后桥差速锁应用

后桥差速锁应用
后桥差速锁应用

哈弗H3\H5越野升级全系均可选装差速锁

长城哈弗一直都是自主品牌越野车当中的代表作,强悍的非承载车身、带有低速四驱的分动箱都让我们不由自主的把它划分到硬派越野车的范畴里。但无论是当初的哈弗H3还是后来的H5,不具备任何轮间锁止或者限滑装置的短板严重限制了其越野性能的发挥,我们也不得不为哈弗这个“底子”很好的越野车感到惋惜(查看无锁版哈弗H5越野性能测试【点击进入】)。不过在去年11月,长城终于在万众期盼的情况下推出了一款装配了伊顿机械式后桥差速锁的哈弗H5至尊版车型。

为了能让大家能够尽快了解这款车型的越野能力,我们汽车之家评测团队专门奔赴长城汽车总部对其进行了详细的越野测试,结果如何?后面我会为大家详细的展示。

●四驱结构分析

在测试任何一款越野车之前,我们都先要仔细分析它的四驱形式以及四驱结构,这样才能更深入的了解其越野性能是如何发挥的,那么下面我们就先来看看这款带锁版哈弗H5的四驱结构。

『本位主角:哈弗H5智尊版2.4四驱豪华差速版』

其实从结构上看,这款带锁版哈弗H5的四驱结构和之前大体相同,依然是分时四驱结构,带有中央分动箱,能实现两驱以及四驱的切换,并且带有高速四驱挡以及低速四驱挡,低速传动比2:1。两驱模式下为后轮驱动,联通四驱之后前后轴固定50:50的扭矩分配,所有的四驱模式转换均为电控式,只要通过中控台按键就可以操作。

唯一的差别就是之前普通版H5前后轴之间均为普通开放式差速器,而现在这款带锁版的H5把后桥的开放式差速器换成了美国伊顿公司生产的型号为G80的自锁式机械差速锁,它的作用就是能够实现后轮的轮间锁止,这将是越野能力的关键所在。由于差速锁为纯机械的“自锁”形式,不需要任何电子控制或者人为操作,所以我们在中控台上看不到关于差速锁的控制按键,一切全都是由机械结构自动完成。

◆伊顿自锁式机械差速锁(G80)结构及工作原理解析

这次带锁版哈弗H5的重点就在于装配在后桥上的这把机械差速锁,那么这个看似神秘的装置是如何工作的呢?在之前的试驾文章当中,我的同事罗浩已经有了非常详细的介绍,这里我在给大家温习一下。

工作原理:

其实对于这个产品很多喜爱越野的朋友们都不会陌生,它就是又一个普通的开放式差速器改进而来,当车辆在一般铺装路面行驶时,它发挥普通开放式差速器的差速作用;而当有一个车轮抓地力不足产生打滑时,如果后桥左右车轮的轮速差达到100转/分钟,锁止装置就会触发,屏蔽掉差速器的功能,把左右半轴刚性连接起来,扭矩就可以顺利传递到有附着力的车轮上。

另外,自锁式差速锁起作用需要一个前提条件,那就是车速必须低于30km/h,如果高于这个速度则差速锁不会锁止,目的是为了在高速行车时保证车辆的安全,毕竟锁止后左右半轴刚性连接,没有转速差,如果在高速行驶当中拐弯有可能会导致翻车。

总结起来差速锁锁止的条件有两个:第一就是左右车轮的轮速差达到100转/分钟,第二就是车速要低于30km/h。可能有朋友还会有些担心,就是当车辆转弯时左右两个后轮是会出现转速差的,这时差速锁是否会自动锁止?这里大家完全不必担心,在车辆正常行驶的情况下,即使是打满方向,左右轮速差也不会超过100转/分钟。

结构分析:

伊顿自锁式差速器和普通开放式差速器最大的不同就是增加了一个吻合机构和闭锁机构,两机构的协同运作实现自锁功能。

吻合机构随着半轴齿轮的旋转而旋转,它的核心是同轴上的两个飞重块,这两个飞重块平时由弹簧限位,紧紧闭合,两个飞重块的外侧各有一个齿。闭锁托架是一个可以沿轴运动的滑块,它可以向内收紧锁止行星齿轮,在接近吻合机构一侧也有一个齿,可以与吻合机构上的齿咬合。

在正常行驶时,由于左右半轴的转速差较小,与半轴一同旋转的吻合机构转速也较慢,因此离心力偏小,弹簧的作用使得飞重块不会张开,此时飞重块上的齿和闭锁托架上的齿有微小的距离,二者不会咬合,伊顿差速器就和普通开放差速器一样发挥作用。

当一侧车轮打滑,左右车轮的转速差达到预设的100转/分钟,较快的转速令吻合机构上飞重块在离心力作用下开始向外张开,此时飞重块上的齿就会咬到闭锁机构上的齿,闭锁机构向内移动,锁止了差速器壳体上的行星齿轮,左右半轴被刚性连接起来,扭矩传递到不打滑的车轮上。

我们可以发现,伊顿自锁式差速器的特点是无需电子控制,纯粹的机械结构,具有很高的可靠性。当然这种结构也决定了它独特的驾驶方法,那就是在遇到打滑时不要收油门,而是继续大力踩下油门,让转速差进一步加大到预设值时才能起作用。有意思的是,伊顿差速器只有车速在30公里/小时以下时才能发挥锁止功能,超过这一速度后就完全变成了普通的差速器,不会对日常驾驶产生任何影响。

在详细了解了带锁版哈弗H5的四驱结构以及伊顿自锁式差速锁的工作原理之后,我们下面就进入正式的越野性能测试。

●带锁版哈弗H5越野性能测试

◆“馒头包”交叉轴测试

这个是我们常见的一个越野性能测试项目,属于难度相对较低的一个,我们的测试就从这里开始……

我们直接选用4L(低速四驱模式),将车辆缓慢的开上铁桥,当车身到达桥顶时,左前轮以及右后轮都已经处于半悬空的状态,并且都会出现短暂的空转。而这时右后轮空转,左后轮静止状态,两个车轮出现轮速差,并且瞬间差值就会超过100转/分钟,此时差速锁自动锁止,你从车内就能明显的感觉到锁止瞬间带来的车身震动。锁止之后左右半轴刚性连接,扭矩直接传递到有附着力的左后轮上,车辆顺利脱困。

◆坡上交叉轴测试

眼前的这个装置相信大家都不会陌生了,在我们很多的越野性能测试文章中都能见到,我们靠铁架上的滑轮组来模拟车轮打滑的状况。刚才的测试当中后桥差速锁已经展示出了它的能力,这次我们直接打开对角线的滑轮组,模拟交叉轴状态,提高测试难度。

为了保证爬坡过程中充足的扭矩输出,同样我们选用4L(低速四驱模式),车辆缓缓开上斜坡,当左前轮以及右后轮同时到达滑轮组时,都会出现短暂的打滑,不过瞬间后轴差速锁就会启动并锁止,扭矩传递到有附着力的左后轮;由于前轴并没有限滑装置,因此左前轮还会持续打滑,不过已经分配到扭矩的左后轮足矣推动车身脱困。

从上面两项测试当中我们看到装备了后桥机械差速锁的哈弗H5已经能够轻松顺利的通过交叉轴测试,并且视频中也展示了伊顿自锁式机械差速锁反应还是非常的迅速,基本上是打滑的瞬间就能够实现对后轴的锁止。

另外就是因为哈弗本身属于后轮驱动形式,理论上只要能实现后轮之间的锁止就能够通过交叉轴测试,所以两驱版的哈弗H5装备了后桥差速锁也同样可以表现出不错的越野能力。

●长城全新智能四驱系统越野性能展示

这次我们来到长城总部除了测试到带锁版的哈弗H5之外,还有幸体验到了长城最新研发的一款“智能四驱系统”。虽然这个四驱系统还没有正式启用,但据了解它将首先装备在哈弗H5绿静2.0T四驱顶配车型上,不久之后就能和大家见面了。

我们测试的这辆装备智能四驱系统的车型目前还是试验车,不过系统已经成型,从中控台的按键能看到只有2H(两驱模式)以及AWD(四驱模式)。其实这里所说的四驱模式就是我们平时常见的适时四驱模式。它的结构就是在原有分动箱的结构当中加入了一个多片离合器结构的差速装置,就是同个它来实现前后的扭矩分配,而从资料上显示这套系统能够实现0~100%的扭矩分配。

◆单个车轮打滑爬坡测试

第一个测试项目我们就是来验证一下这套智能四驱系统在扭矩分配的速度上是否足够迅速,我们开放铁架上的右后轮滑轮组,模拟一个车轮打滑的状态。

当车辆爬上斜坡,右后轮到达滑轮组的位置后,会出现打滑的现象,不过在不到2秒的时间里,智能四驱系统将动力逐渐传递至前轴,车辆顺利通过测试,所以我们得出的结论就是智能四驱系统在前后的扭矩分配上是非常迅速并且有效的,官方数据中这套四驱系统的反应速度低于60ms。

◆“交叉轴”测试

其实根据以往的测试经验来判断,这套四驱系统可以实现前轴间的扭矩分配,但是轮间并没有装备限滑或锁止装置,因此它就和大多数的适时四驱车型一样,无法通过前后轴各有一个车轮打滑的交叉轴状态。

最终的测试结果和我们预想的情况相吻合,无论是难度较高的斜坡交叉轴还是难度较低的“馒头包”测试,对于这些交叉轴状态,智能四驱还是有些力不从心,不过这也完全属于正常现象,毕竟这套智能四驱系统的目的是为了驾驶者能更精准的操控车辆,并且在一些基本的越野环境当中能实现一定程度的越野性能就好。

总结:

说实话,哈弗H5这次推出的带后桥差速锁版本车型的确是很大程度上满足了用户的口味,曾经有多少喜爱哈弗的用户因为它不尽如人意的四驱性能而放弃。不过从今天的测试过程来看,后桥差速锁确确实实让H5的越野性能有了本质的提升,现在它才真正称得上是一款足够硬派的越野车!另外还有处于研发阶段的智能四驱系统,可能有人觉得它无法通过交叉轴是不够强悍的表现,不过我要说的是这套系统所针对的目的就不是用来进行强悍的越野,而是在日常驾驶当中辅助操控性,满足基本的越野需求,如果您还是在意越野性能的话,还是去选择装备后桥差速锁的车型吧。

后桥限滑差速器差速锁

后桥限滑差速器/差速锁 后桥限滑差速器位于车辆两个后车轮之间,它可以弥补普通差速器的由于车轮悬空而导致空转,此时差速器会将动力不断的传给没有阻力的空转车轮,车辆不但不能向前运动,而且大量动力也会流失的这种弊端。一般后桥限滑差速器会配备在一些高性能车辆上。装有后桥限滑差速器的车辆在激烈驾驶时,还可以进行大范围的漂移动作。 差速器 在此之前我们先来了解一下什么是差速器,以及为什么需要差速器?顾名思义,“差速器”就是用来让车轮转速产生差异的,在转弯的情况下可以使左右车轮进行合理的扭矩分配,来达到合理的转弯效果。汽车在弯道行驶,内外两侧车轮的转速有一定的差别,外侧车轮的行驶路程长,转速也要比内部车轮的转速高,这个时候就需要差速器来调节。 那么这个过程是如何实现的呢?首先我们来看看普通差速器的构成。差速器主要由行星齿轮、齿轮架以及左右半轴齿轮构成。在传动轴和驱动桥的结合点上,我们能看到一个半径比较大的从动齿轮,由于输入轴主动齿轮半径比较小,因此动力从此齿轮传递到半径比较大的从动齿轮的过程中就能实现一个减速增矩的过程。 接下来减速器从动齿轮带动着行星齿轮架一起运转,由于左右输出轴和行星齿轮架是相连的,因此左右输出轴会跟着一起转动,而左右半轴齿轮就会跟着一起运转,而实现“差速”的关键就是两个和左右半

轴齿轮相垂直的行星齿轮。这两个行星齿轮和左右车轮都咬合着,齿轮咬合方式能够让左右两个齿轮达到一个互相抵制的效果。 当汽车直线行驶的时候,左右半轴齿轮的扭矩和转速都是相同的,因此和行星齿轮结合的时候左侧和右侧能够互相抵消,这个时候行星齿轮是不运动的。遇到转弯情况,内侧车轮要比外侧车轮受到的阻力大,这个时候左右半轴齿轮的扭矩不同,就会导致行星齿轮的转动,行星齿轮能给内侧齿轮一个阻力扭矩实现减速,同时也能给外侧齿轮增速,这样外侧齿轮比内侧齿轮的转速快,实现了顺利的转弯。 限滑差速器 普通差速器有一种弊端,那就是由于车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。这时候就需要一种差速器来解决这样的情况,就是下面介绍的限滑差速器。 限滑差速器的英文简写为LSD,是Limited Slip Differential的缩写,而LSD的主要功能就是在工作时使左右车轮一同运转,而且将左右车轮的转速差控制在一定范围之内,以车辆保证正常的行进。根据实现方式以及机件结构的不同,LSD可细分为扭力感应型、黏耦合型、螺旋齿轮式、标准机械式LSD等多种形式。虽然实现限滑差速的过程不同,最终目的是一致的。 当驾驶一辆装有LSD的车,其中一只驱动轮发生空转时,LSD会控制两只车轮动力输出,阻止空转的车轮不会继续空转,使另一只车轮也有足够大的动力从而帮助车辆前进;在加速过弯时,输出扭力和离

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

差速锁

你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16 汽车越野这项非常“男人”的运动,多少年来一直深受人们的喜爱。只是在目前汽车技术越来越发达的境况下,很多刚刚接触越野的爱好者们都还不甚了解“越野”这二字的具体含义,他们不管路面多么崎岖、复杂,只顾踩着油门轰轰的向前冲,而其余的事情都交给车来办。由于对越野的不了解,因此人们选购越野车的时候,总是听风就是雨,只关注品牌、动力、外形,而越野车真正应该具有的内在特质却被逐渐淡忘。

想要成为一个真正的越野高手,在拥有出色的技术之前,必须要对自己的爱车与自己所喜欢的运动有足够的了解,而这都要从最基础的传动部分抓起。搞清楚差速器与差速锁在汽车上的应用、区别以及在越野车上的利与弊都很重要。 你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16 首先,向大家阐述一下差速器,差速器这个自从汽车诞生不久就有了的产物已经诞生了百年之久。而在最初,差速器存在的唯一意义就是让汽车能够正常的转弯。由于在转弯时,内侧车轮和外侧车轮的转速不同,若是没有差速器,而是由一根硬轴进行连接,那么内侧的车轮除了有滚动摩擦之外还有着滑动摩擦,产生剧烈的磨损。

按照工作特性来分,差速器又分为齿轮式差速器和防滑差速器两种。其中,齿轮式差速器若是装到越野车上的话,一旦一个驱动轮悬空失去的抓地力,其另外一个轮子也会失去驱动力,因此,齿轮式差速器不能被装配到越野车之上。对于防滑差速器来说,它能够弥补齿轮式差速器在越野方面的缺陷,但是增加了摩擦片,在有了能够提供一定限滑力矩这一优点的同时,又有着转向特性变差、摩擦片寿命短的缺陷。 你真的了解差速器与差速锁吗? 越野e族原创 2010-4-16

玩转四驱(20) 路虎四驱技术详细讲解

玩转四驱(20)路虎四驱技术详细讲解 2011年04月06日 01:00 来源:汽车之家类型:原创编辑:张可 [汽车之家汽车技术] 从去年年初我们开始了今年的年度大选题《玩转四驱》相继出了涵盖10于个品牌10几篇文章,可以说为广大网友安排了一场四驱盛宴,不夸张的说在汽车网络媒介中也带起了一小股四驱风。如果你觉得Jeep和悍马这样的越野车过于硬朗传统,觉得昂克雷和讴歌MDX这样的SUV过于舒适安逸有些丧失野性的话那么本篇文章介绍的品牌就将奔放的越野与细腻的豪华相结合,它就是来自英国的路虎。

关于路虎品牌 LAND ROVER这个品牌诞生于1948年,至今已经有了60多年的历史,然而这个源自英国的豪华品牌却经过了三次的转卖。第一次为1994年,以8亿英镑的价格被宝马收购。时隔六年后的2000年,以18亿英镑的价格出售给福特。就在前年,也就是2008年印度汽车巨头塔塔用23亿美元收购了路虎。 第一辆路虎在1948年亮相,这两路虎使用了大量的铝镁合金,原因很简单,因为在二战后钢材紧缺,而供应制造飞机的铝合金材料却比较充裕。这台路虎只有一款车型,轴距为80英寸,搭载一台1.6L汽油发动机,车型设计简洁,板材多为平直尽量减少材质冲压的步骤,并且为敞篷设计。在1948年一整年的产量为3048辆。

1949年路虎的产量已经增长至8000辆,1950年翻倍成16000辆,在之后几年中一直保持着产量的增长。本年英国军队订购了第一批路虎汽车,同年路虎还向军队提供了一批试验车,最后路虎被军方作为了标准轻型四轮驱动车。 直到50年代路虎经过了不同的改型,也推出了面对不同用途的改款车型,在50年代末60年代初期路虎的产量已经达到了50万辆。

6款中级SUV四驱系统大比拼

6款中级SUV四驱系统大 比拼

有人说CR-V的四轮系统太过简陋,就连东风本田高层也承认:CR-V只是定位于城市SUV,并不适合越野,它与东风日产奇骏之类的定位是不同的。CR-V采用的粘性联轴节差速器通常是以某一驱动桥为基础,当此驱动桥有驱动轮发生打滑后,黏性耦合器自动锁死,将动力传递至另一驱动桥。这套系统具备了黏性耦合装置的特点,虽然具备一定自动化程度,但由于反应速度滞后,且缺乏连贯性,所以通常装配于一些不强调越野性能的城市SUV 上,但由于技术落后,所以这种接通方式正逐渐被液压多摩擦片接通系统取代。

CR-V采用的“粘性联轴节”中央差速器是所有中央差速器中结构最为简单、成本最低的,没有复杂的电子系统也没有精密的机械结构。粘性联轴节中央差速器体积小巧,没有为车辆增加额外重量,是一种“适时四驱”差速器,平时采用的动力是液力传递工作的原理。它的结构是一个装有粘稠硅油的密闭容器,两端分别是连接前轴和两轴的金属叶片,它的工作原理有点像液力变距器的自动变速箱。正常行驶时,前轮驱动车辆前进,后轮没有动力,被拖着前进,带动中央差速器的叶片作同方向旋转,两个叶片之间没有作用力,而转弯时的前后轮速度差,也被柔性的粘稠硅油所吸收,车辆转向可以顺利进行。

粘性联轴节在越野时也并不一定能帮上忙,由于这种粘稠硅油所能传 30%的动力传递到后轮,如果被困情况递的动力有限,通常最大只有 稍为严重点,就会因为后轮动力不足而无法摆脱困境。另一种情况是,如果前轮抓地力太弱,打滑非常严重,而后轮抓地力太强动力难以驱动它,这个时候如果继续加油,前轮会继续疯转,后轮仍会保持不动,而中央差速器的粘稠硅油温度急剧升高,甚至有烧毁的危险。 丰田RAV4:电控粘性联轴节+电子差速锁 四驱系统含金量:★★★☆☆ 编辑小评:与CR-V相比,RAV4的粘性耦合器可以通过手动操作来进行锁定,有点类似于中央差速锁,锁定后,动力将按照55:45的比例在前后轮之间分配,这也使得RAV4具有和直接对手稍强的越野性能。

拒绝误导 彻底了解差速器和差速锁

“电子差速锁”“电子限滑差速器”这是同样的东西吗?竟然连身为汽车编辑的人自己都还没搞明白,而某品牌4S店里的销售大哥/大嫂也会向你描述一下他们某款前驱轿车装备了“电子差速锁”什么的,那功能更是被吹得天花乱坠,你身边也会有一些很懂车的兄弟跟你说限滑差速器或差速锁是个何等神奇的玩意儿,但是,你确定你听懂了吗? 我们首先要了解一点,那就是嘴上挂着这些词儿的人,其实十个有八个压根儿没明白是怎么回事儿。而他们的错误认知,很大程度上来源于那些自己也没明白差速器是怎么回事儿的汽车编辑。各位,今儿,咱就再认真的琢磨一遍差速器的这些事儿,做个明白人,权当是让自己对汽车有个更清晰的认知,毕竟,信自己比信什么都强(别提“信春哥”,春哥不懂车…)。

●什么是差速器? 在描述“差速锁”或是“限滑差速器”之类的概念之前,我们先要了解什么是差速器,以及它有什么样的作用。 『普通差速器示意图』 如果直白的说,差速器的存在就是为了补偿左右驱动轮间(轮间差速器)或各个驱动桥间(轴间差速器)的转速差异,使车辆顺利转弯,并且能消除因为车轮滚动半径不同或路面不同起伏等因素可能造成的车轮滑动。目前轮间差速器中使用最广泛的,就是文章中图示的对称式锥齿轮差速器。

没有差速器会怎么样?转弯,内侧车轮滑拖,外侧车轮滑动,轮胎还有传动机构直接承受这种应力,要么轮胎磨损,要么传动轴和齿轮给你闹出个三长两短,要么失控要么翻车…如果你还是想不出来没有差速器是个什么状态,可以看看下面这个视频。 关于差速器大致的结构和描述如果感兴趣,可以参考下面这篇文章。 ●差速器的运动特性、转矩分配特性和锁紧系数的概念

最新4WD差速器运动特性

4W D差速器运动特性

●差速器的运动特性、转矩分配特性和锁紧系数的概念 对于对称锥齿轮差速器而言,在左右半轴相同转速的情况下,行星齿轮仅公转不自转,左右半轴得到的转矩是平均分配的。

而当左右半轴有一侧转速较慢时,行星齿轮在公转的同时开始沿着转速慢的一侧半轴齿轮滚动,绕行星齿轮轴开始自转,另一侧半轴则加速旋转(两半轴转速之和恒定等于两倍差速器壳体转速),由于行星齿轮的自转,其受到一个反向的摩擦力矩MT,这个摩擦力矩使行星齿轮分别对左右半轴附加作用了大小相等方向相反的两个圆周力F1和 F2,在左右半轴齿轮上产生的圆周力使得左右半轴转矩分配发生变化,转动慢的一侧转矩增加。 ●差速锁、防(限)滑差速器...

关键点在于上一页式子里的MT,对称锥齿轮差速器的内摩擦力矩MT通常很小,因此左右半轴转速不同时,转矩分配的程度有限,锁紧系数K值通常在0.05~0.15之间,左右半轴转矩比(M2/M1)通常在1.1~1.4之间,所以这种差速器基本上可以认为转矩在任何情况下都是平均分配的。而这种转矩平均分配的特点,决定了这类差速器在左右车轮附着系数有明显差别时的情况。 『正是因为对称式锥齿轮差速器平均分配的特性,所以会出现一侧车轮空转而另一侧附着力良好车轮却无法前进的情况』 因为平均分配的特性,当左右车轮处在不同附着系数的路面上时(如一侧冰雪、一侧铺装路面),低附着力路面上的车轮能够产生的驱动力矩非常小(轮端摩擦力过小,所以没有办法获得需要的反作用力),而此时对侧附着力良好的车轮也只能得到几乎同样的驱动力矩,而这样的驱动力矩没有办法使良好附着力路面上的车轮滚动前进(这和发动机动力无关,只和此时两侧车轮附着系数的落差有关),因此,即便你猛踩油门,也只能使低附着力的一侧车轮失去附着力空转,而对侧的车轮则因为驱动力矩不足而无法前进。 基于差速器这样的特性,我们便有了“差速锁”,差速锁顾名思义,是差速器的锁止机构,用来锁止轮间差速器(左右半轴间)或者轴间差速器(前后驱动桥间),来应对单个或多个车轮失去附着力无法脱困的情况。有了差速锁,我们就能在任何一个你冒出“要是没有差速器就好了”的时刻果断的将差速器锁止,“关闭”它的差动功能。随着技术的发展,从机械控制到现在的电控差速锁(例如气动、电磁等控制方式),使用越来越便利。这类带有锁止机构的差速器被称之为“强制锁止差速器”。 但是强制锁止差速器只是“防滑差速器”家族当中的一个门派,它并不完美,因为不论它的控制机构怎么进化,终归还是需要人为的锁止和打开。相比较而言,隶属于“自锁式”差速器阵营中的各类机械和电子式的限(防)滑差速器在灵活性上较“差速

(EDSEDLXDS)电子差速制动

(EDS/EDL/XDS)电子差速制动 文字和图片部分摘自陈新亚编著“陈总编爱车热线书系” EDS,英文全称为Electronic Differential System,即电子差速锁,它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的加速打滑进行控制。 因为差速器允许传动轴两侧的车轮以不同的转速转动,如果传动轴某一侧的车轮打滑或者悬空时,会造成另一侧车轮完全没了动力,当EDS电子差速锁通过ABS系统的传感器,自动探测到由于车轮打滑或悬空而产生的两侧车轮转速不同的现象时,就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。当车辆的行驶状况恢复正常后,电子差速锁即停止作用。 同普通车辆相比,带有EDS的车辆可以更好地利用地面附着力,从而提高车辆的运行性,尤其在倾斜的路面上,EDS的作用更加明显。但它有速度限制,只有在车速低于40km/h时才会启动,主要是防止起步和低速时打滑。

电子差速锁大家不要与差速器和差速锁混为一谈,他们最大差别就是,电子差速锁不是一个客观存在的实体,换言之,即使你把汽车完全拆散,也绝对找不到一套叫做“电子差速锁(EDL、EDS或XDS)”的装置。它只是一项ABS/ESP系统的扩展功能而已。 在国产的高尔夫GTI上我们听到了一个新名词:XDS电子差速锁,其实和EDS、EDL是一回事,只不过是不同厂家不同叫法。在大众官方网站上,厂家这样宣传它们的产品:“GTI 在弯道上的出色动态平衡还得益于另一项法宝——XDS车辆动态电子差速锁,内置于ESP系统内的XDS可以避免内侧驱动轮的打滑,有效改善前驱车的转向不足现象;而大尺寸的刹车盘则提供了极其优异的制动性能,为驾驶者的极致速度提供了更安全的保障”。 给打滑车轮制动会产生两个效果: 一、内侧打滑车轮的阻力增大使得发动机传递更多的扭矩,相当于外侧抓地力良好的车轮获得了更多扭矩,提升了车辆的弯道性能; 二、由于内侧车轮抓地力很小而外侧车轮抓地力大,所以尽管扭矩依然是平均分配,但对于车辆来说更多的扭矩通过外侧车轮作用到地面,从而产生了一个指向弯内的横摆力矩帮助车辆转弯,一定程度上抑制了转向不足。 大众的XDS是基于ESP基础上延伸出来的功能,当今主流的ESP系统已经具备了对四个

一文读懂差速器的作用及工作原理

一文读懂差速器的作用及工作原理 相信很多人都对一件事感到很奇怪,那就是为什么汽车的一个车轮打滑了,另一边的车轮也不动了,这种情况在冰雪路面和泥泞路面上特别常见。一些SUV车型针对于此,装备了一种叫做电子限滑差速器的东西,很多4s店的销售顾问对此是大吹特吹,甚至将其说成了越野神器。那么它究竟是一个什么鬼呢?今天老侯就来给大家说说汽车的差速器和差速锁。 为啥么发明差速器?因为汽车在转向的时候,两侧轮子走过的距离不一样,这就导致轮胎打滑磨损等问题的产生。 差速器的作用是什么?汽车差速器能够使左、右(或前、后)驱动轮实现以不同转速转动的机构。主要由左右半轴齿轮、两个行星齿轮及齿轮架组成。功用是当汽车转弯行驶或在不平路面上行驶时,使左右车轮以不同转速滚动,即保证两侧驱动车轮作纯滚动运动。差速器是为了调整左右轮的转速差而装置的。在四轮驱动时,为了驱动四个车轮,必须将所有的车轮连接起来,如果将四个车轮机械连接在一起,汽车在曲线行驶的时候就不能以相同的速度旋转,为了能让汽车曲线行驶旋转速度基本一致性,这时需要加入中间差速器用以调整前后轮的转速差。目前使用最广泛的就是对称式锥齿轮差速器。 如果你的车上没有差速器,两个车轮将刚性的固定在一起,以同一转速旋转。汽车在转弯时,车轮必然出现边滚动边滑动的现象。这将会加速轮胎磨损,增加汽车的动力消耗,使车桥承受很大的应力。为了保证两侧驱动轮始终处于纯滚动状态,人们使用两根半轴分别连接两侧车轮,而由主减速器从动车轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 然而差速器也带来了一定的副作用。就是当两个轮子,其中一个轮子阻力较大时,输出动力全部集中在另外的轮子上,导致只有一个轮子空转。常见陷在泥土和雪地里的轮子。

各种四驱车的差速锁_详细介绍

各种四驱车的差速锁详细介绍 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或 者其它车轮很容易打滑的地方。 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮得不到动力分配,打滑车轮却因过多动力而高速空转。 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有强弱之分,有贵贱差别,有各自擅长的领地。 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力, 这决定了它通过能力的高下。 先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本

最新各种四驱车的差速锁 详细介绍

1 各种四驱车的差速锁详细介绍 2 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,3 就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为4 汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或者其它车轮很5 容易打滑的地方。 6 7 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但8 因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮9 得不到动力分配,打滑车轮却因过多动力而高速空转。 10 11 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右12 侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各13 种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕14 杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、15 牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有16 强弱之分,有贵贱差别,有各自擅长的领地。 17 18 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定19 于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打20 滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力,这决定了21 它通过能力的高下。 22

23 先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把24 车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三25 个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本上就可以判26 定车子的越野能力强弱。如吉普牧马人、奔驰G系、路虎卫士、日产Petrol等,都使用了27 前、中、后三个差速锁,即使在极端情况下,只要还有一个车轮有附?力,它们就有靠自己走28 出困境的可能。而CR-V、RAV4、欧蓝德、翼虎、帕杰罗、X5、Q7、普拉多等,都只使用了一29 个差速锁,可应付的地形就比较有限。 30 31 当然,差速锁越多,成本就越高,设计越困难,因为针对的是硬派越野,因此对车身、悬32 挂、轮胎强度要求也高。开它们,走在马路上,不可能很舒服,锁上四驱,你甚至会发现它33 们几乎不会拐弯,因为它们不允许车轮之间有丝毫打滑,即使是转弯时,内外车轮出现一点34 儿转速差,它们也认为是有车轮在打滑,被它们禁止。因而在铺装路面,不是它们的天下,35 只有在附?力不好的地方,它们行走才更显稳健。在那里,转弯时,外侧走远道的车轮是被拖? 36 走的,但由于附?力低,你感觉不到拖拉的阻力,也不会对轮胎有大的磨损。 37 38 除了差速锁数目,差速锁的类型,也决定车的越野能力。差速锁有液力耦合式、扭距敏感39 式、电液摩擦片式,还有齿轮牙嵌式,不同类型,有不同的锁止能力。 40 目前很多四驱车,都使用液力耦合式差速锁(第一种),因为它结构简单,布置方便。如41 CR-V、RAV4、欧蓝德、翼虎、B9等。液力耦合差速锁有个特点:不很灵敏、锁止有迟滞,也42 就是车轮打滑情况出现一段时间后,它才意识到需要锁止,而且锁止能力有限,且介入时冲43 击大。因此,使用这一装备的车,不会特别注重越野,而在于提高车辆在冰雪、砂石等路面44 上的通过性和稳定性。 45

差速器的结构及工作原理

汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各驱动桥所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。 差速器可分为普通差速器和防滑差速器两大类。

普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8的凸缘上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。 行星齿轮的背面和差速器壳相应位置的内表面,均做成球面,这样作能增加行星齿轮轴孔长度,有利于和两个半轴齿轮正确地啮合。 差速器的工作原理 在传力过程中,行星齿轮和半轴齿轮这两个锥齿轮间作用着很大的轴向力,为减少齿轮和差速器壳之间的磨损,在半轴齿轮和行星齿轮背面分别装有平垫片3和球面垫片5。垫片通常用软钢、铜或者聚甲醛塑料制成。 差速器的润滑是和主减速器一起进行的。为了使润滑油进入差速器内,往往在差速器壳体上开有窗口。为保证润滑油能顺利到达行星齿轮和行星齿轮轴轴颈之间,在行星齿轮轴轴颈上铣出一平面,并在行星齿轮的齿间钻出径向油孔。在中级以下的汽车上,由于驱动车轮的转矩不大,差速器内多用两个行星齿轮。相应的行星齿轮轴相为一根直销轴,差速器壳可以制成开有大窗孔的整体式壳,通过大窗孔,可以进行拆装行星齿轮和半轴齿轮的操作。 差速器的工作原理图解 一般的差速器主要是由两个侧齿轮(通过半轴与车轮相连)、两个行星齿轮(行星架与环形齿轮连接)、一个环形齿轮(动力输入轴相连)。 传动轴传过来的动力通过主动齿轮传递到环齿轮上,环齿轮带动行星齿轮轴一起旋转,同时带动侧齿轮转动,从而推动驱动轮前进。

汽车电子差速锁工作原理

汽车电子差速锁工作原理 其实,汽车电子差速锁英文全称为ElectronicDifferentialSystem,它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的打滑车轮进行控制。 工作原理 EDS的工作原理比较容易理解。因为差速器允许传动轴两侧的车轮以不同的转速转动,如果传动轴某一侧的车轮打滑或者悬空时,会造成另一侧车轮完全没了动力,当EDS电子差速锁通过ABS 系统的传感器,自动探测到由于车轮打滑或悬空而产生的两侧车轮转速不同的现象时,就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。当车辆的行驶状况恢复正常后,电子差速锁即停止作用。 当汽车驱动轴的两个车轮分别在不同附着系数的路面起步时,例如一个驱动轮在干燥的柏油路面上,另一个驱动轮在冰面上,EDS电子差速锁则通过ABS 系统的传感器会自动探测到左右车轮的转动速度,当由于车轮打滑而产生两侧车轮的转速不同时,EDS系统就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。

XDS 在国产的高尔夫GTI上我们听到了一个新名词:XDS电子差速锁。在官方网站上,厂家这样宣传它们的产品:GTI在弯道上的出色动态平衡还得益于另一项法宝;--;XDS车辆动态电子差速锁,内置于ESP系统内的XDS可以避免内侧驱动轮的打滑,有效改善前驱车的转向不足现象;而大尺寸的刹车盘则提供了极其优异的制动性能,为驾驶者的极致速度提供了更安全的保障。XDS系统似乎很强大,当然厂家的宣传需要辩证的看待,况且可能还有很多人并不明白:为什么避免内侧驱动轮打滑就能避免转向不足? 衡量一辆车性能优劣,除了看直线加速能力外,关键还是在弯道中的表现,高性能车型如果装备的是普通差速器的话,在高速过弯时会产生很多问题。在日常行驶中,我们认为四个车轮总是紧贴地面的,左右两侧车轮的抓地力的差异基本可以忽略,差速器将动力平均分配到左右车轮。但在激烈驾驶时情况就变得复杂了。 注:以下所说的内侧轮、外侧轮都指两侧的驱动轮,不包括从动轮。 ● 问题一:动力的损失

限滑差速器分析

目录 前言 (2) 1.工作原理 (2) 2.与传统差速器区别 (3) 3.限滑差速器类别及应用 (5) 3.1○机械限滑式差速器 (6) 3.2○电子限滑差速器 (10) 4结论 (13) 参考文献: (13)

限滑差速器分析 摘要:本文简要的介绍了限滑差速器的工作原理以及现代汽车中的运用。 关键词:限滑差速器工作原理应用 前言 限滑差速器,英文名为Limited Slip Differential,简称LSD。限滑差速器,顾名思义就是限制车轮滑动的一种改进型差速器,指两侧驱动轮转速差值被允许在一定范围内,以保证正常的转弯等行驶性能的类差速器。事实上LSD依构造的不同可以分为好几种型式,而每一种LSD亦都有其特别之处。 1.工作原理 在谈论LSD这个机件之前,务必先知道差速器的功能与动作原理。而差速器本身的动作原理,亦属于专业级的构造,若要单纯用文字来叙述,大部分的读者可能很难理解,所以笔者先用日常最容易接触的现象和状况,来解释原厂差速器的设计功能和必需性。 现行车辆的转向设计是依据艾克曼第五轮原理来设定,也就是弯道内轮的转向角度大于外轮。再由三角函数计算内侧车轮所转动的距离会比外侧车轮距离短,一旦距离有差异时,等于内外轮 (左、右轮) 的转速不一致,如果从变速箱所输出的传动轴没有藉由差速器来分隔左、右输出,那么车辆在转弯时便无法调整左、右轮的转速。在慢速时藉由多余且不当的摩擦来带过,而高速转弯则会发生弯道内轮因多余的旋转及摩擦,导致轮胎跳离地面连带利用车轴及悬挂使车体上扬,当内侧车体上扬加上离心力的驱动,很自然就会朝转弯方向的另一侧翻覆。 所以说车辆的左、右车轮绝对不是同轴型式,尤其现代汽车又以前轮驱动设计居多,没有差速器的构造,驾驶者根本无法操控方向盘,因为只要驾驶者转动方向盘,轮胎藉由地面产生的回馈力,强力的将方向盘推回中心原点,如此一来操控根本无法存在,所以在传动轮中央置入差速器是传动系统必备的要件。 由于差速器是藉由盆型齿轮及角齿轮驱动,内部包含边齿轮及差速小齿轮。当车辆直行时,并无差速作用,差速小齿轮及边齿轮整个会随着盆齿轮公转无差速作用,一旦车辆转弯内、外轮阻力不一样时,差速齿轮组因阻力的作用迫使产生自转功能进而调整左、右轮速。既然左、右轮速的变化及调整是藉由轮胎及地面阻抗来自由产生,那么后续的使用状况就将造成车辆无法行驶的状态。

EDS 电子差速锁

电子差速锁 简介 电子差速锁英文全称为Electronic Differential System,它是ABS 的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的打滑车轮进行控制。 工作原理 EDS的工作原理比较容易理解。因为差速器允许传动轴两侧的车轮以不同的转速转动,如果传动轴某一侧的车轮打滑或者悬空时,会造成另一侧车轮完全没了动力,当EDS电子差速锁通过ABS 系统的传感器,自动探测到由于车轮打滑或悬空而产生的两侧车轮转速不同的现象时,就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。当车辆的行驶状况恢复正常后,电子差速锁即停止作用。 当汽车驱动轴的两个车轮分别在不同附着系数的路面起步时,例如一个驱动轮在干燥的柏油路面上,另一个驱动轮在冰面上,EDS电子差速锁则通过ABS系统的传感器会自动探测到左右车轮的转动速度,当由于车轮打滑而产生两侧车轮的转速不同时,EDS系统就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。 XDS 在国产的高尔夫GTI上我们听到了一个新名词:XDS电子差速锁。在官方网站上,厂家这样宣传它们的产品:“GTI在弯道上的出色动态平衡还得益于另一项法宝——XDS车辆动态电子差速锁,内置于ESP系统内的XDS可以避免内侧驱动轮的打滑,有效改善前驱车的转向不足现象;而大尺寸的刹车盘则提供了极其优异的制动性能,为驾驶者的极致速度提供了更安全的保

障”。XDS系统似乎很强大,当然厂家的宣传需要辩证的看待,况且可能还有很多人并不明白:为什么避免内侧驱动轮打滑就能避免转向不足? 衡量一辆车性能优劣,除了看直线加速能力外,关键还是在弯道中的表现,高性能车型如果装备的是普通差速器的话,在高速过弯时会产生很多问题。在日常行驶中,我们认为四个车轮总是紧贴地面的,左右两侧车轮的抓地力的差异基本可以忽略,差速器将动力平均分配到左右车轮。但在激烈驾驶时情况就变得复杂了。 注:以下所说的“内侧轮”、“外侧轮”都指两侧的驱动轮,不包括从动轮。 ●问题一:动力的损失 细心的驾驶者都会有这样的感觉,那就是影响车辆动态表现的一个重要因素在于所谓的重量转移。举个例子,为什么汽车的前刹车盘都比后刹车盘大?因为车辆在强力刹车时由于惯性导致车体前倾,车身大部分重量移至前轴,所以前轮的刹车力度一定要大,后轴实际上只分担了很少一部分刹车工作。 同样的道理,车辆在高速转弯时会产生很大的离心力,而且转弯速度越快离心力也就越大,离心力会使车身重量转移到弯外的一侧,车里成员能清楚体会到的向外甩的力量,而我们从外面看到的车身表现就是弯外侧的悬挂被压缩,而弯内侧的车轮几乎可以离地,抓地力也急剧下降。

差速锁原理杂谈

差速锁使用注意事项: 一、不出现轮胎打滑时不使用4HLC、4LLC和后差 二、不在极限爬坡、拖车和深陷的情况下不使用4LLC 三、严禁在时速超过20km、车辆转向时使用后差,脱困后及时关闭后差 四、2H、4H和4HLC切换时时速须低于100km(后者个人建议少于50km,减少齿轮冲击程度) 五、4LLC和后差须停车在N档的情况下切换 六、后差在不到万不得已时尽量不用 后差锁只有在后单轮悬空或后轮深陷时才会用到,如果不玩高强度越野估计是一辈子都用不到几次了。 山猫有超选四驱足以 最近想换个4驱车,所以一直关注这方面的问题 就我最近看到的一些知识贴的内容,给楼主分享下 首先纠正下楼主一个错词,不是“没有差速锁”,是没有差速器 差速器和差速锁是2个完全对立的概念 说通俗点,差速器是允许相对2个轮子以不同的速度转, 差速锁是指将差速器锁死,拿机械式差速锁来说就是让相对的2个轮子必须以完全相同的速度转 以安装的部位分为中央差速锁、前桥差速锁和后桥差速锁 4驱车又分全时4驱和分时4驱 全时4驱车一般都有中央差速器,所以可以在铺装路面开,但如果它不装中央差速锁的话,陷在泥里自救很困难,打滑的车轮会消耗大部分扭矩,但比较高档的限滑差速器如LC系列,可以以85%与15%的扭矩自动在前轮和后轮间转换,但那个是比较贵的车才有,一般的森林人什么的也只能坐到50:50。但如果装了机械式中央差速锁,将之100%锁死的话,那么有附着力的轮子可以得到100%的动力。 H3属于分时4驱,分时4驱平时一般以2驱开,在4驱状态下,其实就相当于全时4驱车锁死中央差速锁的状态,即如果前轮打滑,可以将动力输送给后轮,若后轮打滑,则将动力输送到前轮。 从另一个角度说,分时4驱车不需要中央差速锁。就拿罗宾汉来说,它是分时4驱,所以只装了2个差速锁,一个前桥,一个后桥,没有中央差速锁。而另一个绝顶牛B角色:奔驰G系,它是全时4驱,所以装有3把差速锁(多个中央差速锁)这2个车之所以牛B,也因为它们装的都是机械式差速锁或是电子控制的机械式差速锁,是100%锁死的,所以即使在3个轮子都打滑的状态下,也可以将100%的动力全部

主流几种电子四驱方式的对比

各有优劣主流城市SUV四驱系统大比拼 城市SUV已经渐渐成为一种购车趋势,09年更是有很多国产新车加入到这个行列。我们知道,城市SUV并不强调越野性能,所以目前价位在15-25万之间的主流SUV大多采用前驱布置,配合简单的电子控制系统实现四轮驱动。 文章导读:激活市场 09年最值得期待的SUV新车 虽然城市SUV更加强调公路特性,并且四驱系统的使用方式看似相同,但是结构和原理上却有很大区别,这也就影响了车辆的通过性能。通过性能不仅仅指底盘的高度,更重要的是四驱系统的性能。 所以,本文就对目前主流城市SUV所使用的四驱系统进行简单的介绍,看看各自的通过性和公路性究竟孰好孰劣,为您的购车提供参考。 电控多片离合差速器——适时四驱 代表车型:科帕奇新奇骏途胜/狮跑指南者 通过性能:★★★ 公路性能:★★★ 燃油经济性:★★★ 前后动力分配比:100:0~50:50(指南者最大为40:60) 东风日产新奇骏进口雪弗兰科帕奇

进口吉普指南者北京现代途胜 以上这几款代表车型都属于前轮驱动,然后通过一根传动将前轮的动力分配给电控多片离合差速器。 从图中可以看出,位于左侧的离合器片被交替地分为两组,分别连接前桥和后桥的传动轴,其中前传动轴为动力输入轴,所以不能称之为中央差速器。 这种差速器只能通过电子设备来控制,当前轮出现打滑情况下,电子系统通过对离合器片施加压力将动力传递到后桥并带动后轮,但受限于结构上的限制,这种差速器最多能

够实现60:40的前后动力分配,一般最大为50:50。因此,车辆大多数情况下依旧是前驱行驶,只有在前轮打滑时系统才会介入。 所以,这种系统都会通过增加差速锁来提高四驱性能,通过车内按钮的控制,能够将前后动力分配锁定在50:50,在通过一些路况较差的地段时,提前锁定四驱系统,变被动为主动,减小陷入困境的可能性。但是,在正常路面行驶时,千万不要使用四驱锁定,否则会带来不必要的机械损坏和轮胎磨损。 由于采用刚性的离合器片连接,所以这种差速器的性能是比较可靠的,传递效率也比较高,一般的越野路段也都是可以应付的,这种系统的缺点在于只能将动力分配给前后桥,而无法在四轮上独立分配,当对角线车轮同时打滑时,这套四驱系统就毫无办法了。 但说到公路性能,这种四驱系统就无法发挥任何性能,与一般的前驱车无异。不过,东风日产新奇骏将自身的系统与四驱系统结合起来,能够实现主动的四驱控制,辅助转向以及分配四个车轮的动力。 相关阅读:不“智能”?探索2.0L新奇骏四驱系统差异 在城市SUV中来看,这套系统的通过性能比较优秀,公路性能和经济性能一般,比较适合经常走乡道或者外出郊游的朋友。 电控粘性耦合差速器——适时四驱 代表车型:丰田RAV4

各种四驱车的差速锁 详细介绍复习课程

各种四驱车的差速锁 详细介绍

各种四驱车的差速锁详细介绍 汽车为什么需要四驱?这个问题可能有点愚蠢,但如果你认真地按照这个思路思考下去,就能发现,四驱其实并不难理解,还很有趣呢。好了,该说答案了,为什么需要四驱,因为汽车不可能只跑在铺装很好的路面上,偶尔也会去沙滩、山林、沼泽、雪地或者其它车轮很容易打滑的地方。 两驱车,一旦某一个驱动轮打滑,这意味?麻烦开始了,即使另外一边的驱动轮不打滑,但因为差速器的缘故,动力只往打滑车轮流淌,这时候,徒踩油门也无济于事,不打滑的车轮得不到动力分配,打滑车轮却因过多动力而高速空转。 如果是四驱车,那情形就好多了,后轮打滑,前轮还可以使上力气,左侧车轮打滑,那右侧车轮或许能帮上忙,这就是四驱车的最大好处,可以帮助你通过各种复杂路面。现在,各种四驱车多不胜数,几乎每个车厂都有自己的四驱车,从CR-V、RAV4、欧蓝德、翼虎,到帕杰罗、X5、B9、普拉多、维拉克斯、Q7、MDX,再到揽胜、切诺基、卡宴、途锐、Petrol、牧马人、奔驰G等,多不胜数。虽然它们都笼统地被称作SUV或者四驱车,实际上,四驱有强弱之分,有贵贱差别,有各自擅长的领地。 如果你想很快读懂它们,抓住几个要点足够了。四驱车的通过能力高低,最主要是,决定于它们配用的差速器锁止装置的数目和类型,也就是说,在有车轮打滑时,车辆能不能把打滑车轮完全死锁,不让动力流失,再把动力有选择地分配给不打滑的车轮的能力,这决定了它通过能力的高下。

先说说差速锁的数目。如果有一个车轮打滑,这时候,汽车上至少有一个差速锁,才能把车轮锁止;如果碰到前后两个车轮打滑,这时候,至少配备两个差速锁才能锁止;如果是三个车轮同时打滑,那就得需要三个差速锁了。因此,我们从差速锁的数目,基本上就可以判定车子的越野能力强弱。如吉普牧马人、奔驰G系、路虎卫士、日产Petrol等,都使用了前、中、后三个差速锁,即使在极端情况下,只要还有一个车轮有附?力,它们就有靠自己走出困境的可能。而CR-V、RAV4、欧蓝德、翼虎、帕杰罗、X5、Q7、普拉多等,都只使用了一个差速锁,可应付的地形就比较有限。 当然,差速锁越多,成本就越高,设计越困难,因为针对的是硬派越野,因此对车身、悬挂、轮胎强度要求也高。开它们,走在马路上,不可能很舒服,锁上四驱,你甚至会发现它们几乎不会拐弯,因为它们不允许车轮之间有丝毫打滑,即使是转弯时,内外车轮出现一点儿转速差,它们也认为是有车轮在打滑,被它们禁止。因而在铺装路面,不是它们的天下,只有在附?力不好的地方,它们行走才更显稳健。在那里,转弯时,外侧走远道的车轮是被拖?走的,但由于附?力低,你感觉不到拖拉的阻力,也不会对轮胎有大的磨损。 除了差速锁数目,差速锁的类型,也决定车的越野能力。差速锁有液力耦合式、扭距敏感式、电液摩擦片式,还有齿轮牙嵌式,不同类型,有不同的锁止能力。 目前很多四驱车,都使用液力耦合式差速锁(第一种),因为它结构简单,布置方便。如CR-V、RAV4、欧蓝德、翼虎、B9等。液力耦合差速锁有个特点:不很灵敏、锁止有迟滞,也就是车轮打滑情况出现一段时间后,它才意识到需要锁止,而且锁止能力有限,且介入时冲击大。因此,使用这一装备的车,不会特别注重越野,而在于提高车辆在冰雪、砂石等路面上的通过性和稳定性。

相关文档
最新文档