基于STM32的四旋翼飞行器设计

基于STM32的四旋翼飞行器设计
基于STM32的四旋翼飞行器设计

摘要

四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。

本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。

关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract

Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space.

This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter.

Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

目录

第一章作品难点与创新 (1)

1.1作品难点 (1)

1.2创新点 (1)

第二章方案论证与设计 (2)

2.1飞控部分硬件框图 (2)

2.2遥控器部分硬件框图 (2)

2.3各部分元器件介绍 (3)

2.3.1 stm32介绍 (3)

2.3 .2电子调速器 (4)

2.3.3 mpu6050六轴传感器 (5)

2.3.4 无线通信NRF24L01 (6)

第三章原理分析与硬件电路图 (8)

3.1 飞行器空气动力学分析 (8)

3.2飞控部分硬件电路图设计 (10)

3.3 遥控部分硬件电路图设计 (10)

第四章软件设计与流程 (11)

4.1 pid算法分析 (11)

4.2串级pid系数的整定 (12)

4.3串级pid系统框图 (13)

4.3.1 飞控部分程序设计 (14)

4.3.2遥控部分程序设计 (14)

第五章系统测试与误差分析 (15)

第六章总结 (19)

参考文献 (21)

第一章作品难点与创新

1.1作品难点

对于一种芯片,最麻烦的就是底层的驱动了,很多驱动得自己编写,为了最大发挥处理器的性能,做了很多驱动优化,将不必要的延时降到最低,比如I2C 总线驱动,官方的代码不符合自己的要求,通信效率低,我们花了几天的时间去优化这个驱动,使用了模拟的IIC接口,最后在保证稳定性的前提下,速度提高了一倍。

这个设计遇到的最大问题就是怎样保持飞行器的平衡。开始的时候,我们以为很简单,不就是简单的闭环控制么,随着深入研究和实验,发现有些东西已经不能用我现有的知识来解答了,比如姿态的解算。我想姿态解算也是这个项目的难点,怎样时时刻刻都准确的跟踪到飞行器的姿态。很多人都知道使用加速度和陀螺仪检测物体的姿态,很多手机就有这些传感器,但是这两传感器在飞行器上貌似水土不服,陀螺仪随时间推移漂移了,加速度计由于电机的高速运转震动基本上处于半瞎状态。所以我们使用了串级pid算法,并且优化了串级pid算法,使得在只用一个mpu6050的情况下,可以实现稳定的飞行,并且在飞行20层楼层的高度时可以飞出定高的效果。

调试过程中,采用无线通信芯片nrf24l01和stm32单片机作为控制端,同时用匿名四轴上位机显示状态。

1.2创新点

设计的创新点有两个,一是在于遥控器的控制方面,传统的飞行器控制飞行在于通过遥杆控制,通过对遥杆的物理操作实现飞机的左右前后飞行,我们则采用感应式姿态控制,通过遥控器上板载的mpu6050,去跟踪手的姿势,然后将手的物理动作对应到相应的角度,发送给飞控部分,飞控部分将接受到的信号作为期望的角度,实现飞行器的左右前后飞行。

本次设计的第二个创新点在于优化pid算法,单纯的pid算法是不足以控制动力如此大的大四轴,再加上只有一个六轴传感器mpu6050是不足以控制好大四轴的,通常市面上的飞行器姿态测量这方面会用到多个传感器,以实现飞行器姿态的跟踪。但是我们只用了一个六轴传感器mpu6050就可以做到非常稳定的飞行,主要原因在于对算法的优化。

第二章方案论证与设计

本次设计选择的材料如下:

主控芯片:STM32F103ZET6

无线通信:NRF24L01

传感器:MPU6050六轴传感器

遥控主芯片:STM32F407ZGT6

机架的型号: F450,重量282克。电机轴距450mm,螺旋桨采用1045型。电机则采用银燕MT-2216,810KV无刷电机,最高转速2极马达210000 转/分钟,重量:37g 。电调为好盈20A电子调速器,持续电流30A,短时电流40A。电池则采用了2200mah锂电池。

2.1飞控部分硬件框图

图2-1

从图中可以看出,STM32是电路的核心,它受5v电源控制,它负责和mpu6050,nrf24l01进行通信,处理数据,输出pwm信号给电子调速器,以得到控制电机的转速,实现飞行姿态的调整。

2.2遥控器部分硬件框图

图2-2

遥控部分STM32F407ZGT6作为主要芯片,nrf24l01f负责和飞控部分无线通信,遥杆主要控制油门大小,mpu6050负责跟踪手的姿势。

2.3各部分元器件介绍

本次设计主要的工作在于程序的编写,所以就需要对所需要的主芯片和各个模块有一个详细的了解,接下来给大家介绍下我们所用的芯片口和模块介绍。2.3.1 stm32介绍

内核:ARM 32位的Cortex-M3,最高72MHz工作频率,在存储器的0等待周期访问时可达1.25DMips/MHZ(DhrystONe2.1)单周期乘法和硬件除法。

存储器:从32K到512K字节的闪存程序存储器(STM32F103XXXX中的第二个X表示FLASH容量,其中:“4”=16K,“6”=32K,“8”=64K,B=128K,C=256K,D=384K,E=512K),最大64K字节的SRAM。

电源管理:2.0-3.6V供电和I/O引脚,上电/断电复位(POR/PDR)、可编程电压监测器(PVD),4-16MHZ晶振振荡器,内嵌经出厂调教的8MHz的RC振荡器,内嵌带校准的40KHz的RC振荡器,产生CPU时钟的PLL,带校准的32KHz的RC 振荡器

低功耗:睡眠、停机和待机模式,Vbat为RTC和后备寄存器供电。

模数转换器:2个12位模数转换器,1us转换时间(多达16个输入通道),转换范围:0至3.6V,双采样和保持功能,温度传感器。

DMA:2个DMA控制器,共12个DMA通道:DMA1有7个通道,DMA2有5个通道。

支持的外设:定时器、ADC、SPI、USB、IIC和UART,多达112个快速I/O 端口(仅Z系列有超过100个引脚),26/37/51/80/112个I/O口,所有I/O口一块映像到16个外部中断;几乎所有的端口均可容忍5V信号。

调试模式:串行单线调试(SWD)和JTAG接口,多达8个定时器,3个16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入,1个16位带死区控制和紧急刹车,用于电机控制的PWM高级控制定时器,2个看门狗定时器(独立的和窗口型的),系统时间定时器:24位自减型计数器。

多达9个通信接口:2个I2C接口(支持SMBus/PMBus),3个USART接口(支持ISO7816接口,LIN,IrDA接口和调制解调控制),2个SPI接口(18M位/秒),CAN接口(2.0B主动),USB 2.0全速接口。

计算单元:CRC计算单元,96位的新批唯一代码。

封装:ECOPACK封装。

图2-3

2.3 .2电子调速器

电调全称电子调速器,英文Electronic Speed Control,简称ESC。针对电机不同,可分为有刷电调和无刷电调。它根据控制信号调节电动机的转速。本文采用好盈电调20A。对于它们的连接,一般情况下是这样的:

1、电调的输入线与电池连接;

2、电调的输出线(有刷两根、无刷三根)与电机连接;

3、电调的信号线与接收机连接;

另外,电调一般有电源输出功能,即在信号线的正负极之间,有5V左右的电压输出,通过信号线为接收机供电,接收机再为舵机等控制设备供电。

电调的输出为三~四个舵机供电是没问题的。因此,电动的飞机,一般都不需要单独为接收机供电,除非舵机很多或对接收机电源有很高的要求。

2.3.3 mpu6050六轴传感器

MPU6050是InvenSense公司推出的全球首款整合性6轴运动处理组件,内带3轴陀螺仪和3轴加速度传感器,并且含有一个第二IIC接口,可用于连接外部磁力传感器,利用自带数字运动处理器(DMP: Digital Motion Processor)硬件加速引擎,通过主IIC接口,可以向应用端输出完整的9轴姿态融合演算数据。有了DMP,我们可以使用InvenSense公司提供的运动处理资料库,非常方便的实现姿态解算,降低了运动处理运算对操作系统的负荷,同时大大降低了开发难度。

DMP 是 InvenSense 公司的 MPU 器件独特的硬件功能,它能够直接从传感器读出计算好的四元数的数据,获取设备的姿态。DMP功能保存在主处理机的易失性内存中,若需要使用DMP功能,则每次芯片上电后都需要初始化。DMP程序库项目中提供的示例应用程序中给出了更新映像和初始化 DMP 功能的一系列步骤。加载并启用DMP功能的步骤包括:

(1)通过函数dmp_load_motion_driver_firmware ()把 DMP 载入MPU内存。

(2)通过dmp_set_orientation ()函数更新定位矩

(3)当DMP检测到运动或撞击时会触发DMP回调功能。

(4)通过函数dmp_enable_feature()启用DMP功能。

四旋翼飞行器运用姿态解算计算出空间三轴欧拉角。MPU6050与MCU连接方式如图2-4所示,陀螺仪采样三轴角速度值,加速度传感器采样三轴加速度值,而磁力传感器采样得到三轴地磁场值,将陀螺仪、加速度传感器、磁力传感器采样后的数据进行标定、滤波、校正后得到三轴欧拉角度,其中陀螺仪和加速度传感器选用MPU6050芯片,采用IIC总线与主控板通信。

图2-4

2.3.4 无线通信NRF24L01

NRF24L01是NORDIC公司生产的一款无线通信通信芯片,采用FSK 调制,集成NORDIC自家的Enhanced Short Burst协议。可以实现点对点或是1对6的无线通信。无线通信速度最高可达到2Mbps。

NRF24L01采用SPI通信,可以很方便的连接到MCU上面。

①2.4G全球开放的ISM频段,免许可证使用。

②最高工作速率2Mbps,高校的GFSK调制,抗干扰能力强。

③126个可选的频道,满足多点通信和调频通信的需要。

④内置CRC检错和点对多点的通信地址控制。

⑤可设置自动应答,确保数据可靠传输。

NRF24L01模块介绍

图2-5

CE:模式控制线。在 CSN为低的情况下,CE 协同CONFIG 寄存器共同决定NRF24L01 的状态(参照NRF24L01 的状态机)

CSN:SPI片选线

SCK:SPI时钟线

MOSI:SPI数据线(主机输出,从机输入)

MISO:SPI数据线(主机输入,从机输出)

IRQ:中断信号线。中断时变为低电平,在以下三种情况变低:Tx FIFO 发完并且收到ACK(使能ACK情况下)、Rx FIFO 收到数据、达到最大重发次数。

第三章原理分析与硬件电路图

3.1 飞行器空气动力学分析

四旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图 3.1所示。

图3-1

四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

图3-2

在图3-2中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降。

俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。由于旋翼 1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

(3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。

(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。当电机 2 和电机 4 的转速下降时,机身便在富余反扭矩的作用下绕 z轴转动,实现飞行器的偏航运动。

(5)前后运动:要想实现飞行器在水平面内前后、左右的运动,必须在水平面内对飞行器施加一定的力。在图 e中,增加电机 3转速,使拉力增大,相应减小电机 1转速,使拉力减小,同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动。

(6)倾向运动:在图 f 中,由于结构对称,所以倾向飞行的工作原理与前后运动完全一样。

3.2飞控部分硬件电路图设计

图3-3 3.3 遥控部分硬件电路图设计

图3-4

第四章 软件设计与流程

4.1 pid 算法分析

PID 控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P 、积分单元I 和微分单元D 组成。PID 控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。

PID (比例(proportion )、积分(integral )、导数(derivative ))控制器作为最早实用化的控制器已有近百年历史,现在仍然是应用最广泛的工业控制器。PID 控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

PID 控制器的数学模型:

输入量为r(t);

输出量为y(t);

偏差量为e(t)=r(t)-y(t);

PID 算法的定义:

???

? ??++=?dt t de T dt T t e t e K t U D t I p )()()()(0 (1) 其流程框图如图4-1。

图 4-1

PID 算法公式适用于连续系统,因此单片机控制系统不能够直接使用,因此在此基础上使用离散的控制模型,也叫0阶保持器的离散系统,将上式离散化,需要使用后向差分法。

首先将上式的积分传递函数转化为连续的S 域模型:

s

T K T K s T T K s T K s T K K s E s U s G I p I p D I p D p I P P c ++=++==2)()()(

(2)

使用后向差分法可以得到s 域到z 域的映射关系:

T

z zT z s 1

11--=-= (3) 于是可以得到:

12

2110111

1)()()(-------++==z z p z p p z E z U z G c (4) 其中:

20p K K p I P ++=

212p K p P --=

D K p =2

S

D P D T T K K = I

S P I T T K K = 因此得到离散的PID 表达式:

)(10-=-++=∑k k D k

j j I k P k e e K e K e K u (5)

在编程时,可写成:

)]1()([*)]0()1()([*)(*)(--+++-++=n e n e D e n e n e I n e P n U o (6) P-----改变P 可提高响应速度,减小静态误差,但太大会增大超调量和稳定 时间。

I-----与P 的作用基本相似,但要使静态误差为0,必须使用积分。

D-----与P,I 的作用相反,主要是为了减小超调,减小稳定时间。

e(n)--------------------------本次误差。

e(n)+e(n-1)+...+e(0)------所有误差之和。

e(n)-e(n-1)------------------控制器输出与输入误差信号的微分(即误差的变化率),具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

4.2串级pid 系数的整定

内环P:从小到大,拉动四轴越来越困难,越来越感觉到四轴在抵抗你的拉动;到比较大的数值时,四轴自己会高频震动,肉眼可见,此时拉扯它,它会快速的振荡几下,过几秒钟后稳定;继续增大,不用加人为干扰,自己发散翻机。特别注意:只有内环P的时候,四轴会缓慢的往一个方向下掉,这属于正常现象。这就是系统角速度静差。

内环I:PID原理可以看出,积分只是用来消除静差,因此积分项系数个人觉得没必要弄的很大,因为这样做会降低系统稳定性。从小到大,四轴会定在一个位置不动,不再往下掉;继续增加I的值,四轴会不稳定,拉扯一下会自己发散。特别注意:增加I的值,四轴的定角度能力很强,拉动他比较困难,似乎像是在钉钉子一样,但是一旦有强干扰,它就会发散。这是由于积分项太大,拉动一下积分速度快,给的补偿非常大,因此很难拉动,给人一种很稳定的错觉。

内环D:这里的微分项D为标准的PID原理下的微分项,即本次误差上次误差。在角速度环中的微分就是角加速度,原本四轴的震动就比较强烈,引起陀螺的值变化较大,此时做微分就更容易引入噪声。因此一般在这里可以适当做一些滑动滤波或者IIR滤波。从小到大,飞机的性能没有多大改变,只是回中的时候更加平稳;继续增加D的值,可以肉眼看到四轴在平衡位置高频震动(或者听到电机发出滋滋的声音)。D项属于辅助性项,因此如果机架的震动较大,D项可以忽略不加。

外环P:当内环PID全部整定完成后,飞机已经可以稳定在某一位置而不动了。此时内环P,从小到大,可以明显看到飞机从倾斜位置慢慢回中,用手拉扯它然后放手,它会慢速回中,达到平衡位置;继续增大P的值,用遥控器给不同的角度给定,可以看到飞机跟踪的速度和响应越来越快;继续增加P的值,飞机变得十分敏感,机动性能越来越强,有发散的趋势。

4.3串级pid系统框图

图4-2

4.3 软件设计流程图

4.3.1 飞控部分程序设计

图4-3 4.3.2遥控部分程序设计

图4-4

第五章系统测试与误差分析

5.1 PID调试一般原则

1)在输出不振荡时,增大比例增益P

2)在输出不振荡时(能消除静态误差就行),减小积分时间常数Ti 3)在输出不振荡时,增大微分时间常数Td

5.2matlab仿真模拟测试pid参数

图5-1

纯P调节(Kp大,稳态误差小,响应快,但超调大)

PI调节(TI小,响应速度快,超调大,系统震荡加剧)

PI调节(在同样积分常数Ti下,减小比例增益Kp可减小

超调,增加系统的稳定性)

PD调节(引入微分项,提高了响应速度,增加了系统的稳定性但不能消除系统的余差)

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

电子设计大赛四旋翼设计报告最终版

四旋翼飞行器(A 题)参赛队号:20140057号

四旋翼飞行器 设计摘要: 四旋翼作为一种具有结构特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进行机动,结构简单,易于控制,且能执行各种特殊、危险任务等特点。 因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。多旋翼无人机飞行原理上比较简单,但涉及的科技领域比较广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。 四旋翼无人机的飞行控制技术是无人机研究的重点之一。它使用直接力矩,实现六自由度(位置与姿态)控制,具有多变量、非线性、强耦合和干扰敏感的特性。此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。 因此,研究既能精确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。

一、引言: 1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。 1.2 设计思路:为了满足飞行器的设计要求,要使用以微控制器为核心的控制系统,使本系统以MC9S12XS128模拟出控制信号,用STM32 MMC10接收模拟信号,然后翻译出模拟信号,利用加速度与陀螺仪传感器采集飞行器的飞行数据,加以闭环调控和精准的控制算法。进行上升、下降以及悬停等动作。 1.3 特点:本飞行器脱离遥控器控制,用微处理器实现整个飞行过程全自动控制,控制精度高。 二、方案设计: 系统主要由STM32模块,微处理器MC9S12XS128模块,电源模块,电机模块,超声波模块,加速度陀螺仪模块等构成。 系统总体框图如下图(图2.0): STM32 MMC10 四路 PWM 通道 电调 无刷电机 高度显示数码管 信号接收 MC9S12XS128 GPIO 模块 时钟 模块 超声波传 感器 电源 图2.0 其中微处理器MC9S12XS128模块的外围电路见附录一2.1 控制系统选择方案:

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference

四旋翼直升机的动力学原理

冯如杯论文 《四旋翼飞行器的设计与控制》 院(系)名称机械工程及自动化学院 作者姓名薛骋豪 学号35071422 指导教师梁建宏 2008年3月22日

四旋翼飞行器的设计与控制 薛骋豪 摘要 四旋翼直升机,其主旋翼分成前后与左右两组,旋转时方向相反,因此与一般直升机最主要的不同点为四旋翼直升机不需要用尾旋翼来平衡机体。因为四旋翼直升机为不稳定系统,因此需利用旋转专用的感测器:陀螺仪来感知机身的平衡程度并将讯号传送至微控制器,再通过微控制器内部程序的运算产生控制信号来控制机体上四个旋翼的转速,以维持整个机身的平衡促使四旋翼直升机能顺利飞行。 关键词:四旋翼、VTOL(垂直起降)、矩阵控制、 Abstract Quadrotor, its main rotor divides into with two about groups from beginning to end, in opposite direction while rotating, so Quadrotor and does not need to fasten the wing and having the balance organism for four with the end with the main difference of general helicopter. Whether four fasten wing helicopter stable system, need to utilize and rotate the special-purpose detecting device. The gyroscope comes to perceive balancing the degree and conveying the signal to the little controller of the fuselage, and then produce the control signal to control four rotational speed of fastenning the wings on the organism through the operation of the procedure within the little controller, impel four to fly smoothly while Quadrotor for the balance of maintaining the whole fuselage. Key words: Quadrotor、VTOL(Vertical Take-Off and Landing)、matrix control

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四轴飞行器毕业设计论文

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院 答辩日期:2015 年6月

目录 摘要 ...................................................................................................................................... ABSTRACT ........................................................................................................................... 第1章绪论......................................................................................................................... 1.1 论文研究背景及意义........................................................................................... 1.2 国内外的发展情况 ............................................................................................... 1.3 本文主要研究内容 ............................................................................................... 第2章总体方案设计....................................................................................................... 2.1 总体设计原理 ........................................................................................................ 2.2 总体设计方案 ........................................................................................................ 2.2.1 系统硬件电路设计方案............................................................................ 2.2.2 各部分功能作用.......................................................................................... 2.2.3 系统软件设计方案 ..................................................................................... 第3章系统硬件电路设计.............................................................................................. 3.1 Altium Designer Summer 09简介........................................................................ 3.2 总体电路设计 ........................................................................................................ 3.2.1 遥控器总体电路设计................................................................................. 3.2.2 飞行器总体电路设计................................................................................. 3.3 各部分电路设计.................................................................................................... 3.3.1 电源电路设计 .............................................................................................. 3.3.2 主控单元电路设计 .....................................................................................

相关文档
最新文档