线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)

[模版仅供参考,切勿通篇使用]

感恩作文线性代数课后习题答案(一):

高等数学线性代数,概率统计第二版课后答案姚孟臣版

最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,

这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):

线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值

设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值

答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):

求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案

书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):

线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?

如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案

应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):

线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;

求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?

再问一下当0是特征值时对应的特征向量有什么特点么?

所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):

线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则

A不能满足的结论

是().^T=A ^T=A^-1 ^T=E ^2=A

只会证A对,不要用排除法.

A²=E

由A,知

A^T=A

AA^T=A²=(E-a^Ta)(E-a^Ta)

=E-a^Ta-a^Ta+a^Taa^Ta

=E-2a^Ta+a^T(aa^T)a

=E-2a^Ta+a^Ta

==E-a^Ta

=A

所以

C错. 线性代数课后习题答案(八):

线性代数,对称矩阵的证明题

如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:

因为A^3=En

所以A的特征值一定是x^3=1的实根

(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ

^3-1=0?)

所以λ1=λ2=λ3=1

A相似于单位矩阵必有A=En

(2.我觉得因为A是对称矩阵所以必有正交阵P,使得

P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)

第一问:

因为A是实对称矩阵,所以存在正交矩阵P

P"AP=∧∧是A的特征值构成的对角阵

A=P∧P"

A^3=P∧^3P"=E

所以∧^3=E

所以λ1^3.λn^3都等于1

所以λ1=λ2=..=λn=1

第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)

所以A相似于这n个特征值构成的对角阵

P"*A*P=E

所以 A=PEP"=PP"=E

刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):

线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕

作法1:

分别求出基础解析方程组1的 k1()+k2()

方程组2的:k3()+k4()

然后对比,综合得出一个k()

方法2:

先求出方程组1的解,然后代入方程组2..

方法3:

做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?

另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?

两个方程组的公共解,可用方法3.

若是两个方程组同解,方法3就不灵了

公共解是两个方程组解的交集,包含在两个方程组的解集中

同解方程组,两个方程组的解集一样,即基础解系等价(可互相线

性表示)

这类题目一般综合性强,需根据具体情况来分析使用哪个方法

比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.

你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处

若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):

一道线性代数的题目

题目是判断正误

若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.

我知道答案是错误

但是请问反例怎么举

拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合

最全线性代数习题及参考答案

第一章: 一、填空题: 1、若a a D ij n ==||,则=-=||ij a D ; 解:a a a a a D a a a a a D n nn n n nn n n n )1(11111111-=----= ∴== 2、设321,,x x x 是方程03 =++q px x 的三个根,则行列式1 3 2 213 3 21 x x x x x x x x x = ; 解:方程02 3 =+++d cx bx ax 的三个根与系数之间的关系为: a d x x x a c x x x x x x a b x x x ///321133221321-==++-=++ 所以方程03 =++q px x 的三个根与系数之间的关系为: q x x x p x x x x x x x x x -==++=++3211332213210 033)(33212213213 332311 3 2 2133 21=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x 3、行列式 1 000 0000199800019970 020 01000 = ; 解:原式按第1999行展开:

原式=!19981998199721)1(0 00199800199700 200 1 000 219981999-=⨯⨯⨯-=+++ 4、四阶行列式 4 4 332211 000 00a b a b b a b a = ; 解:原式按第一行展开: 原式= ) )(()()(0 00 0041413232432432143243214 332 214 33 22 1b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=- 5、设四阶行列式c d b a a c b d a d b c d c b a D =4,则44342414A A A A +++= ; 解:44342414A A A A +++是D 4第4列的代数余子式, 44342414A A A A +++= 01 11111111 1 11==d a c d d c c a b d b a c b d d b c c b a 6、在五阶行列式中3524415312a a a a a 的符号为 ;

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ,则A-1等于() A. 1 3 00 1 2 001 ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ B. 100 1 2 00 1 3 ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪ C. 1 3 00 010 00 1 2 ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ⎪⎪ D. 1 2 00 1 3 001 ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 3.设矩阵A= 312 101 214 - - - ⎛ ⎝ ⎫ ⎭ ⎪ ⎪ ⎪ ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???? ???---d c b a 100 11 0011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

线性代数课后习题答案

习题答案 习题1(参考答案) 1.程序与算法的概念及二者的区别是什么? 程序:为了实现特定目标或解决特定问题而用计算机语言偏写的指令序列,它由算法和数据结构组成。 算法:(Algorithm)是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗地讲,就是计算机解题的步骤。 算法与程序的区别:计算机程序是算法的一个实例,同一个算法可以用不同的计算机语言来表达。 2.简述程序设计语言发展的过程 程序设计语言经过最初的机器代码到今天接近自然语言的表达,经过了四代的演变。一般认为机器语言是第一代,符号语言即汇编语言为第二代,面向过程的高级语言为第三代,面对象的编程语言为第四代。 3.简述高级程序设计语言中面向过程与面向对象的概念。 “面向过程”是一种以过程为中心的编程思想。首先分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步地实现,使用的时候依次调用函数即可。一般的面向过程是从上往下步步求精,所以面向过程最重要的是模块化的思想方法。 “面向对象”是一种以事物为中心的编程思想。面向对象的方法主要是将事物对象化,对象包括属性与行为。 面向过程与面向对象的区别:在面向过程的程序设计中,程序员把精力放在计算机具体执行操作的过程上,编程关注的是如何使用函数去实现既定的功能;而在面向对象的程序设计中,技术人员将注意力集中在对象上,把对象看做程序运行时的基本成分。编程关注的是如何把相关的功能(包括函数和数据)有组织地捆绑到一个对象身上。 4.C语言程序的特点是什么? (1)C语言非常紧凑、简洁,使用方便、灵活,有32个关键字,有9种流程控制语句。 (2)C语言运算符丰富,共有45个标准运算符,具有很强的表达式功能,同一功能表达式往往可以采用多种形式来实现。 (3)数据类型丰富。C语言的数据类型有整型、实型、字符型、数组类型、结构类型、共用类型和指针类型,而且还可以用它们来组成更复杂的数据结构,加之C语言提供了功能强大的控制结构,因而使用C语言能非常方便地进行结构化和模块化程序设计,适合于大型程序的编写、调试。 (4)用C语言可直接访问物理地址,能进行二进制位运算等操作,即可直接同机器硬件打交道。它具有“高级语言”和“低级语言”的双重特征,既能用于系统软件程序设计,又能用于通用软件程序设计。 (5)C语言生成的目标代码质量高、程序执行速度快。一般只比用汇编语言生成的目标代码的效率低20%左右。 (6)可移植性好。 5.源程序执行过程中,有哪些步骤?

线性代数第二版答案(共10篇)

线性代数第二版答案(共10篇) 线性代数第二版答案(一): 高等数学线性代数,概率统计第二版课后答案姚孟臣版 最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数第二版答案(二): 线性代数和概率论与数理统计教程答案 线性代数(第二版)是张民选主编南京大学出版社 概率论与数理统计教程周国利主编南京大学出版社 教程答案 线性代数第二版答案(三): 数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。注:不要复制粘贴,拍题搜出来的答案 数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。 注:不要复制粘贴,拍题搜出来的答案不对。 线性代数第二版答案(四): 线性代数第二版陈维新 设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1的过渡矩阵 设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1

的过渡矩阵 解:因为(ε2,...,εn,ε1)=(ε1,ε2,...,εn)A A = 0 0 0 ... 0 1 1 0 0 ... 0 0 0 1 0 ... 0 0 ... ... 0 0 0 ... 0 0 0 0 0 ... 1 0 所以ε1,ε2,...,εn 到ε2,...,εn,ε1 的过渡矩阵为A. 线性代数第二版答案(五): 线性代数:为什么二次型的标准形式不唯一的,而它的规范形唯一 标准形对平方项的系数没有严格限制 如 4x^2 = (2x)^2 作一个变换其标准形就改变了. 但规范型要求平方项的系数是1或-1 而二次型的正负惯性指数是不变量 所以规范型是唯一的(不考虑变量的顺序) 线性代数第二版答案(六): 大二,线性代数习题, 设二次型 f(X1,X2,X3)=X1 +X2 +X3 -2(X1X2)-2(X2X3)-2(X3X1), 1求出二次型f的矩阵A的全部特征值 2求可逆矩阵P,使(P的逆阵乘以AP)成为对角阵 3计算A的m次方的绝对值(m是正整数)

线性代数课后作业参考答案

第一章作业参考答案 1-1. 求以下排列的逆序数: (1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10 (2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1) 2(1)2 n n n n -⨯=- 1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a 解:()12(234516)4,•3126454t t t t ==== 128t t t =+=为偶数,故该项带正号。 1-3. 用行列式的定义计算: (1) 0004 0043 0432 4321 (3) 01 2 3 100010001x x x a a a x a ---+ 解:(1) 1241231240 0040 043(1)(1)444425604324 3 21 t q q q a a a ++=-=-⨯⨯⨯⨯=∑ (3) 1320 1 2 3 1 00010()(1)(1)001x x x x x x a x x a x a a a x a --=⨯⨯⨯++-⨯⨯⨯-⨯-+ 233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-⨯-⨯-⨯+-⨯-⨯=++++ 1-4. 计算下列行列式: (1) 1111111111111111--- (3) 120 03 40000130051 - (5)1111111111111111a a b b +-+- (7)n a b b b b a b b D b b b a =

线性代数课后习题答案全)习题详解

第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2.

解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数. 由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求.

线性代数习题册(答案)

线性代数习题册答案 第一章 行列式 练习 一 班级 学号 姓名 1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ; (3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1). 2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 . 3.在四阶行列式中,项12233441a a a a 的符号为 负 . 4.003 42215 = -24 . 5.计算下列行列式: (1)1 22 2 122 21 -----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5 或 (2)11 1 11 1 λ λλ ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3 λ+3λ+2=2 (2)(1)λλ-+

练习 二 班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3 (1)11-⋅=- 2. 11 1 2 3 44916 = 2 . 3.已知D= 1 01211031 110 1254 --,则41424344A A A A +++= —1 . 用1,1,1,1替换第4行 4. 计算下列行列式: (1) 111a b c a b c a b c +++ = 13233110 1 10 01 1 ,01 101 11111r r r r c c a b c b c a b c a b c -----+-= =++++++ (2) x y x y y x y x x y x y +++

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇) [模版仅供参考,切勿通篇使用] 感恩作文线性代数课后习题答案(一): 高等数学线性代数,概率统计第二版课后答案姚孟臣版 最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实, 这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三): 线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值 设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值 答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四): 求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案

书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五): 线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么? 如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案 应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六): 线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值; 求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了? 再问一下当0是特征值时对应的特征向量有什么特点么? 所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七): 线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则

线性代数课后练习参考答案

线性代数课后习题参考答案(初稿) 习题一 1. 用行列式定义计算下列各题 (1) 424532263 5 -=-⨯-⨯=- (2)12 13011 1110 101(1)(1)21011 110++=-+-= (3) 1312 0010 020 020030(1)3002(1)24300004 0040004++=-=⨯-=- (4) 11 12 13 100 002 3 002346 45(1) 45 62(1) 3(1) 4045 6 810 89 8910 78910 +++=-=⨯-+⨯-= 2. 利用行列式的性质计算下列各题 (1) 2 1412141312150620123 21 2325 62 5062 -== (2) 28512851105131025319061 9 65 125 1131080512051 2 1 21 1 1 7 609712 --------==---=----=---------- (3)1111 111 1 1 ab ac ae b c e bd cd de adf b c e adfbce bf cf ef b c e ----=-=----

111 0240 20 adfbce adfbce -== (4) 3 300 011 () ()0 10 a b b b a b b b a b a b a b a a b a a b a a b a a b b a a b b b b a b a b a -= =--=-------- (5) x a a a a x a a a a x a a a a x =(1)(1)(1)(1)x n a a a a x n a x a a x n a a x a x n a a a x +-+-+-+- =[(1)] x n a +-1111a a a x a a a x a a a x =[(1)]x n a + -1 0010010 01 x a x a x a ---[(1)]x n a =+-1()n x a -- (6) 22222222222 2 2 2 2 2 2 2 2 2 (1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325 a a a a a a a a b b b b b b b b c c c c c c c c d d d d d d d d ++++++++++++= =++++++++++++ (7) 123110000112 31110001223110200(1)!12321100201 2 3 1 1100 1 n n n n n n n n n n n n n n n -+-+-==--+----+-

线性代数习题(含答案)

线性代数习题 一、判断题 1、四阶行列式中含因子2311a a 的项为42342311a a a a 和44322311a a a a 。( ) 2、设D 为六阶行列式,则162534435261a a a a a a 是D 中带负号的项。( ) 3、排列()3211 -n n 的逆序数为n 。( ) 4、排列()3211 -n n 为偶排列。( ) 5、若22B A =,则B A =或B A -=。( ) 6、若AC AB =,0≠A ,则C B =。( ) 7、若矩阵A 满足A A =2,则0=A 或E A =。( ) 8、设A 是n 阶方阵,若0≠A ,则必有A 可逆。( ) 9、若矩阵A 满足02=A ,则0=A 。( ) 10、对n 阶可逆方阵A ,B ,必有()111 ---=B A AB 。( ) 11、对n 阶可逆方阵A ,B ,必有()111 ---+=+B A B A 。( ) 12、设A ,B 为n 阶方阵,则必有B A B A +=+。( ) 13、设A ,B 为n 阶方阵,则必有BA AB =。( ) 14、若矩阵A 与B 等价,则B A =。( ) 15、设n m A ⨯,n m B ⨯为矩阵,则()()()B R A R B A R +≤+。( ) 16、设A =0,则()0=A R 。( ) 17、线性方程组0=⨯X A n n 只有零解,则0≠A 。( ) 18、若b AX =有无穷多解,则0=AX 有非零解。( ) 19、要使⎪⎪⎪⎭⎫ ⎝⎛=→ 2111ξ,⎪⎪⎪ ⎭ ⎫ ⎝⎛-=→0112ξ都是线性方程组0=AX 的解,则系数矩阵A 可为()111-k 。( ) 20、若n ,,,ααα 21线性无关,且02211=+++n n k k k ααα ,则021====n k k k 。( ) 21、单独的一个零向量是线性相关的。( ) 22、一个向量组若线性无关,则它的任何部分组都线性无关。( )

线性代数课后作业答案(胡觉亮版)

第一章 1.用消元法解以下线性方程组: 〔1〕⎪⎩⎪ ⎨⎧=++=++=++. 5432,9753,432321 321321x x x x x x x x x 解 由原方程组得同解方程组 得方程组的解为13232, 2 3. x x x x =-⎧⎨ =-+⎩令3x c =,得方程组的通解为 c x c x c x =+-=-=321,32,2,其中c 为任意常数. 2.用初等行变换将以下矩阵化成行阶梯形矩阵和行最简形矩阵: 〔2〕⎪⎪⎪⎭ ⎫ ⎝⎛--324423211123. 解 1102 232111232551232041050124442300000000r r ⎛ ⎫- ⎪-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ -−−→--−−→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝ ⎭ ,得 行阶梯形:⎪⎪⎪⎭ ⎫ ⎝⎛---0000510402321〔不唯一〕;行最简形:⎪⎪⎪⎪ ⎪⎪⎭ ⎫ ⎝ ⎛ - -00004525 10212 01 3.用初等行变换解以下线性方程组: 〔1〕⎪⎩ ⎪ ⎨⎧=+-=+-=++.3,1142,53332321321x x x x x x x x 解 2100 31335721411010 9011320019r B ⎛ ⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=-−−→- ⎪ ⎪ ⎪- ⎪⎝ ⎭ ⎪ ⎪⎝⎭ , 得方程组的解为

〔2〕⎪⎩⎪ ⎨⎧=+++=+++=++-. 2222,2562,1344321 43214321x x x x x x x x x x x x 解 1143111431216520321 01222200001r B --⎛⎫⎛⎫ ⎪ ⎪=−−→-- ⎪ ⎪ ⎪ ⎪⎝ ⎭⎝⎭ , 得方程组无解. 第二章 1.〔2〕 2 2 x y x y . 解 原式()xy y x =-. 〔2 〕 01 00 020 00010 n n -. 2.解 原式1 10 0020(1)00 1 n n n += -=-!)1(1n n +- 3.〔2〕 1 111222233 3 3 4444 ------. 解 原式1111 044419200660008 = =. 〔5 〕12111110 01 10 n a a a ,其中0,1,2,,i a i n ≠=.

线性代数习题答案

一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4.=0 0010 01001001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =00011 00000100 100( ). (A) 0 (B)1- (C) 1 (D) 2 二、填空题 1. n 2阶排列)12(13)2(24-n n 的逆序数是 . 2.在六阶行列式中项261365415432a a a a a a 所带的符号是 . 3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于 .

5. 行列式=01001 1101010. 一.单项选择题 A D A C C 二.填空题 1.n ; 2.” “-; 3.43312214a a a a ; 4.0; 5.0 第二章 矩阵 一、单项选择题 1. A 、B 为n 阶方阵,则下列各式中成立的是( )。 (a)22A A =(b)))((22B A B A B A +-=- (c)AB A A B A -=-2)( (d) T T T B A AB =)( 2.设方阵A 、B 、C 满足AB=AC,当A 满足( )时,B=C 。 (a) AB =BA (b) 0≠A (c) 方程组AX=0有非零解 (d) B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则=kA ( )。 (a) A k (b) A k (c) A k n (d) A k n 4.设A 为n 阶方阵,且0=A ,则( )。 (a) A 中两行(列)对应元素成比例 (b) A 中任意一行为其它行的线性组合 (c) A 中至少有一行元素全为零 (d) A 中必有一行为其它行的线性组合 5.设A ,B 为n 阶可逆矩阵,下面各式恒正确的是( )。 (a) 111)(---+=+B A B A (b) B A AB T =)( (c) B A B A T +=+--11)( (d) 111)(---+=+B A B A 二、填空题 1.设A 为n 阶方阵,I 为n 阶单位阵,且I A =2,则行列式=A _______

线性代数课后答案(戴天时陈殿友著)吉林大学数学学院

第一周作业解答 习题 1.1(A) 2. 设甲省两个城市a 1,a 2和乙省三个城市b 1,b 2,b 3的交通路线如图1, 3. 乙省三个城市b 1,b 2,b 3和丙省两个城市c 1,c 2,的交通路线如图2, 4. 其中每条线上的数字表示联结该两城市的不同道路的总数 . 试用矩阵表示甲乙两省及乙丙两省间的通路信息. 解 用a ij 表示联结a i 与b j 的不同道路的总数,则甲乙两 省的通路信息可用矩阵 ⎪⎪⎭ ⎫ ⎝⎛301213 表示; 用b ij 表示联结b i 与c j 的不同道路的总数,则乙丙两省 的通路信息可用矩阵 ⎪⎪⎪⎭ ⎫ ⎝⎛214312 表示. 习题1.2(A) 1. 计算下列矩阵的乘积: ;20411122013 143110412 )2⎪⎪⎪⎪⎪⎭⎫ ⎝ ⎛--⎪⎪⎭⎫ ⎝⎛- ; 11 )5⎪⎪⎭ ⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛b a b a mb ma b a 解

⎪⎪⎭⎫ ⎝⎛--=⎪ ⎪⎪⎪⎪ ⎭ ⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-1052087620413121013143110412 )2 ⎪⎪⎭⎫ ⎝ ⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛000011 )5b a b a mb ma b a 2. 设矩阵 ,111111111⎪ ⎪⎪ ⎭ ⎫ ⎝⎛--=A ,150421 32 1⎪⎪⎪⎭ ⎫ ⎝⎛--=B 求3AB -2A 及A T B. 解 ⎪⎪⎪⎭⎫ ⎝⎛--=11111111 1AB ⎪⎪⎪⎭⎫ ⎝⎛--150421321⎪⎪⎪⎭ ⎫ ⎝⎛-=092650 85 0 ⎪⎪⎪ ⎭ ⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=-22222222 20276181502415023A AB ⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132 ⎪⎪⎪ ⎭⎫ ⎝⎛--=111111111T B A ⎪⎪⎪⎭ ⎫ ⎝ ⎛--150421 321⎪⎪⎪⎭ ⎫ ⎝⎛-=092650850 3. 已知A =PQ ,其中 ()2,1,2,121-=⎪⎪⎪ ⎭ ⎫ ⎝⎛=Q P 求 A 及A 100. 解

线性代数练习册附答案

第1章 矩阵 习 题 1. 写出下列从变量x ,y 到变量x 1, y 1的线性变换的系数矩阵: (1)⎩⎨⎧==01 1y x x ; (2) ⎩⎨ ⎧+=-=ϕϕϕ ϕcos sin sin cos 1 1y x y y x x 2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况. 3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪ ⎭ ⎫ ⎝⎛--=150421321 B ,求3AB -2A 和A T B . 4. 计算 (1) 2 210013112⎪⎪⎪⎭ ⎫ ⎝⎛

(2) ⎪⎪⎪⎭ ⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛1)1,,(2 1 22212 11211y x c b b b a a b a a y x 5. 已知两个线性变换3213 32123 11542322y y y x y y y x y y x ++=++-=+=⎪⎩⎪ ⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式, 并求从321,,z z z 到321,,x x x 的线性变换. 6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E . 当f (x )=x 2 -5x +3,⎪⎪⎭ ⎫ ⎝⎛--=3312A 时,求f (A ).

7. 举出反例说明下列命题是错误的. (1) 若A2= O,则A= O. (2) 若A2= A,则A= O或A= E. . 7. 设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.

同济大学线性代数第六版课后答案(全)

同济大学线性代数第六版课后答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3811411 02--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 1 1c b a c b a ; 解 2221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

⋅⋅⋅⋅⋅⋅ (2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2. 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ⋅⋅⋅⋅⋅⋅ (2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) ⋅⋅⋅⋅⋅⋅ (2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个) 3.写出四阶行列式中含有因子a11a23的项. 解含因子a11a23的项的一般形式为 (-1)t a11a23a3r a4s, 其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是 (-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44, (-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4.计算下列各行列式:

线性代数 第五版 课后习题 答案 完整 最全

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). 4. 计算下列各行列式: (1)7 1 10 025******* 214; 解 711002510202142140 100142310 20211021 473234-----======c c c c 34)1(1431022110 14+-⨯---= 143102211014--=014 171720010 99323211=-++======c c c c . (2)2 605232112131412-;

解 2605232112131412-26050 3212213041224--=====c c 0 41203212213 041224--=====r r 00 00032122130 412 14=--=====r r . (3)ef cf bf de cd bd ae ac ab ---; 解 ef cf bf de cd bd ae ac ab ---e c b e c b e c b a d f ---= abcdef adfbce 41 111111 11=---=. (4)d c b a 100110011001---. 解 d c b a 1 00110011001---d c b a ab ar r 10 011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====c d c ad a a b d c c cd ad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明: (1)111222 2b b a a b ab a +=(a -b )3; 证明 1112222b b a a b ab a +001 2222 2221213a b a b a a b a ab a c c c c ------=====

同济-线性代数第五版(课后全部答案)

线性代数同济大学第五版全部课后题答案 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) (6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n ) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个)

线性代数课后习题答案第1——5章习题详解

第一章 行列式 4.计算下列各行列式: (1)⎥⎥⎥⎥ ⎦⎥⎢⎢⎢ ⎢⎣⎢71 10 025********* 4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-26 52321121314 1 2; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦ ⎥⎢⎢⎢ ⎢⎣⎢---d c b a 1 00 110011001 解 (1) 71100251020214214 34327c c c c --0 10014 2310202110 21 4---=3 4)1(1431022 11014+-⨯---=14 31022110 14-- 3 21132c c c c ++14 171720010 99-=0 (2) 2605 232112131 412-24c c -2605032122130 412-24r r -0412032122130 412- 14r r -0 000032122130412-=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1111111 11---adfbce =abcdef 4 (4) d c b a 100110011001---21ar r +d c b a ab 1001 100 110 10---+=12)1)(1(+--d c a ab 1011 1--+

2 3dc c +0 10111-+-+cd c ad a a b =23)1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd 5.证明: (1)1 11222 2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2 2222222 2 2222222 =++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1 22 110000 0100001a x a a a a x x x n n n +----- n n n n a x a x a x ++++=--111 . 证明 (1)0 0122222221 312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开 按第一列 左边 bz ay by ax x by ax bx az z bx az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分 bz ay y x by ax x z bx az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

相关文档
最新文档