法进行抽取,其中抽取3名学生的编号可能是( ) A.3,24,33 B.31,47,147 C.133,153,193 D.102,132,159

11.同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是 ( ) A.20 B.25 C.30 D.40 12.已知),0(~2σξN ,且4.0)02(=≤≤-ξp ,则P(2>ξ)等于 ( ) A.0.1 B.0.2 C.0.3 D.0.4

13.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是

A.分层抽样法,系统抽样法

B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法

14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为(

)

A.0.6 h

B.0.9 h

C.1.0 h

D.1.5 h

二.填空题

15.某工厂规定:工人只要生产出一件甲级产品发奖金50元,生产出一件乙级产品发奖金30元,若

生产出一件次品则扣奖金20元,某工人生产甲级品的概率为0.6,乙级品的概率为0.3,次品的概率为0.1,则此人生产一件产品的平均奖金为 元.

16. 同时抛掷两枚相同 的均匀硬币,随机变量1=ξ 表示结果中有正面向上, 0=ξ表示结果中没有正面向上,则=ξE .

17.

2其中产量比较稳定的小麦品种是 .

18.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件.

19.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是___________.

20.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是___________. 三.解答题

21. 某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为多少?

22. 甲、乙两人各进行3次射击,甲每次击中目标的概率为12

,乙每次击中目标的概率为23

.求:(1)

记甲击中目标的次数为ξ, ξ的概率分布及数学期望; (2)乙至多击中目标2次的概率;

(3)甲恰好比乙多击中目标2次的概率.

【参考答案】

一、1.D 2. B 3.A 4.D 5. D 6. A 7. B 8. C 9. D 10. C 11. C 12 A 13. 提示:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差

异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.

依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.

答案:B

14.提示:

50

5.0

20

)5.1

1(

10

2

5?

+

+

?

+

?=0.9.

答案:B

二. 15. 37 ; 16.

4

3; 17.甲; 18.5600;

19.提示:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

∵m =6,k =7,m +k =13,∴在第7小组中抽取的号码是63. 答案:63

20.提示:不妨设在第1组中随机抽到的号码为x ,则在第16组中应抽出的号码为120+x . 设第1组抽出的号码为x ,则第16组应抽出的号码是8×15+x =126,∴x =6. 答案:6

三.21.解 :分层抽样应按各层所占的比例从总体中抽取. ∵120∶16∶24=15∶2∶3,又共抽出20人, ∴各层抽取人数分别为20×2015=15人,20×202=2人,20×20

3

=3人. 答案:15人、2人、3人.

22. 解:(1)18

P ξ=0331(=0)=C ()2

; 38

P ξ=1331(=1)=C ()2

;38

P ξ=233

1(=2)=C ()2

;18

P ξ=33

3

1(=3)=C ()2. ξ的概率分布如下表

1331

0123 1.5.8888

E ξ=?+?+?+?=

(2)乙至多击中目标2次的概率为33

19127

C -=32()3

. (3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件为B 2,则12A B B =+,1B 、2B 为互斥事

件.112127

89

24

P ?+?=

123(A )=P (B )+P (B )=8. 所以甲恰好比乙多击中目标2次的概率为124

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论与数理统计习题及答案

概率论与数理统计习题及答案 习题一 1.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C (1)A发生,B,C都不发生; (2)A与B发生,C (3)A,B,C都发生; (4)A,B,C (5)A,B,C都不发生; (6)A,B,C (7)A,B,C至多有2个发生; (8)A,B,C至少有2个发生. 【解】(1)A BC(2)AB C(3)ABC (4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC (5) ABC=A B C(6) ABC (7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC 3.. 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7, (1)在什么条件下P(AB (2)在什么条件下P(AB) 【解】(1)当AB=A时,P(AB)取到最大值为0.6. (2)当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率. 【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

= 14+14+13-112=34 7. 52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p =5332 131313131352C C C C /C 8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)= 517=(17 )5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567 =(67)5 (3) 设A 3={五个人的生日不都在星期日} P (A 3)=1-P (A 1)=1-( 17 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

浙大版概率论与数理统计答案---第八章

第八章 假设检验 注意: 这是第一稿(存在一些错误) 1 、解 由题意知: ~(0,1)/X N n μ σ- (1)对参数μ提出假设: 0: 2.3H μ≤, 1: 2.3H μ> (2)当0H 为真时,检验统计量 2.3 ~(0,1)0.29/35 X N -,又样本实测得 2.4x =,于 是 002.4 2.3( )( 2.04)1(2.04)0.0207/0.29/35/H H X X P P P n n μμ σσ----=≥=≥=-Φ= (3)由(2)知,犯第I 类错误的概率为0.0207 (4)如果0.05α=时,经查表得 1.645z α=,于是 2.3 2.3{ }{ 1.645}/0.29/35 X X W z W n ασ-->=> (5)是。 2、 14.5515x =<故将希望得到支持的假设“15μ>”作为原假设,即考虑假设问题 0H : 15μ≥,1H :15μ< 因2 σ未知,取检验统计量为0 /X T S n μ-= ,由样本资料10n =,14.55x =, 1.2445s =和015μ=代入得观察值0 1.2857t =-,拒绝域为 ()0 0.059/X W T t S n μ??-==≤-?? ??,查分布表得()0.059 1.8331t =,()00.059t t >- 故接受原假设0H ,即认为该广告是真实的。 3、 解(1)由题意得,检验统计量1 /X Z n σ-= ,其拒绝域为

1 {}{ 1.66}/X W Z z W X n ασ-== ≥=≥ 当2μ=时,犯第II 类错误的概率为: 0021.662 {|}{ 1.66|2}P{ }=0.198//X P H H P X n n βμσσ--==≤==≤接受是错误的 (2) 2 22 (n 1)S ~(n 1)χσ --,当2σ未知时,检验统计量224S ,其拒绝域为: 2221W {24S (24)}{S 0.577}αχ-=<=< 当21.25σ=时,检验犯第I 类错误的概率为: 22 2 0024S 240.577 {|}{S 0.577| 1.25}P{}=0.012 1.251.25 P H H P ασ?==<==<拒绝是正确的 4、 (1)提出假设0H :3000μ=,1H :3000μ≠ 建立检验统计量0 /X T S n μ-= ,其中03000μ= 在显著水平0.05α=下,检验的拒绝域为 ()0 0.0257 2.3646/X W T t S n μ??-==≥=?? ??,由样本资料得观察值()00.0252958.753000 2.97271348.4375/8 t t -= =>,故有显著差异。 (2)μ的95%的置信区间为()()/2/21,1S S X t n X t n n n αα??- -+- ?? ? ,由样本资料得μ的95%的置信区间为()2925.93,2991.57 (3)(){}(){}0 2127 2.9720.0207P P t n t P t =-≥=≥=。 5、 解 (1) ~(1)S/X t n n μ --。由题意得,样本测得的值为167.2x =, 4.1s =,100n =,经查表得()/299 1.984t α=,于是均值μ的95%的置信区间为: ()()/2/2(99s /,99s /)(166.4,168.0)x t n x t n αα+-=

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

最新高考-2018年高考数学概率统计的解题技巧 精品

第八讲 概率统计的解题技巧 【命题趋向】概率统计命题特点: 1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份, 增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用. 2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关. 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算???和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1335C 33.54C 10 2P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案 第 八 章 1.设12,,,n X X X L 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设 00:H λλ≥的2χ检验统计量及否定域. 解 00:H λλ≥ 选统计量 2 001 22n i i X nX χλλ===∑ 记 2 1 2n i i X χ λ==∑% 则2 2 ~(2)n χ χ%,对于给定的显著性水平α,查2χ分布表求出临界值2 (2)n αχ,使 22 ((2))P n αχ χα≥=% 因 2 2χ χ>%,所以2222((2))((2))n n ααχχχχ≥?≥%,从而 2222 {(2)}{(2)}P n P n αααχ χχχ=≥≥≥% 可见00:H λλ≥的否定域为22 (2)n αχχ≥. 2.某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):, , , , , 。设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是毫米(0.05α=). 解 问题是在2 σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中 29.4632.50 2.45 6.771.1 X u -= = ?=- 0.025 1.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是毫米。 3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批

产品的指标的期望值μ不低于1600。 解 问题是在2 σ已知的条件下检验假设0:1600H μ≥ 0H 的否定域为/2u u α<-,其中 15801600 5.1 1.02100X u -==?=-. 0.05 1.64u -=-. 因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600. 4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格(0.05α=) 解 设元件寿命为X ,则2 ~(,100)X N μ,问题是检验假设 0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中 9501000 5 2.5100 X u -= = ?=- 0.05 1.64u = 因为 0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格. 5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24 设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α= 解 问题是在2 σ未知的条件下检验假设0: 3.25H μ= 0H 的否定域为 /2||(4)t t α> 52 2 1 13.252,(5)0.00017, 0.0134i i X S X X S ===-?==∑ 0.005(4) 4.6041t = 3.252 3.25 2.240.3450.013 X t -==?= 因为

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

《概率论与数理统计》课程自学指导书

《概率论与数理统计》课程自学指导书 前言 . . 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。其内容可分为三大部分。第一部分概率论部分,包括第一、二、三、四、五章。作为基础知识,为读者提供了必要的理论基础。第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。 本指导书是作为函授学员在集中授课后,指导自学而编制的。内容较为简明扼要。主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。 本指导书的主要参考书目: 1. 景泰等编。概率论与数理统计.上海科学技术文献出版社,1991. 2. 玉麟主编。概率论与数理统计.复旦大学出版社,1995。 3.大茵,陈永华编。概率论与数理统计。浙江大学出版 社.1996 本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。主要考核方式为笔试。 第一章概率论的基本概念 一、内容概述 # 本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。 二、教学目的要求 # (1) 理解并掌握概率论的基本概念。

等可能事件与抛掷硬币试验

第八讲等可能事件与抛掷硬币试验 1.知道,但何以知道? 我们知道,如果随意抛掷一枚硬币,则硬币正面朝上和反面朝上的可能性相等。因此我们说,抛掷硬币时,硬币正面朝上和反面朝上是等可能事件。我们又知道,如果随意抛掷一枚骰子,则骰子六个面朝上的可能性相等,因此我们说,抛掷骰子时,骰子的六个面朝上是等可能事件。但我们想过没有,人们是何以知道这些结论的呢? 现在有三个选择项: A.是由硬币(骰子也一样)几何形状的对称性和物理质地的均匀性想当然地得到的; B.是布丰、德.摩根等人抛掷硬币试验的结果(虽然没有他们抛掷骰子的记载); C.是利用概率论公式,通过计算得到的。 你将作何选择? 2.考古的与历史的证据——答案初现 人类很早以前就已经发现抛掷骰子时各面朝上的等可能性,并利用这种等可能性做各种游戏:我国山东青州出土的战国时代(公元前475年至前221年)齐墓中就发现陪葬的骰子。又据文献记载,古罗马(公元前27年至公元446年)人已利用骰子进行占卜和赌博。 而概率论的产生,始于1654年法国数学家帕斯卡(1623—1662)和费尔马(1601—1665)在来往书信中讨论的关于抛掷骰子游戏的数学问题。此后经许多数学家的大量工作,概率论的内容逐渐充实,到1812年法国数学家拉普拉斯的著作《概率分析理论》问世,所谓古典概率的理论结构已经完成。 至于抛掷硬币试验,重要的抛掷硬币试验的年代无法考证,但著名的抛掷硬币试验者的生卒年代可以考证:布丰(1707—1788),德.摩根(1803—1871),皮尔逊(1857—1936),费勒(1906—1970)。 从时间先后不难发现:人类先有对等可能性的认识,在此基础上建立了古典概率理论,然后才有抛掷硬币的试验。 3.逻辑——至少应有一个“先验的”概率 不妨从逻辑角度再作一次推演。大数思想表明:“当随机试验次数达到大数次时,事件的频率逐渐稳定于它的概率。”因此,至少有一个随机事件的概率是未经试验而预先知道的,这个概率必定不是试验的结果(即用频率估计)。而这正是抛掷硬币时,硬币正、反面朝上

相关文档
最新文档