几何最值问题(习题及答案)

几何最值问题(习题及答案)
几何最值问题(习题及答案)

?例题示范

几何最值问题(习题)

例1:如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,E,F 分别是OA,OB 边上的动点.若△PEF 周长的最小值为2,则α=()

A.30°B.45°C.60°D.90°

思路分析:

1.分析定点、动

点.定点:P

动点(定直线):E(射线OA),F(射线OB)

和最小(周长最小)

对称到异侧

2.根据不变特征分析判断属于轴对称最值问题,可调用轴对称

最值问题的处理方式:作点P 关于OA 的对称点P′,点P 关于OB 的对称点P′′,连接P′P′′,交OA 于点E,交OB 于点F,此时△PEF 的周长取得最小值.

3.设计方案求解.

如图,由题意得OP′=OP′′=P′P′′=2,所以△OP′P′′是等边三角形,故α=30°.

1

3

?巩固练习

1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴

的正半轴上,顶点B 的坐标为(3,),P 为斜边OB 上一动点.若点C 的坐标为(

1

,0),则PA+PC 的最小值为()

2

A.

13

2

B.

31

2

C.

3 + 19

2

D.2

2.如图,已知A,B 两点在直线l 的异侧,A 到直线l 的距离AM=4,

B 到直线l 的距离BN=1,且MN=4.若点P 在直线l 上运动,

则PA -PB 的最大值为()

A.5 B.41 C.

3 41

5

D.6

3.已知点A,B 均在由面积为1 的相同小长方形组成的网格的格

点上,建立如图所示的平面直角坐标系,若P 是x 轴上使得PA+PB 的值最小的点,Q 是y 轴上使得QA -QB 的值最大的点,则OP·OQ= .

2

第1 题图第2 题图

7

4.如图1,A,B 两个单位位于一条封闭街道的两旁(直线l1,

l2分别是街道的两边),现准备合作修建一座过街人行天桥.

图1 图2 (1)天桥建在何处才能使由A 经过天桥走到B 的路程最短?

在图2 中作出此时桥PQ 的位置.(注:桥的宽度忽略不计,桥必须与街道垂直)

(2)根据图1 中提供的数据计算由A 经过天桥走到B 的最

短路程.(单位:米)

5.如图,已知正方形ABCD 的边长为2,当点A 在x 轴上运动

时,点D 随之在y 轴上运动,则在运动过程中,点B 到原点O 的最大距离为.

3

【参考答案】

?巩固练习

1. B

2. A

3. 3

4. (1)略

(2)由A 经过天桥走到 B 的最短路程为85 米5

5. 1+

4

初中三年级中考复习平面几何证明题一题多解

初中三年级中考复习平面几何证明题一题多解 如图:已知青AB=AC ,E 是AC 延长线上一点,且有BF=CE ,连接FE 交BC 于D 。求证:FD=DE 。 分析:本题有好多种证明方法,由于新课标主 要用对称、旋转方法证明,但平行四边形的性质、平行线性质等都是证题的好方法,我在这里向初中三年级同学面对中考需对平面几何证明题的证明方法有一个系统的复习和提高。 下边我将自己证明这道题的方法给各位爱好者作以介绍,希望各位有所收获,仔细体会每 中方法的异同和要点,从中能得到提高。我是一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱: wangsj629@https://www.360docs.net/doc/036201294.html, . 证法一 ∧≌∠⊥∥△□° 证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B ∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM 则△DBF ≌△DME ,故 FD=DE ; 证法二 证明:过F 点作FM ∥AE ,交BD 于点M , 则∠1=∠2 = ∠B 所以BF=FM , 又 ∠4=∠3 ∠5=∠E 所以△DMF ≌△DCE ,故 FD=DE 。 证法三 以BC 为对称轴作△BDF 的对称△BDN ,连接NE ,则△DBF ≌△DBN ,DF=DN ,BN=BF , NF ⊥BD ,∠FBD=∠NBD ,又因为∠C=∠FBD 所以∠NBD=∠C 。 BN ∥CE ,CE=BF=BN ,所以四边形BNCE 为平行四边形。故NF ∥BC , 所以NF ⊥NE ,因FN 衩BD 垂直平分,故D 是FE 的中点,所以FD=DE 。(也可证明D 是直角△NEF 斜边的中点)。 证法四: F C A E N E

几何最值问题参考答案

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC 的中点,点P为BD上一点,则PE+PC的最小值为() A.3B.3C.2D.3 考 点: 轴对称-最短路线问题. 分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值. 解答:解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=3, 连接AE,线段AE的长即为PE+PC最小值, ∵点E是边BC的中点, ∴AE⊥BC, ∴AE===3, ∴PE+PC的最小值是3. 故选D. 点 评: 本题考查的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键. 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() A.50 B.50C.50﹣50 D.50+50 考 点: 轴对称-最短路线问题;坐标与图形性质. 专压轴题.

题: 分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F 点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长. 解答:解:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交x,y轴分别为P,Q点, 过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点. MK=40+10=50, 作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点. ∵LN=AS==40. ∴KN=60+40=100. ∴MN==50. ∵MN=MQ+QP+PN=BQ+QP+AP=50. ∴四边形PABQ的周长=50+50. 故选D. 点评:本题考查轴对称﹣最短路线问题以及坐标和图形的性质,本题关键是找到何时四边形的周长最短,以及构造直角三角形,求出周长. 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为() A.30°B.40°C.50°D.60° 考 点: 轴对称-最短路线问题. 分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案. 解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值,作DA延长线AH,. ∵∠DAB=110°, ∴∠HAA′=70°,

中考数学《几何最值》

几何最值 要了解最值,关键要明白点的运动,以及最值产生的条件,共线状态是最值产生的那一刹那状态,思齐老师往往会说,最值出角度. 例1、在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值. C A B P E

巩固 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =∠DCO =30°.如图,若BO =,点N 在线段OD 上,且NO =2.点P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为_______,最大值为_______. 33B A D O N P C O C D N 备用图

例2、已知:△AOB 中,2AB OB ==, △COD 中,3CD OC ==,ABO DCO ∠=∠.连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点. (1)如图1,若A 、 O 、C 三点在同一直线上,且60ABO ∠=?,则△PMN 的形状是___________,此时AD BC =____________; (2)如图2,若A 、 O 、C 三点在同一直线上,且2ABO α∠=,证明△PMN ∽△BAO ,并计算AD BC 的值(用含α的式子表示); (3)在图2中,固定△AOB ,将△COD 绕点O 旋转,直接写出PM 的最大值. D C P A B N M C P D B N M A O O 图1 图 2

中考数学专题训练旋转模型几何变换三种模型手拉手半角对角互补

几何变换的三种模型手拉手、半角、对角互补 【练1】 (2013 北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

中考数学几何一题多解获奖作品

中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M, 则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故 FD=DE。 二、平行四边形一题多解

如图4,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE. 证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。 证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。 证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE 四\一题多解、多变《四边形面积》 1.如图所示,一个长为a,宽为b的矩形,两个阴影都是长为c的矩形与平行 四边形,则阴影部分面积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c) 解法二 重叠面积为c的平方,大矩形面积为ab,小矩形为ac,平行四边形为bc,阴影面积为ab-ac-bc+cc=(a-c)(b-c)

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

中考数学几何压轴题辅助线专题复习

中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1)若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少 (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少 . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少

几何最值问题(习题及答案)

?例题示范 几何最值问题(习题) 例1:如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,E,F 分别是OA,OB 边上的动点.若△PEF 周长的最小值为2,则α=() A.30°B.45°C.60°D.90° 思路分析: 1.分析定点、动 点.定点:P 动点(定直线):E(射线OA),F(射线OB) 和最小(周长最小) 对称到异侧 2.根据不变特征分析判断属于轴对称最值问题,可调用轴对称 最值问题的处理方式:作点P 关于OA 的对称点P′,点P 关于OB 的对称点P′′,连接P′P′′,交OA 于点E,交OB 于点F,此时△PEF 的周长取得最小值. 3.设计方案求解. 如图,由题意得OP′=OP′′=P′P′′=2,所以△OP′P′′是等边三角形,故α=30°.

1

3 ?巩固练习 1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴 的正半轴上,顶点B 的坐标为(3,),P 为斜边OB 上一动点.若点C 的坐标为( 1 ,0),则PA+PC 的最小值为() 2 A. 13 2 B. 31 2 C. 3 + 19 2 D.2 2.如图,已知A,B 两点在直线l 的异侧,A 到直线l 的距离AM=4, B 到直线l 的距离BN=1,且MN=4.若点P 在直线l 上运动, 则PA -PB 的最大值为() A.5 B.41 C. 3 41 5 D.6 3.已知点A,B 均在由面积为1 的相同小长方形组成的网格的格 点上,建立如图所示的平面直角坐标系,若P 是x 轴上使得PA+PB 的值最小的点,Q 是y 轴上使得QA -QB 的值最大的点,则OP·OQ= . 2 第1 题图第2 题图 7

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

人教版_2021年中考数学二轮复习--几何综合题(附答案)

2021年中考数学二轮复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构 造基本图形. ⑵掌握常规的证题方法和思路. ⑶运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运 用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长. 解:(1)证明:连接OD,AD. AC是直径, ∴AD⊥BC.⊿ABC中,AB=AC, ∴∠B=∠C,∠BAD=∠DAC. 又∠BED是圆内接四边形ACDE的外角, ∴∠C=∠BED. 故∠B=∠BED,即DE=DB. 点F是BE的中点,DF⊥AB且OA和OD是半径, 即∠DAC=∠BAD=∠ODA.

故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2. 点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行. 【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上, 点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。 证明:因为∠ABD=∠ACD,∠BDE=∠CDE 而∠BDE=∠AB D +∠BAD,∠CDE=∠ACD+∠CAD 所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE ∠ADC=180°-∠CDE,所以∠ADB =∠ADC 在△ADB 和△ADC 中, ∠BAD=∠CAD AD =AD ∠ADB =∠ADC 所以 △ADB≌△ADC 所以 BD =CD 。 (注:用“AAS”证三角形全等,同样给分) A B C D E

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________. 3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,

则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P、P分别在OA、OB上,求作点P、P,使△PPP的周长最小,连接OP,若OP=10cm,求△PPP的周长. 7.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.

第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接 BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧(⌒)AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .1 2 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交 于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

中考几何最值问题归类解析

中考几何最值问题归类解析(1) -实验中学周记民 教学目标 1.了解解决几何最值问题的基本原理和方法。 2.初步掌握利用平面几何知识及几何图形、平面直角坐标系、函数等知识解决几何最值问题,培养学生几何探究、推理的能力。 3.进一步体验数形结合思想,转化思想等思想方法。 教学重点:几何最值问题原理的运用; 教学难点:寻求几何最值问题解决的有效途径及方法。 教学过程: 一、引入 1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等; 2.几何最值问题的基本原理。 ①两点之间线段最短②垂线段最短③利用函数关系求最值 二、典例剖析 1.线段最值问题。 例1:(2010年黄冈)如图1,某天然气公司的主输气管道从A市 的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小 区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处, 测得小区M位于C 的北偏西60°方向,请你在主输气管道上寻找支 管道连接点N,使到该小区铺设的管道最短,并求AN的长。 分析:本题可直接转化为数学问题,即利用“垂线段最短”的基本原理,找到点N的位置,然后利用解直角三角形可求出问题的答案。 答案:过点M作MN⊥AC于N,点N即为所求AN=1500米 2.线段和的最值问题。 例2:(2010年宁德)如图2,四边形ABCD是正方形△ABE是 等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕

点B 逆时针旋转60°得到BN ,连接EN,AM,CM. (1)求证:△AMB ≌△ENB ; (2)①当M 点在何处时,AM+CM 的值最小; ②当M 点在何处时,AM+BM+CM 的值最小,并说明理由; 分析:本题第(2)小题利用BM 绕点B 逆时针旋转60°得到△BMN 是等边三角形的特殊结构,将三条线段的和转化为“两点之间,线段最短的问题”,再结合图形的特殊对应结构进行分析,从而确定AM+BM+CM 取最小值时,点M 的位置。 答案:(1)略 (2)①点M 为BD 中点;②M 为BD 与CE 的交点 3.线段差的最值问题。 例3:(2010年晋江)已知:如图3,把矩形OCBA 放置于直角坐标系中,OC=3,BC=2,取AB 的中点M,连接MC ,把△MBC 沿x 轴的负方向平移OC 的长度后得到△DAO 。 (1)试直接写出点D 的坐标; (2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作PQ ⊥x 轴于点Q ,连接OP. ①若以O,P,Q 为顶点的三角形与△DAO 相似,试求出点P 的坐标; ②试问在抛物线的对称轴上是否存在一点T,使得︱TO-TB ︱的值最大。 分析的对称性,将两条线段的差的最值转化为一条线段的最值,再利用一次函数的相关知识求出点T 的坐标。 答案:(1)D (-122 3,) (2)P 1 (64 1531651,) P 2 (3,2) 图3

2020年中考数学 一题多解

一题多解 探究数学问题解决的新思路,对于学生发散性思维和创造性思维的培养是十分有利 的。 下面一道例题,是从多维度角度出发来探究解题新思路的: 例:如图(1)在梯形ABCD 中,AB ∥CD ,四边形ACED 是平行四边形,延长DC 交BE 于F. 求证:EF=FB 分析:这个题目本身不难,求证也容易,但通过对题设和结论的深入挖掘与探索,我们可以得出许多好的证法,总结如下: I E F B C A 证明一:如图所示,作BQ∥AD,交DF 延长线于Q 点,则四边形ABQD 是平行四边形,从而BQ=AD ,再由题设可证△CEF≌△QBF, 得证EF=FB. Q I E F B C A 证明二:如左图所示:作FM∥DA 交AB 于M ,则四边形ADFM 是平行四边形,从而FM=DA.再证△CEF≌△MFB,从而结论可得证. M I E F B C A 证明三:作CN∥EB 交AB 于N ,则四边形CNBF 是□,从而CN=FB. 再证:△ANC≌△DFE,可得CN=EF ,即EF=FB. N I E F B C A 证明四:作DP ∥FB 交AB 于P ,证明△ADP ≌△CEF ,从而得出结论. P I E F B C A

证明五:延长EC 交AB 于G ,则四边形ADCG 是□,∴CE=AD=GC ,即C 是EG 中点.又CF ∥GB ,∴F 是EB 中点,结论得证. G I E F B C A 证明六:连结AE 交CD 于O 点,则O 是AE 中点,又OF ∥AB , ∴F 是AB 中点,得证. I E F B C A 证明七:延长ED 交BA 延长线于H 点,则HACD 是□ , ∴CA=DH=ED ∴D 是EH 中点.又DF ∥HB ∴F 是EB 中点,得证. H I E F B C A 证明八:作ES ∥CD 交AD 延长线于S ,则CDSE 是□ ∴DS=CE=AD, ∴D 是AS 中点.又SE ∥CD ∥AB ∴F 是EB 中点,得证. S I E F B C A 证明九:在证明一作的辅助线基础上,连结EQ ,则可得ECBQ 是□,从而F 是□ECBQ 对角线EB 的中点。 总之,上述不同证法的辅助线可归结为以下两种: ①作平行线构成平行四边形和全等三角形进行等量代换。 ②作平行线,由题设产生中点,通过平行线等分线段定理的推论得出结论。 这其中,其实蕴含了平面几何的平移变换和旋转变换的数学思想。

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

2018中考---几何最值问题规律总结

你会“几何中的最值问题”吗? 一、几何中最值问题包括:①“面积最值”②“线段(和、差)最值”. (1)求面积的最值 方法:需要将面积表达成函数,借助函数性质结合取值范围求解; (2)求线段及线段和、差的最值 方法:需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理. 一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系 PA+PB最小, 需转化,使点在线异侧 二、精讲精练 1. 如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂 蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 __________ m. 蚂蚁A

A 8. PA PB 的最大值等于 ____________ B --------------- C 第6题图 第7题图 女口图,在△ ABC 中,AB=6, AC=8, BC=10, P 为边 BC 上 于F , M 为EF 中点,贝U AM 的最小值为 ___________ . 动点,PE 丄AB 于E , PF 丄AC 正半轴上,OA=3, OB=4, D 为边OB 的中点.若E 、F 为边OA 上的两个动点,且 EF=2, 当四边形CDEF 的周长最小时,则点F 的坐标为 _— 7.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8, B 到MN 的距离BD=5, 2. 如图,点P 是/AOB 内一定点,点 M 、N 分别在边OA 、OB 上运动, 若/AOB=45°,OP=3 2,则△ PMN 周长的最小值为 ______ ._ 3.如图,正方形 ABCD 的边长是4,/ DAC 的平分线交DC 于点E , 若点P , Q 分别是AD 和AE 上的动点,贝U DQ+PQ 的最小值为 . 4.如图,在菱形 ABCD 中,AB=2,/ A=120°,点P 、Q 、K 分别为 线段BC 、CD 、BD 上的任意一点,贝U PK+QK 的最小值为 ______ . 5.如图,当四边形PABN 的周长最小时,a= ___________ 6. 在平面直角坐标系中,矩形 OACB 的顶点O 在坐标原点,顶点 A 、B 分别在x 轴、y 轴的 则 第5题图 P

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

(完整版)中考几何中的最值问题讲义及答案

几何中的最值问题 一、知识点睛 几何中最值问题包括:“面积最值”及“线段(和、差)最值”. 求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理. 一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) l l B PA +PB 最小, 需转化,使点在线异侧 |PA -PB |最大, 需转化,使点在线同侧

二、精讲精练 1. 如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂 蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm . 蜂蜜 蚂蚁 C N O 第1题图 第2题图 2. 3. 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 . Q P E D C B A Q P K D C B A 第3题图 第4题图 4. 如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点, 则PK +QK 的最小值为 . 5. 如图,当四边形PABN 的周长最小时,a = . 第5题图 第6题图

6. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴 上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 . 7. 如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4, P 在直线MN 上运动,则PA PB -的最大值等于 . A B C D P M N 第7题图 第8题图 8. 点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若 P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ?= . 9. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_________. A B C E F M A B C D P 第9题图 第10题图 10. 如图,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 11. 如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时, 点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________.若将△ABP 中边PA 的长度改为22,另两边长度不变,则点P 到原点的最大距离变为_________.

相关文档
最新文档