圆的几个重要定理

圆的几个重要定理
圆的几个重要定理

第二讲-圆的几个重要定理

中考要求

内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能

利用圆的有关概念解决简单问题

圆的性质知道圆的对称性,了解弧、弦、圆心

角的关系能用弧、弦、圆心角的关系解决简单

问题

能运用圆的性质解

决有关问题

圆周角了解圆周角与圆心角的关系;了解直

径所对的圆周角是直角会求圆周角的度数,能用圆周角的知

识解决与角有关的简单问题

能综合运用几何知

识解决与圆周角有

关的问题

知识点睛

一、圆周角定理

圆心角和圆周角

1.圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等.

2.圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.

3.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.

推论2:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径.

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

4.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.

圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中.

圆的基本性质有:

⑴直径所对的圆周角是直角.

⑵同弧所对的圆周角相等.

⑶经过圆心及一弦中点的直线垂直平分该弦.

二、圆心角、弧、弦、弦心距之间的关系

在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。

三、相交弦定理(选讲)

相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.

如图,弦AB和CD交于O

⊙内一点P,则PA PB PC PD

?=?.

2010年·暑假·短期班圆·第2讲·学生版page 1 of 8

2010年·暑假·短期班 圆·第2讲·学生版 page 2 of 8

P O

D

C B

A

相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

重、难点

教学重点:圆周角的概念和圆周角定理

教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

例题精讲

一、圆周角定理

【例1】 ⑴(08龙岩)如图,量角器外沿上有A B 、两点,

它们的度数分别是7040??、,则1∠的度数为_________. ⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .

O

1B

A

O

C

B

A

【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求

A B +∠∠.

O

E

D

C

B

A

【例3】 (08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=?∠=?,,则

CBD ∠=_________,BAC ∠=__________.

D

C

B

A

2010年·暑假·短期班 圆·第2讲·学生版 page 3 of 8

【例4】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=?,,

求AOC ∠的度数.

O

E

D

C

B A

【例5】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,

45BAC ∠=?.给出以下五个结论:①22.5EBC ∠=?,

;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .

O

E

D C

B

A

【例6】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD

的长.

O

D

C

B A

【例7】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.

D

C

A B

【例8】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O

⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.

P

O B

A

O

D

C

B A

⑵(09四川成都)如上右图,ABC ?内接于O ⊙,120AB BC ABC =∠=?,,AD 为O ⊙的直径,6AD =,那么BD =_________.

⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且3AB =,则弦AB 所对圆周角的度数为_____________.

2010年·暑假·短期班 圆·第2讲·学生版 page 4 of 8

【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.

⑴ 求证:AC 平分OAB ∠;

⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=?,,求PE 的长.

O

E P C

B A

【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则

2sin 2

AB AD α

?=_____________. O

D C B

A

⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.

O P

F

E

D

C

B A

⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.

A

B

O

P

M

N

【例11】 已知如图,ACD ?的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.

N D

C

B

A

二、圆心角、弧、弦、弦心距之间的关系

【例12】 如图所示在O ⊙中,2AB CD =,那么( )

A.2AB CD >

B.2A B C D <

2010年·暑假·短期班 圆·第2讲·学生版 page 5 of 8

C.2AB CD =

D.AB 与2CD 的大小关系不能确定

D

C

B

A

O

【例13】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴

BEC ADF =;⑵ AM BN =.

O

F

D

E

C

M

B

N A

【例14】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分

APD ∠.

O

E

P D

C

B

A

【例15】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且

BC DE =.

⑴ 求证:AC AE =

⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.

Q P F

N

M

E D C B A

三、相交弦定理(选讲)

相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.

如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PC PD ?=?.

P O

D

C B

A

相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

2010年·暑假·短期班 圆·第2讲·学生版 page 6 of 8

【例16】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,

那么PD = cm .

⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则

OC 的长为( )

A .26

B .6

C .23

D .22

⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )

A .2OP PA P

B =? B .2P

C PA PB =? C .2PA PB PC =?

D .2PB PA PC =?

O

P

D

C

B A M

O C

B

A O

P C

B

A

【例17】 如图,圆的半径是52,A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=?求点B 到

圆心的距离.

A

B

C

O

【例18】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则

QC

QA

的值为___________.

O Q P

D

C

B

A

【习题1】 (09浙江温州)如图,80AOB ∠=?,则弧AB 所对圆周角ACB ∠的度数是( )

A .40?

B .45?

C .50?

D .80?

O

C

B

A

家庭作业

2010年·暑假·短期班 圆·第2讲·学生版 page 7 of 8

【习题2】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,

则ADC ∠的度数为 .

【习题3】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .

A . 60°

B . 90°

C . 120°

D . 150°

m

O

B

A

【习题4】 (09四川凉山)如图,O ⊙是ABC ?的外接圆,已知50ABO ∠=?,则ACB ∠的大小为__________.

O

C

B

A

【习题5】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=?,AD OC ∥,则

AOD ∠=___________.

O

D C

B

A

【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD=BD ,∠C=70°. 现给

出以下四个结论:

①∠A=45°; ②AC=AB ; ③A E B E =; ④22CE AB BD ?=. 其中正确结论的序号是( ) A .①② B .②③ C .②④

D .③④

【习题7】 (07年枣庄中考题)如图,ABC ?内接于O ⊙,120BAC ∠=?,AB AC =,BD 为O ⊙的直径,

6AD =,则BC = .

C

B D

O A

2010年·暑假·短期班 圆·第2讲·学生版 page 8 of 8

O

D

C

B

A

【习题8】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50?,则C ∠的度数

A .25?

B .40?

C .30?

D .50?

O E

D

C

A

【习题9】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点

(不与A B 、两点重合),则D E ∠+∠的度数为____________.

O

E

D

C

B

A

【习题10】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC ∠等

于( ) A . 60° B . 100° C . 80°

D . 130°

【习题11】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一

点,则BPC ∠的度数是( )

A.45?

B.60?

C.75?

D.90

? P

O D C B

A

初三下册数学圆知识点定理总结

1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理”“弧径定理”“中垂定理”. 几何表达式举例: ∵ CD过圆心 ∵CD⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等. 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”;“等弦对等角”; “等角对等弧”;“等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”. 几何表达式举例: (1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半; (2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如 图) (1)(2)(3)(4) 几何表达式举例: (1)∵∠ACB=∠AOB ∴…………… (2)∵ AB是直径 ∴∠ACB=90° (3)∵∠ACB=90° ∴ AB是直径 (4)∵ CD=AD=BD ∴ΔABC是RtΔ 5.圆内接四边形性质定理: 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD是圆内接四边形 ∴∠CDE =∠ABC ∠C+∠A =180° 6.切线的判定与性质定理: 如图:有三个元素,“知二可推一”;需记忆其中四个定理. (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; (2)圆的切线垂直于经过切点的半径; ※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心. 几何表达式举例: (1)∵OC是半径∵OC⊥AB ∴AB是切线 (2)∵OC是半径 ∵AB是切线 ∴OC⊥AB (3)…………… 7.切线长定理: 从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角. 几何表达式举例: ∵ PA、PB是切线 ∴ PA=PB ∵PO过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论: 几何表达式举例:

圆的基本性质知识点

圆的基本性质 复习总标 1.知道圆及有关概念,确定圆的条件。三角形的内心和外心。 2.能灵活运用弧、弦、圆心角和圆心角的关系解决问题;掌握圆的轴对称性、中心对称和旋转不变性;探索并理解锤径定理。 3.会用垂径定理进行有关计算。 知识梳理 1.圆的有关概念 (1)圆心、半圆、同心圆、等圆、弦与弧。 (2)直径是经过圆心的弦。是圆中最长的弦。弧是圆的一部分。 2.圆周角与圆心角 (1)一条弧所对的圆周角等于它所对的圆心角的一半。 90圆周角所对的弦是圆的直径。(2)圆周角与半圆或直径:半圆或直径所对的圆周角是直角; (3)圆周角与半圆或等弧:同弧或等弧所对的圆周角相等;在同源或等圆中,相等的圆周角所对的弧相等。 3.圆的对称性 (1)圆是中心对称图形,圆心是它的对称中心。 (2)圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量分别相等。 (3)圆的轴对称性:经过圆心都的任意一条直线都是它的对称轴。垂径定理是研究有关圆的知识的基础。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。还可以概括为:如果有一条直线,1.垂直于弦;2.经过圆心;3.平分弦(非直径);4.平分弦所对的优弧;5.平分弦所对的劣弧,同时具备其中任意两个条件,那么就可以得到其他三个结论。 易错知识点

1.弧是圆的一部分,直径是圆中最长的弦,半径不是弦。 2.垂径定理的推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧。 3.理解圆心角、弧、弦三者之间的关系时,应注意“同圆或等圆中”或“等弧”这个条件。 4.同一条弦所对的圆周角有两个,它们互补。 中考规律盘点及预测 本讲点内容在中考中,圆的基本性质在淡化与降低,证明难度成了考查知识的重点。旗本性质的应用 主要有两个方面,一是应用弧、弦、弦心距、圆心角、圆周角各对量之间的关系进行证明;二是应用半径、半弦和弦心距构成直角三角形进行相关计算。多数以填空题、选择题或中等难度解答题等基本题型出现,难度一般不大。 1、(2009年安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且 CD=, ,则AB 的长为…【 】 A 、2 B 、3 C 、4 D 、5 【解析】主要考察:垂径定理、勾股定理或相交弦定理.用垂径定理得 ,由勾股定理得HB=1 ,则()2 2 2 1R R =+-由此得2R=3 或由相交弦定理得 ()2 121R =?-,由此得2R=3,所以AB=3.选 B 2、(2008 绍兴)如图,量角器外缘边上有A P Q ,,三点,它们所表 示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10 B .20 C .30 D .40 【解析】主要考察:弧的度数与它所对的圆周角度数之间的关系。一条弧所对的圆周角 等于它所对圆心角的一半。()?=?-?==∠2030702 1 21Q P PAQ 选B 3、(2008年海南) 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段 OB 上运动.设∠ACP =x ,则x 的取值范围是 . 第9题图

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

《圆的基本性质:圆、图形旋转、垂径定理》知识点总结 1.圆的定义;在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O” 2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆),大于半圆的弧叫优弧(优弧用⌒和三个字母表示)、小于半圆的弧叫劣弧(用⌒和两个字母表示)。 (3)等弧:能够互相重合的两段弧 (4)等圆(半径相等的两个圆叫做等圆) (5)点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则: (1)dr → 圆外 (6)不在同一条直线上的三个点确定一个圆。 过不在同一条直线上的三点做圆,能找出圆的圆心 (7)三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 3、图形的旋转:原图形上的所有点都绕着一个固定的点,按同一个方向,转动同一个角度,这样的图形运 动叫做图形的旋转,这个固定的点叫做旋转中心。 图形经过旋转所得到的图形和原图形全等。 对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。 旋转作图基本步骤:

1、明确旋转三要素(旋转中心、旋转方向、旋转角度); 2、找出关键点; 3、找出关键点的对应点; 4、作出新图形; 5、写出结论。 4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 注:用于计算时,一般先连结过弦的一个端点的半径或者作弦心距,构造Rt△,再结合勾股定理求解. 推论:圆中两平行弦所夹的弧相等 选择题 1.如图,已知⊙O的直径AE=10 cm,∠B=∠EAC,则的长为() 【A】5cm【B】5cm【C】5cm【D】6cm 【答案】B. 【解答】连接EC,由圆周角定理得,∠E=∠B,∠ACE=90o, ∵∠B=∠EAC, ∴∠E=∠EAC, ∴CE=CA, ∴AC=AE=5cm, 故选B

人教版初三数学上册与圆有关的几个定理

蔡甸区常福中学九年级数学下册教学案 课题:几何计算专题复习--与圆有关的定理 第13周 主备人:袁劲梅 教研组长:向俊伟 审核人______ 授课人: 袁劲梅 授课时间2017.5.28 编号______ 学案 教案 一、课堂导入: 本节课我们学习几何知识里几个新的定理,进一步掌握这些定理的推导和灵活运用。 二、揭示目标: 学生齐读学习目标,了解本节课的学习内容及应达到的目标。 三、合作探究: 1、小组合作探究(讨论质疑) 学生合作完成该部分题目。①要求小组各成员都能不同程度的解答各题,先完成的帮助后进生,老师巡视了解学生的完成情况;②选代表上台讲解解法。 2、组间合作探究(交流释疑) 各组成员可随意请求质疑或发表不同解法; 四、归纳小结 总结:本节课学习了与圆有关的几个定理: 弦切角定理 切割线定理 射影定理 1、熟练掌握这些定理的推导过程; 2、通过这些定理结论,直接解题,提高解题速 一、考点分析 此题型为中考题中的第21题圆的综合题,主要考查圆与直角三角形、切线有关定理、三角函数、相似的计算,命题极为灵活,考查知识面广,有一定的难度。结合图形特征利用定理结论求线段的长度是必考的知识点。 二、学习目标 1、学习一些新的定理,并推导出结论。 2、能够灵活运用这些结论解决圆中线段的长,角的三角函数的计算。 三、课堂前置 如图:在⊙O 中,弦AB 、CD 相交于P, 求证:PA ·PB=PC ·PD 四、课堂新授 知识一:弦切角定理 如图,已知PC 为⊙O 的切线,PBA 为割线. 求证:∠1=∠A 例1:如图:PA 、PB 与⊙O 相切与A 、B 两点,C 为优弧AB 上的一点,若tan ∠ACB=2,则sin ∠APB 的值为______.

圆的重要定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 【课前测试】 1. PT 切⊙O 于T ,CT 为直径,D 为OC 上一点,直线PD 交⊙O 于B 和A ,B 在线段PD 上,若CD =2,AD =3,BD =4,则PB 等于( ) A. 20 B. 10 C. 5 D. 【知识点回顾】 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

专题13 与圆的基本性质有关的计算与证明(原卷版)

九年级数学下册解法技巧思维培优 专题13 与圆的基本性质有关的计算与证明 考点一弧、弦、圆心角 ?、CD?的度数【典例1】(2019?港南区四模)P是⊙O外一点,P A、PB分别交⊙O于C、D两点,已知AB 别为88°、32°,则∠P的度数为() A.26°B.28°C.30°D.32° 【典例2】(2019?福建模拟)如图,AB是⊙O的直径,∠BOD=120°,点C为弧BD的中点,AC交OD 于点E,DE=1,则AE的长为() A.√3B.√5C.2√3D.2√5 【典例3】(2019?洛阳一模)如图,矩形ABCD、半圆O与直角三角形EOF分别是学生常用的直尺、量角 器与三角板的示意图.已知图中点M处的读数是145°,则∠FND的读数为. 【典例4】(2019?长白期末)如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=.

【典例5】(2019?句容市期中)如图,已知AB是⊙O的直径,弦AC∥OD. ?=CD?. (1)求证:BD ?的度数为58°,求∠AOD的度数. (2)若AC 考点二圆周角 【典例6】(2019?陕西)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C, 连接OF,若∠AOF=40°,则∠F的度数是() A.20°B.35°C.40°D.55° ?所对的圆周角∠ACB=50°,若P为AB?上一点,∠AOP 【典例7】(2020?望花区二模)如图,在⊙O中,AB =55°,则∠POB的度数为.

【典例8】(2019?黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=. 【典例9】(2019?肇源期末)如图所示,四边形ABCD是圆O的内接四边形,AB的延长线与DC的延长线交于点E,且∠D=∠E. (1)求证:∠ADC=∠CBE; (2)求证:CB=CE; (3)设AD不是圆O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形. 卡点三垂径定理 【典例10】(2019?渝中区校级三模)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EB.若AB=4,CD=1,则EB的长为()

圆有关定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 如图1对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角(如图2):顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)∠APC,∠APD,∠BPD,∠BPC 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。即如上图中∠APC=∠CDP等 证明:如图2,连接CD、OC、OP,因为∠CPO=∠PCO,所以∠COP=180?-2∠CPO而∠CPO=90?-∠APC,故∠COP=2∠5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交 弦定 理 ⊙O 中,AB、 CD为 弦,交于 P. PA·PB=PC·PD 连结AC、BD,∠C=∠B,∠A=∠D, 所以△APC∽△DPB 相交 弦定 理的 推论 ⊙O中, AB为直 径,C D⊥AB 于P. PC2=PA·PB 用相交弦定理. 切割 线定 理 ⊙O 中,PT切 ⊙O于T, 割线PB 交⊙O于 A PT2=PA·PB 连结TA、TB,则∠PTA=∠B(弦 切角等于同弧圆周角)所以 △PTA∽△PBT,所以 PT2=PA·PB 图1 图2

与圆的基本性质有关的计算与证明 专题练习题

与圆的基本性质有关的计算与证明 专题练习题 1.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( ) A .60° B .45° C .35° D .30° 2.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( ) A .DE =E B B.2DE =EB C.3DE =DO D .DE =OB 3.如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB =40°,则∠ABD 与∠AOD 分别等于( ) A .40°,80° B .50°,100° C .50°,80° D .40°,100° 4.如图,C ,D 是以线段AB 为直径的⊙O 上两点,若CA =CD ,且∠ACD =40°,则∠CAB =( ) A .10° B .20° C .30° D .40° 5.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( ) A .45° B .50° C .60° D .75° 6.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E , 连接AC.若∠ABC=105°,∠BAC =25°,则∠E 的度数为( )

A.45° B.50° C.55° D.60° 7.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是( ) A.120°B.135°C.150°D.165° 8.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________. 9.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=_______度. 10.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连接OD交BE于点M,且MD=2,则BE长为_______. 11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是_________.12.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26 m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24.

圆中的基本概念及定理(讲义及答案)

圆中的基本概念及定理(讲义) ?课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为,固定的线段长称为,还知道半径为r 的圆的周长为,面积为. 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA,OB 所组成的图形叫做扇形. 顶点在圆心的角叫做圆心角.

1

?知识点睛 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点A 所形成的图形叫做.其固定的端点O 叫做,线段OA 叫做.以点O 为圆心的圆,记作,读作“圆O”. 2.圆中概念: 弧:,弧包括和; 弦:; 圆周角:; 圆心角:; 弦心距:; 等圆:; 等弧:. 3.圆的对称性: 圆是轴对称图形,其对称轴是; 圆是中心对称图形,其对称中心为.4.圆中基本定理: *(1)垂径定理: .推论: .(2)四组量关系定理:在中,如果 、、、 中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理: .推论1:. 推论2:, .推论3: .注:如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆中处理问题的思路: ①找圆心,连半径,转移边; ②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.

2

? 精讲精练 1. 如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为 M ,下列结论不一定成立的是( ) ︵ ︵ A .CM =DM B . CB = B D C .∠AC D =∠ADC D .OM =MB 第 1 题图 第 2 题图 2. 如图,⊙O 的弦 AB 垂直平分半径 OC ,若 AB = 的半径为 . ,则⊙O 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10 mm ,测得钢珠顶端离零件表面的距离为 8 mm ,如图所示,则这个小圆孔的宽口 AB 的长度为 mm . 第 3 题图 第 4 题图 4. 如图,圆拱桥桥拱的跨度 AB =12 m ,桥拱高 CD =4 m ,则拱桥的直径为 . 5. 如图,在⊙O 中,直径 CD 垂直于弦 AB ,垂足为 E ,连接 OB , CB .已知⊙O 的半径为 2,AB = 2 ,则∠BCD = . 6 3

圆的基本性质(拔高)

D B C O A E . A C O M N B B O A P 【圆及垂径定理】第3份 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过 的三点确定一个圆。 2、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。三角形的外心是三角形三条边的 3、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的内部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。其中真命题的个数( ) A.4个 B.3个 C.2个 D.1个 4、如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数 5、如图,平面直角坐标系中一第圆弧经过网格点A 、B 、C ,其中B 点坐标为(4,4),那么该圆弧所在圆的圆心坐标为 6、垂径定理:垂直于弦的直径 ,并且平分 7、垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 8、如图所示,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。 O C E D B A 9、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是 10、四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥BC ,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB ,CD 旋转 一周,所得几何体的表面积分别为S 1,S 2,则| S 1-S 2|=__________(平方单位) 11、点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ; ③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( ) A. 1个 B. 2个 C.3 个 D.4 个 12、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点 P 从原点O 出发,沿这条曲线向右运动,速度为每秒 2 π 个单位长度,则第2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0) 13、在一个圆中,给出下列命题,其中正确的是( ) A .若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B .若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C .若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D .若两条弦平行,则这两条弦之间的距离一定小于圆的半径 【随堂练习】 1、下列命题:① 垂直于弦的直径平分这条弦;② 平分弦的直径垂直于弦;③垂直且平分弦的直线必定经过圆心。其中正确的有( ) A.0个 B.1个 C.2个 D.3个 2、如图,⊙O 的直径为10cm ,弦AB 为8cm ,P 是弦AB 上一点,若OP 的长是整数, 则满足条件的点P 有( )个 A.2 B.3 C.4 D.5 3、半径为5cm 的圆内有两条互相平行的弦,长度分别为6cm 和8cm ,则这两弦之间的距离为 cm 4、圆的半径等于23cm ,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于 5、如图,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,如果AM=2,DE=1,EF=8,那么MN 的长为 6、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N (0,-10),函数y= k x (x<0)的图象过点P ,则k= 7、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 8、如图,已知AB 、AC 为弦,OM ⊥AB 于点M , ON ⊥AC 于点N ,BC=4,则MN= x y O A B C 第5题 O P M y x N 第6题 第7题 P O 第12题 O 1 x y O 2 O 3

圆中三大切线定理

14 初三秋季·第2讲·尖子班·学生版 围田地 漫画释义 满分晋级阶梯 圆7级 期末复习之圆中的 重要结论及应用 圆6级 期末复习之圆的综合 圆5级 圆中三大切线定理 2 圆中三大切线定理

中考内容与要求 中考考点分析 圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考 15

16 初三秋季·第2讲·尖子班·学生版 查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。 要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。 年份 2011年 2012年 2013年 题号 20,25 8,20,25 8,20,25 分值 13分 17分 17分 考点 圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系 圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系 圆中的动点函数图像,圆的基本性质(垂径定理、圆周角定理),圆同相似和三角函数的结合;直线与圆的位置关系 知识互联网 题型一:切线的性质定理

17 题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。 【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边 交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,若 DE ⊥AB .求证:BE AE 3=. 判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直”,距离法是“作垂直,证半径”,定理法的使用频率最高,必须熟练掌握。 【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 典题精练 思路导航 典题精练 思路导航 题型二:切线的判定定理 E O D C B A

九年级数学上册第三章圆的基本性质3.3垂径定理第1课时垂径定理随堂练习(含解析)(新版)浙教版

3.3__垂径定理__ 第1课时 垂径定理 1.[2016·黄石]如图3-3-1,⊙的半径为13,弦AB 的长度是24,ON ⊥AB 垂足为N ,则ON =( A ) 图3-3-1 A .5 B .7 C .9 D .11 2.如图3-3-2,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论不一定正确的是( B ) 图3-3-2 A .CE =DE B .AE =OE C.B C ︵=B D ︵ D .△OC E ≌△ODE 【解析】 ∵AB ⊥CD , ∴CE =DE ,BC ︵=BD ︵, ∵CO =DO ,∠CEO =∠DEO , ∴△OCE ≌△ODE . 由已知条件不能确定AE 和OE 的关系.故选B. 3.[2017·泸州]如图3-3-3,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( B ) A.7 B .27 C .6 D .8

图3-3-3 第3题答图 【解析】 如答图,连结OC , 则OC =OB =4,OE =OB -AE =4-1=3, CE =DE =OC 2-OE 2=7, CD =2CE =27. 4.[2017·长沙]如图3-3-4,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为__5__. 图3-3-4 第4题答图 【解析】 如答图,连结OC , ∵AB 为⊙O 的直径,AB ⊥CD , ∴CE =DE =12CD =12 ×6=3, 设⊙O 的半径为x ,则OC =x , OE =OB -BE =x -1, 在Rt △OCE 中,OC 2=OE 2+CE 2 , ∴x 2=32+(x -1)2,解得x =5,∴⊙O 的半径为5. 5.[2017·眉山]如图3-3-5,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8 cm ,DC =2 cm ,则OC =__5__cm. 图3-3-5 第5题答图 【解析】 如答图,连结OA ,

圆概念公式定理

1.圆的周长C=2πr=πd 2.圆的面积S=πr2 3.扇形弧长l=nπr/180 4.扇形面积S=nπr2/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率, 值是 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679..., 通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

圆的基本性质练习(含答案)

圆的基本性质 考点1 对称性 圆既是________①_____对称图形,又是______②________对称图形。任何一条直径所在的直线都是它的____③_________。它的对称中心是_____④_______。同时圆又具有旋转不变性。 温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。 考点2 垂径定理 定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。 常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。 温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧; 考点3 圆心角、弧、弦之间的关系 定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。 11____________,所对常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○ 的弦_____○12___________。 (2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。 方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。 温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。否则,虽然圆心角相等,但是所对的弧、弦也不相等。以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。 (2)在由弦相等推出弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。 考点4 圆周角定理及其推论 定理:在同圆或等圆中,同弧或等弧所对的圆周角______○15__________,都等于这条弧所对的圆心角的______○16________。 推论:半圆或直径所对的圆周角是_______○17________,90°的圆周角所对的弦是______○18__________。

圆的基本性质和垂径定理

圆中的计算垂径定理 教学设计 【内容分析】 垂径定理及其推论是圆的性质部分非常重要的定理。垂径定理为圆的计算和作图提供了方法和依据,所以它在中考考点上属于高频考点。垂径定理的学习无论从知识上,还是从学生能力的培养及学习信心的提升都起着重要的作用。 【学情分析】 学生是我自己所任教班级的学生,整体学习能力薄弱,中下生若多。他们在初三上学期已经完成垂径定理的学习,在运用定理方面仍不够灵活、熟练,又因为圆的知识点长时间运用,遗忘率很高。学生的基础弱,遇到不懂的题目,容易放弃,他们的自信心明显不足,大部分学生口头语言表达能力较弱,自我探索解题思路欠缺,分析问题需要老师引导。目前,有大部分学生,肯在老师的引导下,努力解题,由被动转向主动学习。 【教学目标】 1.进一步熟悉垂径定理及其推论的应用; 2.通过教学,提高学生分析基本图形、添加适当的辅助线探索解题思路的能力;通过 把实际问题转化一个数学问题,了解数学建模的思想,培养学生分析问题、解决问 题的能力; 3.通过练习,总结常用解题方法,渗透方程、构造直角三角形等数学思想; 4. 学会与同学交流合作,培养团队精神,体验学习过程中成功的快乐,增强学习数学 的信心和热情。 【教学重点】 1.垂径定理及其推论的灵活运用; 2.定理应用过程的方法提炼和计算能力的训练提升。 【教学难点】 添加辅助线和把实际问题转化成数学问题,并用定理及其推论解决问题。 【任务分析】 学生中下面较广,知识点掌握不牢固,遗忘率很高。通过感知基础图形,动手画变式图形,达到巩固垂径定理,从而用垂径定理解决圆中有关计算。 【教学策略】 引入采用启发、类比,教学过程采用变式训练、分组训练、数学建模。

各种圆定理总结.

费尔巴赫定理 费尔巴赫定理三角形的九点圆与内切圆内切,而与旁切圆外切。 此定理由德国数学家费尔巴赫(K·W·Feuerbach,1800—1834)于1822年提出。 费尔巴赫定理的证明 在不等边△ABC中,设O,H,I,Q,Ia分别表示△ABC的外心,垂心,内心,九点圆心和∠A所对的旁切圆圆心.s,R,r,ra分别表示△ABC的半周长,外接圆半径,内切圆半径和∠A 所对的旁切圆半径,BC=a,CA=b,AB=c. 易得∠HAO=|B-C|,∠HAI=∠OAI=|B-C|/2; AH=2R*cosA,AO=R,AI=√[(s-a)bc/s],AIa=√[sbc/(s-a)] 在△AHI中,由余弦定理可求得: HI^2=4R^2+4Rr+3r^2-s^2; 在△AHO中,由余弦定理可求得: HO^2=9R^2+8Rr+2r^2-2s^2; 在△AIO中,由余弦定理可求得: OI^2=R(R-2r). ∵九点圆心在线段HO的中点, ∴在△HIO中,由中线公式可求得. 4IQ^2=2(4R^2+4Rr+3r^2-s^2)+ 2(R^2-2Rr)-(9R^2+8Rr+2r^2-2s^2) =(R-2r)^2 故IQ=(R-2r)/2. 又△ABC的九点圆半径为R/2, 所以九点圆与内切圆的圆心距为 d=R/2-r=(R-2r)/2=IQ. 因此三角形的九点圆与内切圆内切。 在△AHIa中,由余弦定理可求得: IaH^2=4R^2+4Rr+r^2-s^2+2(ra)^2; 在△AOIa中,由余弦定理可求得: IaO^2=R(R+2ra). 在△HIaO中,由中线公式可求得. 4IaQ^2=2(4R^2+4Rr+r^2-s^2+2ra^2)+2(R^2+2Rra)-(9R^2+8Rr+2r^2-2s^2)=(R+2ra) ^2 故IaQ=(R+2ra)/2.

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段0P 绕它固定的一个端点C 旋转一周,所经过的圭寸闭曲线叫做 圆,定点C 叫做,线段OF 叫做。 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,那么就有: d v r 0点P 在圆; dr 点;P 在圆上; d > r :-点P 在圆; 如图,在 ABC 中,/ BAC= Rt Z ,AO 是BC 边上的中线, 为一 C 的直径. (1) 点A 是否在圆上?请说明理由. (2) 写出圆中所有的劣弧和优弧. 如图,在A 岛附近,半径约250knm 勺范围内是一暗礁区, 往北300kn 有一灯塔B,往西400km 有一灯塔C.现有一渔船 沿CB 亢行,问:渔船会进入暗礁区吗? 3.1 圆(2) (1) 经过一个已知点能作个圆; (2) 经过两个已知点A,B 能作个圆;过点A,B 任意作一个圆 圆心应该在怎样的一条直线上? (3) 不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆 的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。 BC

作图:已知△ ABC,用直尺和圆规作出△ ABC的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 1、如图,射线0P经过怎样的旋转,得到射线0Q ? 3、如图,以点0为旋转中心,将线段AB按顺时针方向旋转60° ,作出经旋 转所得的线段AB,并求直线AB与直线AB所成的锐角的度数 -B 径定理(1) 圆是图形,它的对称轴是。 2、如图,以点O为旋转中心,将A ABC按顺时针方向旋转60° ,作出经旋 转所得的图形 根据对称性你能发现哪些相等的量?填一填:V CD是直径,CD丄AB

九年级数学上册第三章圆的基本性质微专题垂径定理有关的辅助线随堂练习含解析新版浙教版

微专题__垂径定理有关的辅助线 一 连半径构造直角三角形 (教材P78作业题第2题) 如图1,在⊙O 中,半径OC ⊥AB 于点D .已知⊙O 的半径为2,AB =3,求DC 的长(精确到0.01). 图1 教材母题答图 解:如答图,连结OA . ∵OC ⊥AB ,∴AD =12AB =12×3=32, ∴OD =OA 2 -AD 2 =22 -? ?? ??322 =72, ∴DC =OC -OD =2- 7 2 ≈0.68. 【思想方法】 求圆中的弦长或其他线段长时,通常连半径,由半径、弦的一半以及圆心到弦的距离构成直角三角形进行求解. [xx·呼和浩特]如图2,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB =12,OM ∶ MD =5∶8,则⊙O 的周长为( B ) A .26π B .13π C.96π5 D.3910π5 图2 变形1答图 【解析】 如答图,连结OA ,设OM =5x ,MD =8x ,∴OA =OD =13x ,又∵AB =12,由垂径定理可得AM =6,∴在Rt △AOM 中,(5x )2+62=(13x )2 ,解得x =12,∴半径OA =132,根据周长 公式C =2πr ,∴⊙O 的周长为13π. 如图3,已知⊙O 的半径为5,点A 到圆心O 的距离为3,则过点A 的所有弦中,最

短的弦长为( C ) 图3 A .4 B .6 C .8 D .10 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB =8 cm ,且AB ⊥CD ,垂足为M ,则 AC 的长为( C ) A .2 5 cm B .4 5 cm C .2 5 cm 或4 5 cm D .2 3 cm 或4 3 cm 【解析】 如答图,连结AC ,AO . ∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴AM =12AB =1 2×8=4(cm),OD =OC =5 cm. 当点C 位置如答图①所示时, ∵OA =5 cm ,AM =4 cm ,AB ⊥CD , ∴OM =OA 2 -AM 2 =52 -42 =3(cm), ∴CM =OC +OM =5+3=8(cm), ∴AC =AM 2 +CM 2 =42 +82 =45(cm); 变形3答图 当点C 位置如答图②所示时,同理可得OM =3 cm , ∵OC =5 cm ,∴MC =5-3=2(cm). 在Rt △AMC 中,AC =AM 2 +MC 2 =42 +22 =25(cm).故选C. 如图4,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( B ) A. 2-12a B.2-24 a C .(2-1)a D .(2-2)a

相关文档
最新文档