解析几何小题训练(2015-2017高考真题)(答案)

解析几何小题训练(2015-2017高考真题)(答案)
解析几何小题训练(2015-2017高考真题)(答案)

1.

2. 试题分析:当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o

,则tan 60a

b

≥=o

,即

≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,

则tan 60a

b

≥=o

≥,得9m ≥,故m 的取值范围为(0,1][9,)?+∞,选A .

3.

4.试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42

===

?= 在Rt OFB ?中,|OF ||OB ||BF ||OD |?=?,且222a b c =+,代入解得

22a 4c =,所以椭圆得离心率得1

e 2

=

,故选B.

5.

6.【解析】∵抛物线2

:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),

∴椭圆E 的焦点在x 轴上,设方程为22

221(0)x y a b a b

+=>>,c=2,

∵12c e a ==,∴4a =,∴222

12b a c =-=,∴椭圆E 方程为2211612

x y +=,

将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B. 7.

8.

9.

【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n b

m c c

n b m c

??=-??-?+?=???,解得32222

22,c b bc bc m n a a --==,所以3222222(,)c b bc bc Q a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b --+=,解得22

2a c =,

所以离心率c e a ==

1.

2.【解析】由题意222

22

211

1c a e a a a

+===+,因为1a >,所以21112a <+<

,则1e << C. 3.【解析】

试题分析:由题意结合双曲线的渐近线方程可得:22202tan 60c c a b b

a

??=?=+???==?,解得:22

1,3a b ==,双曲线方程为:

2

2

13

y x -=,本题选择D 选项.

4.

5.

6. 试题分析:因为双曲线)0,0(1222

2>>=-b a b y a x 的渐近线方程为b y x a =±,所以2b a =,又5,c =所

以a b ==双曲线的方程为1

2052

2=-y x ,选A.

7.

8.分析:依题意,θθ

θtan cos sin -=-=+b a ,

过),(2a a A ,),(2b b B 两点的直线斜率为θtan 22-=+=--=a b a b a b k ,不妨设0,tan a b θ==-,故(0,0)A ,2

(tan ,tan )B θθ-, 所以直线AB 的方程为tan y x θ=-?.

又因为双曲线1sin cos 22

2

2=-θ

θy x 的渐近线方程为x y ?±=θtan , 显然直线AB 是双曲线的一条渐近线, 所以直线与双曲线无交点,故选

A.

9.

()()()0()()b m b b m a b a m a b m a m a a m a a m a ++-+--==>+++,所以b m b a m a +>+,所以2

2

b m b a m a +????

> ? ?+????,所以21e e >;当a b <时,()()()0()()b m b b m a b a m a b m a m a a m a a m a ++-+--==<+++,所以b m b a m a +<+,所以2

2

b m b a m a +????

< ? ?+????

,所以21e e <;故应选D . 10.【解析】由题意,a =1,b

c =2,渐近线方程为y =

x ,将x =2代入渐近线方程,得y 1,2=±

故|AB |=

4,选D 11.

所以021=?C A B A ,即0)()()()(2

2=?-++?-a b a b a c a c ,

化简得到1122±=?=a b

a

b ,即双曲线的渐近线的斜率为1±,

12.

13. 试题分析:由抛物线定义可得:||||=4222

A B A B p p p

AF BF y y y y p ++

++=??+=, 因为22

22222

2221202x y a y pb y a b a b

x py

?-=??-+=???=?

,

所以222A B pb y y p a a +==?=?

渐近线方程为

y x =. 14.

15.【解析】右准线方程为

x =

,渐近线为y =,则P ,Q ,1(F ,

2F ,则S ==. 16.

17.试题分析:

依题意,不妨设6,4AB AD ==,作出图象如下图所示

则2124,2;2532,1,c c a DF DF a ===-=-==故离心率2

21

c a == 18.试题分析:由已知

1,2a b c ===,

则2

c e a

==,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在右支上,则12x <<,

121PF x =+,221PF x =-,

12F PF ∠为锐角,则222

1212PF PF F F +>,即222(21)(21)4x x ++->,解得x >,所以

2x <<,

124PF PF x +=∈.

19.

20.

21.【解析】双曲线22221x y a a -=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b

y x a =平行,其方程为

()b y x c a =-,代入22221x y a a -=求得点P 的横坐标为222a c x c +=

,由2222a c a c +=,得2()410c c

a a

-+=,解之得

2c a =+,2c a =(舍去,因为离心率1c

a

>)

,故双曲线的离心率为2+.

1.

2.试题分析:题中抛物线的标准形式为2

4x

y =,则其准线方程为1y =-,故先A .

3.试题分析:根据抛物线的定义:到焦点的距离等于到准线的距离,又抛物线的准线方程为:1

4

x =-

,则有:01||4AF x =+,即有0015

44

x x +=,可解得01x =.

4.

5.

试题分析:据题意得,设

,则

或,

因为

位于

轴两侧所以.所以

两面积之和为

.

6.

【解析】由抛物线2

2(0)y px p =>得准线2

p

x =-

,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 7.

8.【解析】由题意,得3(,0)4F

.又因为0k tan 30==

,故直线AB

的方程为3y )4

=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++=

1683

12162

+=,选C . 9.

10.试题分析:设圆心坐标为(1,)C m -,则(0,)A m ,焦点(1,0)F ,

(1,0),(1,)AC AF m =-=-u u u r u u u r

,1

cos 2AC AF CAF AC AF ?∠==

=-?u u u r u u u r

u u u r u u u r

,m =,由于圆C 与y 轴得正半轴相

切,则取m =

,所求圆得圆心为(-,半径为1

,所求圆的方程为22(1)(1x y ++=

.

11.

12. 试题分析:由抛物线的几何性质知:抛物线2

4y x =的准线方程为1x =-,故答案为1x =-.

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

解析几何试题及答案

解析几何试题及答案https://www.360docs.net/doc/ad5347820.html,work Information Technology Company.2020YEAR

解析几何 1.(21)(本小题满分13分) 设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足 BQ QA λ=,经 过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足 QM MP λ=,求点P 的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知 识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设 .)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ① 再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由 解得???-+=-+=.)1(, )1(011λλλλy y x x ②,将①式代入②式,消去0y ,得 ???-+-+=-+=. )1()1(,)1(2 211λλλλλλy x y x x ③,又点B 在抛物线2 x y =上,所以211x y =, 再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+- 22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++ 2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得 故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

平面解析几何测试题及答案

平面解析几何测试题 一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( ) A.一条直线 B.两条直线 C.半个圆 D.一个圆 3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( ) A.-1 B.2 C.1 D.-2 4.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( ) A.8,6 B.8,-6 C.-8,-6 D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( ) A.-13 B.9 C.-9 D.13 6.已知过点P (2,2)的直线与圆(x-1)2 +y 2 =5相切,且与直线ax-y+1=0 垂直,则a 的值为( ) A.2 B.1 C.-21 D.2 1 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心 8.已知双曲线22a x -22b y =1的渐近线的斜率k=±3 4,则离心率等于 ( )

A.53 B.45 C.34 D.3 5 9.若椭圆22a x +22 b y =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆 上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A. 22 B.21 C.4 1 D.3-1 10.已知双曲线22x -22 b y =1(b>0)的左右焦点分别为F 1,F 2,其中一条 渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1?2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( ) A.812x +722y =1 B.812x +92 y =1 C.812x +452y =1 D.812x +16 2y 12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A. 3 30 B.6 C.12 D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( ) A.6 π B.3 π C.2 π D. 3 π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )

(完整)十年真题_解析几何_全国高考理科数学.doc

十年真题 _解析几何 _全国高考理科数学 真题 2008-21 .(12 分) 双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1 uuur uuur uuur uuur uuur 的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向. AB OB (Ⅰ)求双曲线的离心率; (Ⅱ)设 AB 被双曲线所截得的线段的长为 4 ,求双曲线的方程. 2009-21 .(12 分) 如图,已知抛物线 E : y 2 x 与圆 M : ( x 4)2 y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个 点。 (I )求 r 的取值范围: (II)当四边形 ABCD 的面积最大时,求对角线 A 、 B 、 C 、 D 的交点 p 的坐标。 2010-21 (12 分 ) 已知抛物线 C : y 2 4x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点, 点 A 关于 x 轴的对称点为 D . (Ⅰ)证明:点 F 在直线 BD 上; uuur uuur 8 (Ⅱ)设 FAgFB BDK 的内切圆 M 的方程 . ,求 9 1 / 13

2011-20 (12 分) 在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满 足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。 2012-20 (12 分) 设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , A C , 已知以 F 为圆心, FA 为半径的圆 F 交 l 于 B, D 两点; (1)若 BFD 90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A, B, F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点, 求坐标原点到 m, n 距离的比值。 2013-21 (12 分 ) 2 2 已知双曲线 C : x 2 y 2 =1 (a > 0, b >0)的左、右焦点分别为 F 1, F 2,离心率为 3,直线 y a b =2 与 C 的两个交点间的距离为6 . (1)求 a , b ; (2)设过 F 的直线 l 与 C 的左、右两支分别交于 A , B 两点,且 | AF | =| BF | ,证明: | AF | , 2 1 1 2 | AB| , | BF 2| 成等比数列. 2014-20 已知点 A(0,- 2),椭圆 E : x 2 2 3 , F 是椭圆 E 的右焦点, 2 y 2 =1 (a>b>0) 的离心率为 a b 2 直线 AF 的斜率为 2 3 , O 为坐标原点 . 3 2 / 13

相关文档
最新文档