二次求导法解高考导数题 (2)

二次求导法解高考导数题 (2)
二次求导法解高考导数题 (2)

二次求导法解高考导数题

胡贵平(甘肃省白银市第一中学 ,甘肃 白银 730900)

导数是研究函数性质的一种重要工具,用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减.而当导数与0的大小确定不了时,对导函数或导函数中的一部分再构造,继续求导,也就是二次求导,不失为一种妙法,下面我们结合高考题来看看二次求导数题中的应用.

1 (2017年高考课标Ⅱ卷(文)(21))设函数2()(1)e x

f x x =-.

(I )讨论()f x 的单调性;

(II)当0x ≥时,()1f x ax ≤+,求a 的取值范围.

解:(I )略.

(II)当0x ≥时,()1f x ax ≤+等价于2(1)1x ax x e ≥--.

若=0x ,显然成立,a R ∈. 若0x >时,2(1)1x x e a x --≥,设2(1)1()x x e g x x

--=, 2232222(1)(1)1(1)1()x x x x xe x e x x e x x x e g x x x ????-+------+-+????'== ,

令32()(1)1x h x x x x e =--+-+,32()(4)0x h x e x x x '=-++<,所以()h x 在(0,)x ∈+∞内是减函数,易知(0)=0h ,所以当(0,)x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在(0,)x ∈+∞上单调递减,所以

22022000

(1)1(101(1)1lim lim (1)1x x x x x x x e e x e x e x x →→=??-------'????==--??)20(21)=1x x x x e =??=--+??,所以1a ≥,

综上所述,a 的取值范围是[)1+∞,

. 2 (2016年高考课标Ⅱ卷(文)(20)) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.

解:(I )略. (II)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 1x x a x +<

-,设(1)ln ()1x x g x x +=-, 2221(ln )(1)(1)ln 2ln 1()(1)(1)x x x x x x x x x g x x x x ++

--+--'==-- ,

令2

()2ln 1h x x x x =--,()22ln 22(ln 1)0h x x x x x '=--=-->,所以()h x 在()1,x ∈+∞内是增函数,易知(1)=0h ,所以当()1,x ∈+∞时,()0h x >,即()0g x '>,所以()g x 在()1,x ∈+∞上单调递增,所以

[]111

1(1)ln (1)ln (11)ln1(1)lim lim (1)ln ln 211x x x x x x x x x x x x x x x →→==++-++??'==+=+=??--??,所以2≤a ,即a 的取值范围是(],2-∞.

3 (2010年高考安徽卷(理)(17))设a 为实数,函数

()22,x f x e x a x R =-+∈. (Ⅰ)求()f x 的单调区间与极值;

(Ⅱ)求证:当a >ln21-且x >0时,x e >221x ax -+.

解:(I )略.

(Ⅱ)设()221x g

x e x ax =-+-, 则()22x g x e x a '=-+, 继续对()g x '

求导得()2x g x e ''=- ,当x 变化时()g x '',()g x '变化如下表

由上表可知()()ln 2g x g '

'≥, 而()()ln2ln 22ln 2222ln 222ln 21g e a a a '=-+=-+=-+,由a >ln21-知 ()ln 20g '>,所以()0g x '>,即()g x 在区间()0,+∞上为增函数.

于是有()(0)g x g >,而()02002010g e a =-+?-=,

故()0g x >,即当a >ln21-且x >0时,x e >221x ax -+.

4(2008年高考湖南卷(理)(21))已知函数2

2()ln (1)1x f x x x

=+-+. (I) 求函数()f x 的单调区间; (Ⅱ)若不等式1(1)n a e n

++

≤对任意的N*n ∈都成立(其中e 是自然对数的底数).求a 的最大值.

解:(I )函数()f x 的定义域是(1,)-+∞, 2222

2ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++. 设2()2(1)ln(1)2g x x x x x =++--,则()2ln(1)2g x x x '=+-.

令()2ln(1)2h x x x =+-,则22()211x h x x x -'=

-=++. 当10x -<<时, ()0h x '>,从而()h x 在(1,0)-上为增函数,

当0x >时,()0h x '<,从而()h x 在(0,)+∞上为减函数.

所以h (x )在0x =处取得极大值,而(0)0h =,所以()0(0)g x x '<≠,函数()g x 在(1,)-+∞上为减函数.

于是当10x -<

<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=. 所以当10x -<<时,()0,f x '>()f x 在(1,0)-上为增函数.

当0x >时,()0,f x '<()f x 在(0,)+∞上为减函数.

故函数()f x 的单调递增区间为(1,0)-,单调递减区间为(0,)+∞.

(Ⅱ)略.

求导法则与求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

导数二次求导

1.已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥

2.设a 为实数,函数()22,x f x e x a x R =-+∈。 (Ⅰ)求()f x 的单调区间与极值; (Ⅱ)求证:当a >ln 21-且x >0时,x e >2 21x ax -+。

1.已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ 先看第一问,首先由()(1)ln 1f x x x x =+-+可知函数()f x 的定义域为()0,+∞,易得 ()()11ln 11ln f x x x x x x '=++-=+ 则由2'()1xf x x ax ≤++可知21ln 1x x x ax x ? ?+≤++ ??? ,化简得 2ln x x x ax ≤+,这时要观察一下这个不等式,显然每一项都有因子x ,而x 又大于零,所以两边同乘 1x 可得ln x x a ≤+,所以有ln a x x ≥-,在对()ln g x x x =-求导有 ()11g x x '=-,即当0<x <1时,()g x '>0,()g x 在区间()0,1上为增函数;当1x =时,()0g x =;当1<x 时,()g x '<0,()g x 在区间()1,+∞上为减函数。 所以()g x 在1x =时有最大值,即()()ln 11g x x x g =-≤=-。又因为ln a x x ≥-,所以1a ≥-。 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。 要证(1)()0x f x -≥,只须证当0<x 1≤时,()0f x ≤;当1<x 时,()f x >0即可。 由上知()1ln f x x x '=+ ,但用()f x '去分析()f x 的单调性受阻。我们可以尝试再对()1ln f x x x '=+求导,可得()211f x x x ''=-,显然当0<x 1≤时,()0f x ''≤;当1<x 时,()f x ''>0,即()1ln f x x x '=+在区间()1,+∞上为减函数,所以有当0<x 1≤时, ()()11f x f ''≥=,我们通过二次求导分析()f x '的单调性,得出当0<x 1≤时()1f x '≥,则()f x 在区间(]0,1上为增函数,即()()10f x f ≤=,此时,则有(1)()0x f x -≥成立。 下面我们在接着分析当1<x 时的情况,同理,当1<x 时,()f x ''>0,即()f x '在区间()1,+∞上为增函数,则()()11f x f ''≥=,此时,()f x 为增函数,所以()()10f x f ≥=,易得(1)()0x f x -≥也成立。 综上,(1)()0x f x -≥得证。 下面提供一个其他解法供参考比较。 解:(Ⅰ)()1ln f x x x '=+ ,则()ln 1xf x x x '=+ 题设2'()1xf x x ax ≤++等价于ln x x a -≤。

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

高考数学--导数中二次求导的运用

高考数学--导数中二次求导的运用 【理·2010全国卷一第20题】已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ 解析:先看第一问,首先由()(1)ln 1f x x x x =+-+可知函数()f x 的定义域为()0,+∞,易得()() 11ln 11ln f x x x x x x '=++-=+ 则由2'()1xf x x ax ≤++可知21ln 1x x x ax x ? ?+≤++ ??? ,化简得 2ln x x x ax ≤+,这时要观察一下这个不等式,显然每一项都有因子x ,而x 又大于零,所以两边同乘1x 可得ln x x a ≤+,所以有ln a x x ≥-,在对()ln g x x x =-求导有 ()11g x x '=-,即当0<x <1时,()g x '>0,()g x 在区间()0,1上为增函数;当1x =时,()0g x =;当1<x 时,()g x '<0,()g x 在区间()1,+∞上为减函数。 所以()g x 在1x =时有最大值,即()()ln 11g x x x g =-≤=-。又因为ln a x x ≥-,所以1a ≥-。 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。 要证(1)()0x f x -≥,只须证当0<x 1≤时,()0f x ≤;当1<x 时,()f x >0即可。 由上知()1ln f x x x '=+ ,但用()f x '去分析()f x 的单调性受阻。我们可以尝试再对()1ln f x x x '=+求导,可得()211f x x x ''=-,显然当0<x 1≤时,()0f x ''≤;当1<x 时,()f x ''>0,即()1ln f x x x '=+在区间()1,+∞上为减函数,所以有当0<x 1≤时, ()()11f x f ''≥=,我们通过二次求导分析()f x '的单调性,得出当0<x 1≤时()1f x '≥,则()f x 在区间(]0,1上为增函数,即()()10f x f ≤=,此时,则有(1)()0x f x -≥成立。

二次求导问题

北京华罗庚学校 为全国学生提供优质教育 二次求导问题 导数既是高中数学的一个重要内容,又是高考的一个必考内容.近几年高考中,出现了一种新的“导数”,它是对导函数进行二次求导而产生的新函数,尤其是近几年作为高考的压轴题时常出现. 利用二次求导求函数的单调性 [典例] 若函数f(x)= sinx ,00时,函数f(x)单调递增;当 f ′(x)<0时,函数f(x)单调递减. [方法演示] 解:由f(x)= sinx ,得f ′(x)= xcosx -sinx , x 2 x 设 g(x)=xcosx -sinx ,则g ′(x)=-xsinx +cosx -cosx =-xsinx. ∵ 0f(x 2),即a>b. [解题师说] xcosx -sinx 从本题解答来看,为了得到 f(x)的单调性,须判断 f ′(x)的符号,而 f ′(x)= x 2 的分母 为正,只需判断分子xcosx -sinx 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题. [应用体验] 1.已知函数f(x)满足f(x)=f ′(1)e x -1 1 2 -f(0)x +x ,求f(x)的解析式及单调区间. 2 解:因为f(x)=f ′(1)e x -1 -f(0)x +1 x 2,所以f ′(x)=f ′(1)e x - 1-f(0)+x. 2 令x =1,得f(0)=1.所以f(x)=f ′(1)e x -112 ,所以 f(0) =f ′(1)e -1 ,解得f ′(1) =e. -x +x =1 2 所以f(x)=e x -x +1 x 2. 2

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

导数中的二次求导问题

2019高考数学热点难点突破技巧第03讲: 导数中的二次求导问题 【知识要点】 1、高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大. 2、在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”,不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径. 【方法讲评】 对函数一次求导得到 难度较 的单调性,得到函数的最值,即可得到 到函数 【例1】(理·2010全国卷Ⅰ第20题)已知函数. (Ⅰ)若,求的取值范围;(Ⅱ)证明:

化简得, 所以两边同乘可得,所以有,在对求导有 ,即当<<时,>0,在区间上为增函数;当时, ;当<时,<0,在区间上为减函数. 所以在时有最大值,即.又因为,所以 . 当时,同理,当时,>,即在区间上为增函数,则 ,此时,为增函数,所以,易得 也成立. 综上,得证. 方法二:(Ⅰ),则 题设等价于. 令,则. 当<<时,>;当时,,是的最大值点,所以 . 综上,的取值范围是.

(Ⅱ)由(Ⅰ)知,,即. 当<<时, 因为<0,所以此时. 当时,. 所以 【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.(2)大家一定要理解二次求导的使用情景,是一次求导得到之后,解答难度较大甚至解不出来. (3) 二次求导之后,设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数 的单调性. 【例2】设函数 (Ⅰ)若在点处的切线为,求的值;(Ⅱ)求的单调区间; (Ⅲ)若,求证:在时,>. 【解析】(Ⅰ)∵∴, ∵在点处的切线为,即在点的切线的斜率为,

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

求导法则及求导公式

§2 求导法则 上一节我们讲述了导数的相关知识,要求大家:深刻理解导数概念,能准确表达其定义;明确其物理、几何意义,会求曲线上一点的切线方程;能够从定义出发求某些函数的导数;知道导数与导函数的区别和联系;明确导数与单侧导数,可导与连续的关系.特别要注意,要学会从导数定义出发求某些导数的导数.例如,我们上节课已计算出左边所列的导函数,并且我们知道,计算函数在一点的导数或某区间上的导函数归结为极限的计算.因此,从理论上来讲,给了一个函数(不管它是简单函数,还是复杂函数),总可用定义求其导数(只要极限存在).但从我们计算左边几个函数的经验知道,用定义计算函数的导数是比较繁琐的.试想对基本初等函数的导数计算(用定义求导)都如此繁琐,对一般的初等函数更是不可想象. 因此,我们不能满足于只用导数定义求导数,而应去寻找一些求导数的一般方法,以便能较方便地求出初等函数的导数.在给出较一般的方法之前,先看以下函数如何求导数: x x x f cos sin )(1+= x x g 2sin )(1= x x x f cos sin )(2?= )sin()(2ax x g = x x x f a log cos )(3= x x g arcsin )(3= x c x f sin )(4= x x g arccos )(4= 一、导数的四则运算 问题1 设x x x f cos sin )(±=,求)('x f . 分析 利用导数的定义及极限的四则运算知,)'(cos )'(sin sin cos )('x x x x x f ±== .即 )'(cos )'(sin )'cos (sin x x x x ±=± 一般地,有如下和的导法则: 定理1(和的导数) 设)(x f ,)(x g 在x 点可导,则 )()(])()([x g x f x g x f '±'='± (求导是线性运算) 证明 令 )()()(x g x f x y += 。时当0)()()()()()()]()([)]()([→?'+'→?-?++ ?-?+=?+-?++?+=??x x g x f x x g x x g x x f x x f x x g x f x x g x x f x y 问题2 设x a x x f ?=sin )(,则a a x a x x f x x ln cos )'()'(sin )('??=?=对吗?

二次求导问题

二次求导问题 导数既是高中数学的一个重要内容,又是高考的一个必考内容.近几年高考中,出现了一种新的“导数”,它是对导函数进行二次求导而产生的新函数,尤其是近几年作为高考的压轴题时常出现. [典例] 若函数f (x )=sin x x ,00时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减. [方法演示] 解:由f (x )=sin x x ,得f ′(x )=x cos x -sin x x 2 , 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x . ∵0f (x 2),即a >b . [解题师说] 从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin x x 2 的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题. [应用体验] 1.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12 x 2,求f (x )的解析式及单调区间. 解:因为f (x )=f ′(1)e x -1-f (0)x +12 x 2,所以f ′(x )=f ′(1)e x -1-f (0)+x . 令x =1,得f (0)=1. 所以f (x )=f ′(1)e x -1-x +12 x 2,所以f (0)=f ′(1)e -1=1,解得f ′(1)=e. 所以f (x )=e x -x +12 x 2.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

二次求导法解高考导数题

二次求导法解高考导数题 胡贵平(甘肃省白银市第一中学 ,甘肃 白银 730900) 导数是研究函数性质的一种重要工具,用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减.而当导数与0的大小确定不了时,对导函数或导函数中的一部分再构造,继续求导,也就是二次求导,不失为一种妙法,下面我们结合高考题来看看二次求导数题中的应用. 1 (2017年高考课标Ⅱ卷(文)(21))设函数2()(1)e x f x x =-. (I )讨论()f x 的单调性; (II)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 解:(I )略. (II)当0x ≥时,()1f x ax ≤+等价于2(1)1x ax x e ≥--. 若=0x ,显然成立,a R ∈. 若0x >时,2(1)1x x e a x --≥,设2(1)1()x x e g x x --=, 2232222(1)(1)1(1)1()x x x x xe x e x x e x x x e g x x x ????-+------+-+????'== , 令32()(1)1x h x x x x e =--+-+,32()(4)0x h x e x x x '=-++<,所以()h x 在(0,)x ∈+∞内是减函数,易知(0)=0h ,所以当(0,)x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在(0,)x ∈+∞上单调递减,所以

22022000 (1)1(101(1)1lim lim (1)1x x x x x x x e e x e x e x x →→=??-------'????==--??)20(21)=1x x x x e =??=--+??,所以1a ≥, 综上所述,a 的取值范围是[)1 +∞,. 2 (2016年高考课标Ⅱ卷(文)(20)) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 解:(I )略. (II)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 1x x a x +< -,设(1)ln ()1x x g x x +=-, 2221(ln )(1)(1)ln 2ln 1()(1)(1)x x x x x x x x x g x x x x ++ --+--'==-- , 令2()2ln 1h x x x x =--,()22ln 22(ln 1)0h x x x x x '=--=-->,所以()h x 在()1,x ∈+∞内是增函数,易知(1)=0h ,所以当()1,x ∈+∞时,()0h x >,即()0g x '>,所以()g x 在()1,x ∈+∞上单调递增,所以 []111 1(1)ln (1)ln (11)ln1(1)lim lim (1)ln ln 211x x x x x x x x x x x x x x x →→==++-++??'==+=+=??--??,所以2≤a ,即a 的取值范围是(],2-∞. 3 (2010年高考安徽卷(理)(17))设a 为实数,函数()22,x f x e x a x R =-+∈.

导数中的二次求导问题

2019高考数学热点难点突破技巧第03 讲: 导数中的二次求导问题 【知识要点】 1、高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大. 2、在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导” ,不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学” 的新意识和新途径. 【方法讲评】 【例1】(理· 2010 全国卷Ⅰ第20题)已知函数. (Ⅰ)若,求的取值范围;(Ⅱ)证明:

化简得 , 所以两边同乘 可得 ,所以有 ,在对 求导有 ,即当 < < 时, > 0, 在区间 上为增函数; 当 时, ;当 < 时, <0, 在区间 上为减函数 . 所以 在 时有最大值,即 .又因为 ,所以 . 综上, 得证. ,则 题设 等价于 . 令 ,则 当 < < 时, > ;当 时, , 是 的最大值点 当 < < 时, . 的最大值点,所以 当 时,同理,当 也成立 . 综上,

Ⅱ)由(Ⅰ)知,,即. 当< <时 因为< 0,所以此时. 当时所以 【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得 自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.(2)大家一定要理解二次求导的使 用情景,是一次求导得到之后,解答难度较大甚至解不出来. (3) 二次求导之后,设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数的单调性. 【例2】设函数 (Ⅰ)若在点处的切线为,求的值;(Ⅱ)求的单调区间; (Ⅲ)若,求证:在时, > . 【解析】(Ⅰ)∵ ∴ , ∵ 在点处的切线为,即在点的切线的斜率 为, ∴ ,∴ ,∴切点为, 将切点代入切线方程,得,所以,;

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

2.函数中的二次求导

导数中的二次求导题型 1.(2010年全国卷1理科20)已知函数1ln )1()(+-+=x x x x f . (1)若1)(2++≤'ax x x f x ,求a 的取值范围; (2)证明:0)()1(≥-x f x . 2.(2010年新课标全国卷1理科20)设函数21)(ax x e x f x ---=. (1)若0=a ,求)(x f 的单调区间; (2)若当0≥x 时0)(≥x f ,求a 的取值范围. 3.(2013年河北省石家庄一模理科21)设函数)1ln()(2++=x a x x f . (1)若函数)(x f y =在区间[)+∞,1上是单调递增函数,求实数a 的取值范围; (2)若函数)(x f y =有两个极值点1x ,2x 且21x x <求证:2ln 21)(012+-<< x x f . 4.(2013年山西省太原市一模理科21)已知函数 1()(2)(1)21,()(,x f x a x nx g x xe a R e -=---=∈为自 然对数的底数). (1)若不等式 ()0f x >对于一切1(0,)2 x ∈恒成立,求a 的最小值; (2)若对任意的0(0,]x e ∈,在(0,]e 上总存在两个不同的(1,2)i x i =,使0()()i f x g x =成立,求a 的取值范围.

5.(辽宁省五校第一联合体2013届高三年级考试理科21)已知函数()01ln )(>+=a x a x f . (1)当0>x 时,求证:)11(1)(x a x f -≥-; (2)在区间()e ,1上x x f >)(恒成立,求实数a 的取值范围; (3)当21= a 时,求证:()()*112)1()3()2(N n n n n f f f ∈+-+>++++ . 6.(山西省晋中名校2013届高三联合测试)已知函数()R a e ax x f x ∈-=2)(. (1)当1=a 时,试判断)(x f 的单调性并给予证明; (2)若)(x f 有两个极值点1x ,2x ()21x x <. (i )求实数a 的取值范围; (ii )证明:1)(21-<<- x f e .(注:e 是自然对数的底数) 7.设函数2ln )(2+-=x x x x f . (1)求)(x f 的单调区间; (2)若存在区间[]??????+∞?,21,b a ,使)(x f 在[]b a ,上的值域为[])2(),2(++b k a k ,求k 的取值范围.

求导基本法则和公式

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且

相关文档
最新文档