砂石加工系统施工设计方案

砂石加工系统施工设计方案
砂石加工系统施工设计方案

1.工程概况

河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1)型,坝体为碾压混凝土重力坝,大坝坝高62.5m。

本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。2.砂石骨料需求情况

根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。

3.砂石系统组成情况

3.1系统组成

根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工

系统机械设备情况见下表3-1。

表3-1 砂石加工系统机械设备情况表

3.2 系统生产工艺流程说明

由于砂石加工系统布置在左岸1#渣场,距离料场350m,毛料运输采用15t自卸汽车倒运至进料口,再用装载机端运至进料口。在进料口上方安装一个喂料斗,经喂料斗进行箱式破碎机破碎生产。为保证生产骨料含泥量不超标,对所采毛料进行分选或冲洗。

3.3 系统规模

系统设计规模以满足混凝土高峰时段的月平均浇筑强度的生产为设计依据。由此系统设计处理规模为:粗碎40t/h、筛洗35t/h、制砂25t/h。各车间处理能力见表3-2。

表3-2 砂石加工厂各车间处理能力

经咨询砂石骨料生产厂家,箱式锤破1600破碎机就能满足该砂石骨料供应需求。根据现场实际情况,由于细骨料石粉含量不足,增设两台制砂机。所增设VSI5X7615型制砂机摆放在锤式制砂机输送皮带出口处,进行二次加工。

3.4 系统参数

系统各部分用电总功率约为500千瓦。本工程砂石加工设备及系统各项技术参数分别见表3-3、3-4、3-5、3-6、3-7。

表3-3 破碎机主要技术参数

表3-4 制砂机主要技术参数

表3-5 皮带机主要技术参数

表3-6 喂料机主要技术参数

表3-7 砂石加工系统技术指标

3.5 系统布置

砂石料加工系统布置在左岸1#渣场,占地约1700㎡,系统内主要设备和设施有:上料平台、喂料机、破碎机、皮带机、平板筛、储料场、配电房等。

进料平台布置在靠山侧,采用浆砌石挡墙和石渣堆成一个进料平台。充分利用地形,皮带安装成斜坡,平筛安装浇筑混凝土隔墙基础,在隔墙的基础上加高1m,将三个料仓增加为4个料仓。

本工程砂石加工系统平面布置情况见附件一:《砂石系统平面布置图》。

3.6 辅助设施

3.6.1施工供电

砂石加工系统用电从布置在砂石加工系统下游侧的1000KVA变压器接引,铝芯电缆作为供电线路,设置专门的配电房。配电房采用砖砌,大小为3.5m×

3.0m。

4.系统建设方案

4.1 建站计划

由于地方地方政策变化以及征地等原因,本标砂石料场于2017年4月12日才确定,导致我部建站时间较计划时间晚,从而造成砂石加工系统建站工期紧张。为确保主体工程混凝土浇筑时,砂石加工系统能正常供应骨料,我部拟加快系统建设进度,计划于2017年9月30完成砂石加工系统的修建和调试,正式投入生产。

4.2 土建施工方案

本工程砂石加工系统设备主要采用混凝土基础,配电房、供风站等房屋皆采用砖砌,施工简单易行。

4.3 设备安装方案

喂料机、破碎机、筛网等设备较重,最大件设备重量达5.2t,皮带机、空压

安装时,采用25t吊车吊装。

4.4 调试方案

砂石加工系统设备安装完毕后,我部将根据设备说明书及相关规范,依次

进行电气系统调试、单机空转试验、系统空转试验、系统试生产试验。系统试

生产合格,并经各方验收签字后,方可正式投入使用。

5.施工安全保证措施

由于破碎机、喂料机等设备较重,需进行吊装作业,也是建设期主要危险

源之一。因此,为保证系统建设安全,我部拟采取以下措施:

⑴项目部成立安全生产管理委员会,安委会负责系统建设期的安全管理工作。施工前,安委会隶属机构(安全环保部)对全体施工人员进行安全教育,并针对施工项目进行安全技术交底,形成有效的管理文件。

⑵建立健全安全生产责任制度,砂石系统建设工区由专人负责安全、技

术、质量、进度的管理与协调,确保安全管理责任明确,责任到个人。

⑶场平开挖爆破时,在施工区域周边进行通行管制,并按照相关规定进行

警戒,疏散200m内的人员,确保爆破安全。爆破时间安排在上午10:00~11:00、下午16:00~17:00。每次爆破后,应确认无盲炮,并解除警报后,再放开交通管制。

⑷系统建设期间,管理人员、施工人员等应注意安全,防止发生安全事

故。

6.施工进度保证措施

本工程砂石加工系统开工时间晚,导致系统建设工期紧,强度高,为保证

能及时给主体工程提供足量、合格的砂石骨料。我部拟采取以下措施,加快系

统建设进度。

⑴充分发挥生产调度会的作用,加强内部沟通协调,合理调度施工资源,

尽量减少人员、设备窝工情况。

⑵做好材料储备计划,确保系统建设材料能及时到位,避免停工待料。

⑶做好现场技术指导,根据现场实际情况合理调整施工方法和系统布置情况,减少施工干扰。

7.施工质量保证措施

砂石加工系统的建设质量事关后期的运行管理是否方便、生产的砂石骨料

质量是否合格、以及是否能达到系统生产能力等。因此,我部将采取现场技术

紧密跟踪,质量管理步步为营的措施,确保本工程砂石加工系统的建设质量。

8.环境保护措施

⑴施工现场管理人员和操作人员必须按要求佩带安全帽和上岗证。

⑵做到施工现场管理规范,干净整洁、无积水、无淤泥、无杂物,严格遵守“工完、料尽、场地净”的原则,不留垃圾,不留剩余施工材料和施工机具,各种设备运转正常。工程材料、机具堆放整齐,并做好标识。

⑶施工现场的道路必须平整畅通,排水系统良好。

⑷施工场地内的管线严格按安全规定架设,并加强管理,杜绝乱搭乱接。

⑸施工弃渣和生活垃圾堆放在指定地点,废油、生产及生活污水根据制定的环保措施进行处理。

⑹保持生活区清洁卫生、环境美化,及时清除垃圾和废弃物,并运至指定的地点堆放和处理。

⑺做好施工现场安全保卫、防火、防盗工作,建立必要的防范措施和规章制度,执行值班、交接班制度,非施工人员不得擅自进入施工现场。

中国水利水电第八工程局有限公司

河头上水库工程项目部

2017年9月28日

砂石骨料生产系统施工方案

砂石骨料生产系统设计说明 1.1 工程概述 砂石骨料生产骨料系统位于挡水坝下游一平台上,紧临混凝土拌和系统进行布置,总占地面积约6000m2。砂石骨料生产系统主要承担供应主体工程混凝土总量约11.1万m3的生产任务,主要生产大石(40~80mm)、中石(20~40mm)、小石(5~20mm)、以及砂(<5mm),其中粗骨料约16.5万t,细骨料约8.4万t。砂石骨料系统布置详见附图1《砂石骨料生产系统平面布置图》 1.2 料源简介 本标段砂石骨料料场为黑串沟人工骨料场,位于大坝左岸耳朵岩沟支沟黑串沟右岸山脊,距坝址约1.6km,距离砂石骨料系统约1.1km,有公路相通,运输较为方便。本标段总开采量为16.88万m3。 1.3 系统工艺流程设计 1.3.1 系统设计规模 本工程砂石系统以承担主体工程全部混凝土总量约11.1万m3所需砂石骨料的加工,系统生产能力应满足本标实际高峰月浇筑强度16500m3/月骨料供应,但根据招标文件要求,砂石系统生产能力满足混凝土浇筑高峰强度2.0万m3/月。按招标文件要求进行系统设计,骨料最大粒径为80mm,最小粒径为0.15mm。 根据初步计算,成品骨料综合级配见表1。 表1 成品骨料综合级配表 ⑴成品砂石料月需要量 高峰月成品砂石料需要量: Qc=20000m3×2.2t/m3=44000t/月

(注:系数2.2为每m3混凝土中的砂石料用量) ⑵高峰月毛料处理能力 按照成品砂石料的生产要求,考虑到整个加工过程中的加工损耗、运输损耗、堆存损耗、洗石损耗、细砂石粉流失等综合因素,高峰月毛料处理能力为:Qmd=Qc/η=4.4×104t/0.85=51765t /月 成品率η={k 3k 4 k 5 k 6 [1+v(k 1 k 2 -1)]}-1={1.03×1.02×1.02[1+0.35(1.25× 1.02-1)]}-1=0.85 ⑶系统设计毛料小时处理量及成品砂石料小时生产能力 高峰强度月,每月工作25天,每天工作8小时,并考虑生产不均匀系数K=1.1,系统设计小时毛料处理量为: Q h =Q md ×K/MN=51765×1.1/(25×8)=285t/h 成品小时生产能力为: Q=Q c ×K/MN=44000×1.1/(25×8)=242t/h 进过以上计算,本系统生产规模毛料小时处理量按300t/h,成品砂石料小时生产能力为250t/h进行设计,完全能满足高峰期月浇筑强度20000m3的骨料供应需求。 1.3.2 工艺流程设计 砂石料加工系统设计产出成品分别为大石(80~40mm)、中石(40~20mm)、小石(20~5mm)、砂(<5mm)4种料,设计主要采用粗碎、中碎和细碎的三段破碎及两段筛分来完成整个生产过程。根据破碎筛分的流程,确定生产工艺流程,工艺流程图详见附图2《砂石骨料生产系统工艺流程图》。 1.3.3 加工流程设备选型 1.3.3.1 选型原则 (1) 生产能力满足招标文件要求,并且要求有一定裕度; (2) 各粒径砂石料的产量能根据需要即时调整; (3) 成品砂石料储量满足混凝土高峰期浇筑5天用量; (4) 工艺性能可靠,节约占地,建设周期短。 3.3.3.2 设备选型 粗碎(第一段破碎):粗碎原料为黑串沟人工骨料料场的开采石料,要求石料粒径控制在600mm以下。根据生产骨料能力,选用1台JC1100型颚式破碎机作为粗碎设

砂石加工系统施工方案

1. 工程概况 河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1 )型,坝体为碾压混凝土重力坝,大坝坝高62.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2. 砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强 度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80?40mm中石为40?20mm小石为20?5mm 砂为w 5mm 粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水 工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3. 砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1 o 表3-1 砂石加工系统机械设备情况表

人工砂石料加工系统(定)

第6章砂石料加工系统 6.1工程概况 本标段只承担电源电站厂房及引水系统土建和金属结构与机电设备安装工程的施工。该标段主体及临建工程的混凝土总量约为6.1万m3,浆砌石2.9万m3。其中三级配混凝土1.53万m3、二级配混凝土 3.8万m3、一级配混凝土0.77万m3,砂浆1.16万m3。 根据招标文件要求,用于主体工程和重要部位的混凝土的骨料,采用经监理人批准后可利用的合格洞挖料,如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充。恩梅开江沿江两岸分布有砂料场,调查砂料储量约15万m3,主要是细骨料。试验资料见表6.1-1。 表6.1-1 细骨料筛分试验成果表 6.2 砂石骨料加工工作范围 本工程砂石骨料加工分人工砂石骨料加工及天然砂石骨料加工。根据标书要求我公司要负责人工砂石料加工系统及天然砂骨料系统的全部施工详图设计、所有土建施工及机电设备采购、运输、安装、调试及试运行、人工砂石料采石毛料运输、天然砂骨料料源开采、人工砂石骨料加工系统及天然砂骨料系统的运行管理。 6.3砂石骨料加工工作项目 6.3.1砂石骨料加工主要工程项目包括(但不限于): (1) 原材料采集 本工程人工砂石骨料加工系统不需要另外开挖石料,只是利用合格洞挖料进行毛料运输。天然砂石骨料只是对其培河口与恩梅开江左岸交汇处的天然砂砾石料场进行骨料开采。 (2) 人工机制砂石料加工系统 1) 土建 主要包括:场平、半成品料堆和成品料堆、各车间、办公室、带式输送机基础及廊道、供水管敷设、废水处理厂、排水沟、场内道路等。

2) 设备及部分材料的采购、运输、保管。 3) 安装 主要包括:各车间所有设备、汽车受料仓及廊道内的给料机、带式输送机、配电、电器设备、钢桁架及管道的安装。 4) 调试、试运行 调试车间各种设备、带式输送机、电器设备、管道的试压等;试运行(包括空载试运行和负载试运行)。 5) 砂石系统运行维护 砂石加工系统运行期的砂石料生产。主要工作内容包括:毛料开采运输、砂石加工、给排水、废水处理、成品骨料质量检测、成品骨料计量等所有生产环节。 (3) 天然砂石料加工系统 如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充,只在料场设置筛分系统,采用取砂弃石工艺,在加工厂生产的人工砂按比例进行掺合,使其达到要求的细度模数。 6.3.2砂石骨料加工自行承担和解决的工程施工所需的工程项目和临时工程(但不限于): (1) 施工交通(包括场内道路及砂石加工厂至拌和站道路之间的连接道路); (2) 施工供电(含运行期柴油发电机组变、配电设施采购、安装、运输、维护); (3) 施工及生产运行期间的供排水,含取水建筑物和水池建造,管路和设备的采购、安装,以及施工的运行、维护; (4) 施工照明; (5) 施工通信; (6) 修配厂、钢筋及木材加工厂等; (7) 仓库系统; (8) 临时房屋建筑工程; (9) 施工期环境保护设施。 6.4 本工程特点 6.4.1本工程是由承包人负责整个砂石骨料加工系统的详图设计和建筑安装工程的施工、生产调试到生产运行管理的全过程控制施工。同时包括人工砂石骨料加工系统及天

数据采集及处理系统的设计

课程设计 题目数据采集及处理系统的设计学院自动化学院 专业自动化 班级0902班 姓名何润

指导教师张丹红 2012年07月03日 课程设计任务书 学生姓名:何润专业班级:自动化0902班 指导教师:张丹红工作单位:自动化学院 题目: 数据采集及处理系统的设计 初始条件: 设计一个64路巡回数据采集及处理系统,系统循环周期为1秒,16路模拟信号输入,16路开关信号输入,16路模拟输出,16路数字输出。 要求完成的主要任务: 1.输入通道及输出通道设计(0~20mV输入),(0~10V输出)2.每周期内各通道采样10次; 3.对模拟信号采用一种数字滤波算法; 4.完成系统硬件电路设计,软件流程及各程序模块设计; 5.完成符合要求的设计说明书。 时间安排: 2012年6月25日~2010年7月4日

指导教师签名:年月日 系主任(或责任教师)签名:年月日 摘要 数据采集及处理系统是指从传感器和其它待测设备等模拟和数字被测单元中自动采用非电量或者电量信号,送到上位机中进行分析,处理的过程。数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。而数据处理就是通过一些滤波算法,删除原始数据中的干扰和不必要的信息,分离出反映被测对象的特征的重要信息。本次课程设计采用A/D和D/A转换器和MCS-51单片机组成数据采集系统,数据采集系统可以通过A/D转换把模拟信号转换成数字信号,并且可以方便的实现数字信号存储。该设计具有结构简单、操作方便、高性价比、具有显示、记录存储功能,能够适应油田野外恶劣环境,;具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、回放过程的信号可以直观的观察。它与有线数传相比主要有布线成本低、安装简便、便于移动等性能。 数据采集器的市场需求量大,以数据采集器为核心构成的小系统在工农业控制系统、医药、化工、食品等领域得到了广泛的应用。数据采集器具有良好的市场前景,在我们工业生产和生活中有着举足轻重的地位,因此,本次课程设计数据采集及处理系统有着一定的实际意义 关键词:数据采集,处理,A/D转换,D/A转换,采样保持

砂石骨料加工系统建设方案(参考模板)

1.工程概况 木瓜溪水库位于石阡县中坝镇上游石阡河上,坝址距中坝镇3km,距石阡县13km。木瓜溪水库工程由挡水建筑物、泄水建筑物、放空建筑物、供水灌溉系统、引水发电系统及厂房建筑物等构成。坝型为常态混凝土双曲拱坝,挡水建筑物分为左右岸非溢流坝段,河床为溢流坝段,大坝坝顶高程为545.00m,最大坝高53米,底宽13.5m,顶宽5m,坝顶弧长度124.16m。坝身设一个溢流表孔(12m×7m,宽×高),堰顶高程533.0m,设置一道工作闸门,2个泄洪兼放空底孔(5m×4m,宽×高),底板高程513.00m,对称布置在表孔两侧,下游采用挑流消能。大坝下游接混凝土护坦,护坦底板厚度为2m,护坦边墙为贴坡混凝土结构,边墙底部与护坦相接,顶部厚度为1m,护坦边墙高度为16m。 厂区布置在大坝下游左岸,距坝下游150m,为地面厂房结构,装机容量为2400KW。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为61275m3,混凝土高峰浇筑强度约7832m3/月,平均强度为6104m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足《水工混凝土施工规范》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据我公司实验室提供的推荐理论配合比计算,总计需生产成品砂石骨料13.75万t,各种砂石骨料需求强度为:砂102 m3/天、小石82m3/天、中石101m3/天、大石56m3/天。 3.砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、2条平筛、水池、胶带机(2条)及成品料场和场内排水沟、污水沉淀池等。砂石系统主要设备基础结构见附件一:《砂石系统平面布置

砂石加工系统

砂石料生产系统 混凝土90%由砂石料组成,每立方米混凝土需1.5m3砂石骨料,约合2.2t/ m3。砂石料生产系统是混凝土大坝的粮仓,是工程的命脉。因此,砂石生产系统的。规模也十分庞大,对工程建设的影响重大,应高度重视。 1砂石料源的选择 1.1砂石料的分类:天然砂石料、人工砂石料。 砂石料的综合成本:除计入开采、加工运输等成本外,还应包括料场及加工系统建设的土建和设备的一次性投资,以及采用不同类型骨料配制混凝土时其它成分材料差额的费用等。 有些工程招标时明确,综合成本还包括剥离层、边坡支护、场地排水、环境保护的费用。 1.2水工混凝土骨料的质量技术要求:详见《规范》 品质要求:骨料的级配、容重、比重、热学性能、物理力学指标(湿抗压强 度)。 有害成分:云母(<2%)、碱骨料、有机物、黏土、硫化物等应控制在一定范围。 1.3砂石料源的选择: 1.3.1.1最佳料源选择方案取决于料场的布局、开采条件、可利用料的贮量,质量级配、 加工条件、弃料量、运输方式、运输方式、运输距离及生产成本的因素,并结 合工程实际进行综合技术经济论证。 1.3.1.2料源分类:天然砂石料场:陆上料场、河滩料场、河床水下料场。 人工料场:采石厂。 工程开挖利用料:导流隧道、坝肩坝基开挖等弃渣。 1.4砂石料的开采: 1.4.1砂石料开采量:砂石料需要量应按各级配混凝土需要量按比例分别计算。初估时, 可以按每立方米约需1.5m3砂石净骨料,其中,粗骨料1.067 m3 (1.5t), 细骨料 0.433 m3(0.7t)。折合成开采量时需计入开采、加工、运输、储存等的损耗系数。系 数可参阅有关资料。 1.4.2人工料场的开采:一般用钻爆法松动岩体,控制开采石块的粒径,用鄂式破、反击 破、移动式破碎站破碎,对超大块石用二次爆破或液压破碎锤处理。 2砂石加工厂 水电工程要求砂石加工厂,“现代化、高标准、绿色环保、智能节能”。加工厂由粗碎、中细碎、筛洗、制砂等车间单元组成,三个生产环节,即毛料生产、半成品料生产、成品料生产。 粗碎车间:最大进料粒径可达1000mm以上,将石料破碎到300~ 70mm,采用反击破、鄂破、旋回破筛分一体化布置,使粗碎 大大优化。 中细碎车间:将石料破碎到70~20mm~1mm,采用闭路生产工艺,可以 按需生产,新式反击式破碎机大破碎比,高效能。圆锥破碎 机(单缸和多缸),粒形好,产量高。应用于三峡、江垭等。 2.1人工砂石料工艺筛分工艺:新型筛分设备,超宽筛、高强钢网筛、球击筛面筛等筛分 效效率高、噪声低、不塞孔。高效脱水筛。 棒磨机制砂:产品稳定,粒径、细度模数良好,缺点, 产量低,耗钢量大。 制砂车间:破碎机制砂:旋盘式圆锥破碎机、冲击式破碎机制砂。

数据采集系统的设计

摘要 数据采集系统,是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 本课程设计对数据采集系统作了基本的研究。本系统主要解决的是采集10路模拟量(10位精度),20路开关量,采集的数据每隔1毫秒,通过串行通讯方式RS485向一台工控机传送的实现方法。 关键字:数据采集、A/D转换、模拟量。数字量、串行通信

数据采集系统的设计 1 设计内容及要求 设计一个数据采集系统,系统要采集10路模拟量(10位精度),20路开关量,采集的数据每隔1毫秒,通过串行通讯方式RS485向一台工控机传送。 要求:①选择合适的芯片;②设计原理电路(包含译码电路);③编制数据采集的程序段;④编制数据通信程序段;⑤撰写设计说明书。 2 数据采集系统原理及实现方案 本课设是设计一个数据采集系统,系统要采集10路模拟量(10位精度),20路开关量,采集的数据每隔1毫秒,通过串行通讯方式RS485向一台工控机传送。 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。硬件设计应用电子设计自动化工具,数据采集原理图如图1所示: 图1 数据采集原理图 由原理图可知,此设计主要分三大部分:模拟量的输入采集,数字量的输入采集,从机向主机的串行通信。 信号采集分析:采集多路模拟信号时,A/D转换器前端需加采样/保持(S/H)电路。待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波

等环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。

砂石料加工系统施工组织措施

砂石料加工系统施工措施 一、概述 1.1 工程概况 引水式开发方式。坝型为埋石混凝土重力坝,最大坝高9.0m,正常蓄水位1697.0m,正常蓄水位以下库容24×104m3,电站总装机容量为21MW(2×10.5MW),额定水头140.0m,单机额定引用流量8.85 m3/s,总引用流量17.7m3/s。 1.2 设计依据 1、本工程招标文件技术条款中明确的技术标准和规范 2、《水利水电工程砂石料加工系统设计导则》 二、施工布置 2.1 施工场地布设 砂石料加工系统承担混凝土总量约4.88万m3,喷混凝土0.88万m3,需加工骨料7.32万m3,约11.72万t,其中加工砂5.23万T,碎石6.41万T。 根据渣场分布、料场布置位置及工作面分布情况,通过对开挖可利用料、骨料及混凝土运距分析和综合比较,共布置3个砂石加工系统,分别布置在3号渣场、4号渣场及7号渣场内,各占地面积1680m2。砂石料加工系统具体布置图详见图1;砂石料加工系统工艺流程见图2; 2.2 施工道路 乡村公路与自建施工道路,能够满足毛料和成品骨料的运输要求。 2.3 施工用水布置 根据场内用水规划,1、2号砂石料加工系统用水从五郎河抽水; 3号砂石料加工系统用水从团结大沟取水;详见表2。 砂石料加工系统用水布置表 表2

2.4 施工用电布置 施工用电主要为破碎、筛分系统生产用电及夜间施工照明用电。1号砂石料加工系统用电直接利用3号渣场内布置的一台S9-200/10变压器进行输电;2号砂石料加工系统用电直接利用4号渣场内布置的一台S9-200/10变压器进行输电;3号砂石料加工系统用电直接利用5号支洞口布置的一台S9-500/10变压器进行输电; 2.5 料场分布 根据施工招标文件及相关资料,洞挖可利用料约3.9万m3。 三、砂石骨料强度分析及设备选型 3.1 砂石骨料强度分析 根据投标文件及混凝土施工进度要求,混凝土高峰月浇筑强度5900m3/月,约需骨料为5900×2=11800t,每月按25天有效工作日,每天两班制生产,每班按10小时计算,砂石料筛分系统必须达到生产强度:11800÷25÷2÷10≈23.60t/h。设备有效利用率按85%考虑,砂石料筛分系统设计处理能力为30t/h ×0.85=25.5t/h>23.60t/h。各系统主要技术经济指标见下表7。 砂石料加工站主要技术经济指标表 表7

砂石骨料加工系统设计方案

善泥坡水电站场内交通工程 砂石料加工系统初步设计说明书 批准: 校核: 编写: 中国水利水电第九工程局有限公司善泥坡水电站项目部 二00九年九月十日

目录 设计背景 (4) 第一部分系统设计 (4) 1. 工艺流程设计 (4) 1.1 设计依据 (4) 1.2 设计原则 (4) 1.3 料源规划 (5) 1.4生产规模 (6) 1.5流程设计 (7) 1.6关键加工工艺 (8) 1.7 设备选型 (9) 1.8 料仓及成品供料 (12) 1.9 系统特点 (13) 2. 施工布置 (14) 2.1 布置原则 (14) 2.2 系统组成 (14) 2.3 车间布置 (14) 2.4供排水系统 (16) 2.5供配电系统 (16) 2.6 临时设施 (16) 2.7 主要土建工程量 (17) 3 电气系统设计的基本原则 (17) 3.1设备选型 (18) 3.2功率因素补偿 (18) 3.3系统照明 (18) 3.4计量设计 (18) 3.5消防 (18) 4 供排水系统设计 (18) 4.1概述 (18) 4.2供水方案 (19)

4.3水回收方式 (19) 4.4排水系统 (19) 4.5用水标准及用水量计算 (19) 4.6供水系统结构设计 (20) 4.7 管路布置 (21) 4.8 主要设备与工程量表 (21) 5钢结构设计 (25) 5.1 设计原则 (25) 5.2钢结构设计项目 (25) 5.3 钢结构设计 (25) 5.4钢结构主要工程量表 (27) 6钢筋混凝土结构设计 (27) 6.1 设计原则 (27) 6.2 钢筋混凝土结构设计项目 (28) 6.3 钢筋混凝土结构设计 (28) 6.4钢筋混凝土主要工程量 (30) 第二部分运行管理 (31) 7. 砂石料生产 (31) 7.1 概述 (31) 7.2 资源配置 (31) 8. 砂石骨料生产质量保证措施 (33) 8.1 建立健全质量管理保证体系和质量管理制度 (33) 8.2 砂石骨料工艺性试验 (33) 8.3加强砂石骨料生产质量的控制 (34) 8.4 认真做好成品砂石骨料的储存防护工作 (34) 9.安全文明生产与环境保护 (35) 9.1 安全文明生产 (35) 9.2环境保护 (36)

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

砂石加工系统方案

1.1砂石加工系统 1.1.1概述 本工程总混凝土量为33.6万m3,共需成品砂石料47.1万m3,其中中骨料(40~80mm)8.3万m3,小骨料(20~40mm)12.5万m3,细骨料(5~20mm)12.5,砂13.8万m3。大坝填筑需要填层料,小区料及反滤料共计28.1万m3,其中填层料25.9万m3,小区料0.76万m3,反滤料1.47万m3。 由于本工程附近没有天然石料场,本工程所需的成品砂石料全部采用人工轧制,轧制所需原料在尖尖山石料场开采。 1.1.2系统设计依据 根据施工进度安排,混凝土浇筑的最大强度为2.0万m3/月,填筑料、小区料及反滤料填筑的最大强度为 2.2m3/月。考虑到加工损耗,加工系统生产能力的富余度,系统按二班制即每天工作14小时计算,系统的混凝土骨料生产能力按180t/h考虑,垫层料生产能力按90t/h考虑。 1.1.3砂石料开挖 粗碎车间要求开挖的砂石料最大粒径控制在50cm之内,因此,按过渡料开挖的方法爆取,采用深孔梯段毫秒微差爆破,梯段高度为15m。钻孔机具选用1台液压露天钻ROC742钻机,能满足2000m3/d的开挖强,具体开挖要求参见第10章的有关内容。 1.1.4破碎工艺 为保证工程在不同施工时期对骨料的不同需求,生产工艺考虑具有较强的调节骨料生产与耗用平衡,在保证产品质量及工程用耗量的前提下,加工设备选用国内领先且具有成熟使用经验的国产设备,以降低建厂投入,本系统将设置粗碎车间、中碎车间、细碎车间、一级筛分车间、二级筛分车间、细骨料分级、成品料堆存、运输等设施。 一、粗碎车间

粗碎车间与受料斗结合布置,车间设置二个容量各为15 m3的喂料斗及二台PE600×900鄂式破碎机、二台1000×700槽式振动给料机。原料由自卸车直接卸入料斗,由槽式振动给料机喂入粗碎设备PE600×900鄂式破碎机,加工成混合料落入皮带机送至调节料堆。 粗碎车间所能接受的原料最大粒度≤500mm,>500mm的蛮石将被二次解小再利用。 二、中碎及一次筛分 堆存于调节料堆的混合料由底部的二台槽式给料机卸料,由皮带机送往一级筛分车间,一级筛分设1台3KY1836型振动筛,对混合料进行筛分,将需破碎的物料由皮带机送往中碎车间破碎,中碎车间安装一台φ1600×1400反击式破碎机,通过改变该机的排料口宽度可有效地调整排料级配,一级筛分车间同时分出中石、小石成品料,由相应的皮带机送往成品料堆,<20mm的混合料由皮带机送往二级筛分车间继续筛分,>80mm的混合料由皮带机送往中碎车间破碎。 三、二级筛分及细碎车间 细碎车间安装1台PL—1000立轴式破碎机,对多余部分的细石进行进一步的破碎,该破碎机出料粒度小于5mm的占大部分,但是砂子细度模数粗,属粗砂范围,需要用检查筛将2-5mm的粒径通过闭合回路反送到PL-1000立轴式破碎机进行破碎,加工成小于2mm的粒径来调整成品砂细度模数。 二级筛分车间安装一台2YIC1836振动筛,一台FG1500螺旋分级机,用振动筛分离出5-20mm,2-5mm及<2mm的成品料,2-5mm由皮带机送到PL-1000立轴式破碎机进行再破碎,<2mm的砂通过螺旋分级机脱水后由皮带机送到成品料堆。用作垫层料的砂不经螺旋分级机直接由皮带机送到成品料堆。 5-20mm骨料在堆存的同时将多余的料通过皮带机送到PL-1000立轴式破碎机进行制砂。

空气采样探测器设计方案

空气采样探测器设计方案 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目~单层高度20米以上~考虑到防火要求~因空间高~不宜采用普通点型火灾探测设备~为达到暗室高大空间的火灾防护能力~最大限度的减少~避免火灾隐患~确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术~卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络~可以通过监控微机对全部前端探测器进行编程~监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 , 《火灾自动报警系统设计规范,GB50116,98,》 , 《火灾自动报警系统施工及验收规范,GB 50166,92,》 , 《火灾报警器通用技术条件,GB4717,1993,》 , 《消防联动控制设备通用技术条件 GB16806,1997》 , 《VESDA System Design Manual Version 2.2》,Vision公司 设计手册, , 《VESDA设计规范2002》,北京华脉金威公司企业标准, , 《VESDA施工及验收规范2002》,北京华脉金威公司企业标准, 三、 VESDA产品功能及介绍 3.1. 综述

VESDA——VERY EARLY SMOKE DETECTION APPARATUS~中文翻译为:极早期的烟雾探测设备~这是根据产品的功能而起的名字。而根据其原理特点~也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球~并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉~成为保障高价值财产和重要设备设施安全的第一选择。 3.2. 燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟,阴燃,阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾~发出警报~此时火情所造成巨大的经济和财产损失已不可避免。请注意:在此之前~不可见烟阶段给我们提供了充裕的时间~VESDA可以及早探测险情~并控制火情的发生和曼延。

砂石骨料加工系统

4.5 砂石料加工系统 4.5.1 砂石料需用量 本工程砼总量为115.30 万m3,其中左岸72.35 万m3,需成品砂石料108.53 万 m3,考虑损耗约需砂石毛料 135.10 万 m3;右岸混凝土总量 42.95 万m3(含临时工程),需成品砂石料 64.43 万 m3,约需砂石毛料 80.20 万 m3,其他零星工程需要成品砂石料 9.07 万 m3,合计需要砂石成品料 182.03 万 m3,约需要砂石毛料215.30 万 m3骨料所需级配见下表: 4.5.2 系统规模 根据本工程施工总进度安排,本工程右岸混凝土高峰月浇筑强度 3.52 万 m3,考虑混凝土浇筑月不均匀系数 1.5,砂石系统按混凝土高峰月浇筑强度为 5.28 万 m3设计,砂石料生产每立方混凝土需用砂石骨料 2.3t,按每月 25 天、每天二班、每班工作 6 小时工作制进行加工。则砂石生产系统毛料处理能力为405t/h。 左岸混凝土高峰月浇筑强度 3.72 万 m3,考虑混凝土浇筑月不均匀系数 1.5,砂石系统按混凝土月最高浇筑强度为 5.58 万 m3设计,砂石料生产每立方砼需用砂石骨料 2.3t,按每月 25 天、每天二班、每班工作 6 小时工作制进行加工。则砂石生产系统毛料处理能力为 430t/h。 综上左、右岸砂石加工系统均按系统毛料处理能力为 430t/h。 4.5.3 工艺流程设计 砂石料加工系统设计产出成品分别为大石(80~40mm)、中石(40~20mm)、小石(20~5mm)、砂(<5mm)4种料,设计主要采用粗碎、中碎、细碎三段破碎和制砂及三段筛分来完成整个生产过程。根据破碎筛分的流程计算,确定工艺流程如图:《砂石骨料加工系统工艺流程图》所示。

系统总设计方案采集正弦波word版

第一章赛车整体设计 1.1硬件模块设计 系统硬件模块设计图如图1.1所示。 图1.1 整个赛车硬件模块主要分为六大部分:电源模块、电磁信号采集模块、测速模块、驱动模块、舵机转向模块。附加的模块有液晶调试模块,和无线调试模块。详细原理图见文件(原理图.doc)。 1.2 软件结构流程

系统软件流程图如图2.3所示。 图1.2 系统软件流程图

第二章智能车系统方案的关键 2.1 影响系统性能的关键因素 2.1.1 舵机的转动延时 造成车速提高时出现的转弯不及时等原因中,很大一部分由舵机的转动延时引起,而如何协调舵机延时与车速的控制则显得至关重要。所以转动越灵活,越有利于转弯。 2.1.2 传感器检测精度 传感器的检测精度一方面会引起赛道标志的识别,另一方面会影响弯道和直道的检测。精度越高,赛道标志的识别就越精确,弯道会提前检测,直道时能够精准卡住黑线。 2.1.3 传感器的前瞻距离 前瞻距离越大,越能提早检测到弯道,提前转弯,解决了舵机的延迟作用,但是太远的前瞻亦会引起赛道的错误识别,导致走错赛道等等问题。 2.1.4 电机调速的快慢。 赛车入弯时能否及时减到合适的速度,而赛车出弯时能否及时加到合适的速度,这就在某种程度上受电机驱动电路的限制。驱动的导通阻抗越低,则导通电流越大,驱动能力就越强。 2.2 传感器分析 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁波中间,为3kHz~30kHz,波长为100km~10km。如图3.1所示: 图2.1电流周围的电磁场示意图 导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置。 由电磁感应定理,变化的磁场在导线中产生电动势,闭合的导线中则会产生电流,按正弦规律变化的磁场则产生按正弦规律变化的电动势。由图2.1知,离导线越远磁场越弱,检测到的电动势就越小,又由于得到的是正弦变化的电压,电压的变化即电压幅值的变化。

砂石加工系统施工方案

1.工程概况河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1)型,坝体为碾压混凝土重力坝,大坝坝高6 2.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3.砂石系统组成情况 3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1。 3.2 系统生产工艺流程说明

由于砂石加工系统布置在左岸1#渣场,距离料场350m,毛料运输采用15t自卸汽车倒运至进料口,再用装载机端运至进料口。在进料口上方安装一个喂料斗,经喂料斗进行箱式破碎机破碎生产。为保证生产骨料含泥量不超标,对所采毛料进行分选或冲洗。 3.3 系统规模 系统设计规模以满足混凝土高峰时段的月平均浇筑强度的生产为设计依据。由此系统设计处理规模为:粗碎40t/h、筛洗35t/h、制砂25t/h。各车间处理能力见表3-2。 根据现场实际情况,由于细骨料石粉含量不足,增设两台制砂机。所增设型制砂机摆放在锤式制砂机输送皮带出口处,进行二次加工。VSI5X76153.4 系统参数系统各部分用电总功率约为500千瓦。本工程砂石加工设备及系统各项技术参数分别见表3-3、3-4、3-5、3-6、3-7。

采集数据方案设计

采集数据方案设计 信息技术的发展引领企业管理模式变革。制造现场落后的数据采集与处理手段,阻碍制造业底层信息化管理的实现,严重制约企业生产管理、经营管理和信息化管理水平,以下是XX搜索整理一篇采集数据方案设计,欢迎大家阅读! 可编程逻辑控制器(PLC)是很多工业自动化和过程控制系统的核心,可监控和控制复杂的系统变量。基于PLC的系统采用多个传感器和执行器,可测量和控制模拟过程变量,例如压力、温度和流量。PLC广泛应用于众多不同应用,例如工厂、炼油厂、医疗设备和航空航天系统,它们需要很高的精度,还要保持稳定的长时间工作。此外,激烈的市场竞争形势要求必须降低成本和缩短设计时间。因此,工业设备和关键基础设施的设计人员在满足客户对精度、噪声、漂移、速度和安全的严格要求方面遇到了严峻的挑战。本文以PLC 应用为例,说明多功能、低成本的高度集成 ADAS3022如何通过更换模拟前端(AFE)级,降低复杂性、解决多通道数据采集系统设计中遇到的诸多难题。这种高性能器件具有多个输入范围,非常适合高精度工业、仪器、电力线和医疗数据采集卡应用,可以降低成本和加快产品面市,同时占用空间很小,易于使用,在1 MSPS速率下提供真正的16位精度。 图1显示在工业自动化和过程控制系统中使用PLC的简化信号链。PLC通常包括模拟和数字输入/输出(I/O)模块、

中央处理器(CPU)和电源管理电路。 在工业应用中,模拟输入模块可获取和监控恶劣环境中的远程传感器信号,例如存在极端温度和湿度、振动、爆炸化学物品的环境。典型信号包括具有5 V、10 V、±5 V和±10 V满量程范围的单端电压或差分电压,或者0 mA至20 mA、4 mA至20 mA、±20 mA范围的环路电流。当遇到具有严重电磁干扰(EMI)的长电缆时,通常使用电流环路,因为它们本身具有良好的抗扰度。 模拟输出模块通常控制执行器,例如继电器、电磁阀和阀门等,以形成完整自动化控制系统。它们通常提供具有5 V、10 V、±5 V和±10 V满量程范围的输出电压,以及4 mA 至20 mA的环路电流输出。 典型模拟I/O模块包括2个、4个、8个或16个通道。为满足严格行业标准,这些模块需要提供过压、过流和EMI 浪涌保护。大多数PLC包括ADC和CPU之间、CPU和DAC之间的数字隔离。高端PLC可能还有国际电工委员会(IEC)标准规定的通道间隔离。很多I/O模块可以对每通道的对单端或差分输入范围、带宽和吞吐率单独进行软件编程。 在现代PLC中,CPU自动执行多个控制任务,利用实时信息访问进行智能决策。CPU可能包含高级软件和算法以及Web连接,用于差错校验诊断和故障检测。常用通信接口包括RS-232、RS-485、工业以太网、SPI和UART.

砂石加工系统施工方案

1.工程概况 河头上水库位于赫章县白果镇河头上村,所在河流为长江流域乌江水系六冲河上源右支后河支流前河的小支流上。水库工程主要任务是承担赫章县城白果片区3.8万居民生活用水。本工程为水库大坝枢纽工程,水库规模属小(1)型,坝体为碾压混凝土重力坝,大坝坝高62.5m。 本工程原定砂石料场因地方政策变化、移民征地等问题不能按约定提供招标阶段所规划指定的砂石料场,在此情况下经综合考虑利用左坝肩修建管理房其场平开挖出的有用料进行加工砂石料,用于河头上水库工程施工。 2.砂石骨料需求情况 根据招投标文件,本工程混凝土总量为12.24万m3,混凝土高峰浇筑强度约2.6万m3/月,平均强度为2万m3/月,主要为二、三级配混凝土。粗骨料大石粒径为80~40mm,中石为40~20mm,小石为20~5mm,砂为≤5mm,粗骨料同级别内要求粒径分布均匀,不得断挡,需满足DL/T5151-2014《水工混凝土砂石骨料试验规程》要求。为保证砂石骨料均衡生产,提高设备利用能力,拟采用“全年开采、闲时备料”的运行方式,高峰期利用闲时储备料应急补充,因此,系统生产能力按照平均需求能力进行设计。根据毕节市勘测设计研究院提供的碾压混凝土施工技术要求配合比计算,总计需生产成品砂石骨料18.36万m3。 3.砂石系统组成情况

3.1系统组成 根据砂石骨料需求情况,以及骨料质量要求,本系统拟设置开采区、上料区、破碎车间、筛分车间、成品料场等。主要构筑物有:喂料回车平台、箱型锤式破碎机、1条平筛、胶带机(2条)及两台制砂设备。本工程砂石加工系统机械设备情况见下表3-1。 表3-1 砂石加工系统机械设备情况表

人工砂石料加工系统

人工砂石料加工系统 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第6章砂石料加工系统 工程概况 本标段只承担电源电站厂房及引水系统土建和金属结构与机电设备安装工程的施工。该标段主体及临建工程的混凝土总量约为万m3,浆砌石万m3。其中三级配混凝土万m3、二级配混凝土万m3、一级配混凝土万m3,砂浆万m3。 根据招标文件要求,用于主体工程和重要部位的混凝土的骨料,采用经监理人批准后可利用的合格洞挖料,如人工砂产量不足可开采其培河口与恩梅开江左岸交汇处的天然砂砾石料场补充。恩梅开江沿江两岸分布有砂料场,调查砂料储量约15万m3,主要是细骨料。试验资料见表-1。 表-1 细骨料筛分试验成果表 砂石骨料加工工作范围 本工程砂石骨料加工分人工砂石骨料加工及天然砂石骨料加工。根据标书要求我公司要负责人工砂石料加工系统及天然砂骨料系统的全部施工详图设计、所有土建施工及机电设备采购、运输、安装、调试及试运行、人工砂石料采石毛料运输、天然砂骨料料源开采、人工砂石骨料加工系统及天然砂骨料系统的运行管理。 砂石骨料加工工作项目 6.3.1砂石骨料加工主要工程项目包括(但不限于): (1) 原材料采集 本工程人工砂石骨料加工系统不需要另外开挖石料,只是利用合格洞挖料进行毛料运输。天然砂石骨料只是对其培河口与恩梅开江左岸交汇处的天然砂砾石料场进行骨料开采。 (2) 人工机制砂石料加工系统 1) 土建 主要包括:场平、半成品料堆和成品料堆、各车间、办公室、带式输送机基础及廊道、供水管敷设、废水处理厂、排水沟、场内道路等。 2) 设备及部分材料的采购、运输、保管。 3) 安装 主要包括:各车间所有设备、汽车受料仓及廊道内的给料机、带式输送机、配电、电器设备、钢桁架及管道的安装。 4) 调试、试运行 调试车间各种设备、带式输送机、电器设备、管道的试压等;试运行(包括空载试运行和负载试运行)。 5) 砂石系统运行维护 砂石加工系统运行期的砂石料生产。主要工作内容包括:毛料开采运输、砂石加工、给排水、废水处理、成品骨料质量检测、成品骨料计量等所有生产环节。 (3) 天然砂石料加工系统

相关文档
最新文档