基于MATLAB的整流电路仿真分析

基于MATLAB的整流电路仿真分析
基于MATLAB的整流电路仿真分析

密级:公开

科学技术学院

NANCHANG UNIVERSITY COLLEGE OF

SCIENCE AND TECHNOLOGY

学士学位论文

THESIS OF BACHELOR

(2008—2012年)

题目基于MATLAB的整流电路仿真分析

学科部:

专业:

班级:

学号:

学生姓名:

指导教师:

起讫日期:

目录

摘要 ............................................................................................................... Ⅰ矚慫润厲钐瘗睞枥庑赖。Abstract . (Ⅱ)

第一章三相桥式全控整流电路的仿真....................................................... 0聞創沟燴鐺險爱氇谴净。

1.1 电路的构成及工作特点.................................................................. 0残骛楼諍锩瀨濟溆塹籟。

1.2 建模及仿真...................................................................................... 1酽锕极額閉镇桧猪訣锥。

1.3参数设置及仿真............................................................................... 2彈贸摄尔霁毙攬砖卤庑。

1.4 故障分析.......................................................................................... 3謀荞抟箧飆鐸怼类蒋薔。

1.5 小结.................................................................................................. 4厦礴恳蹒骈時盡继價骚。第二章基于MATLAB的单相桥式整流电路仿真分析................................. 5茕桢广鳓鯡选块网羈泪。

2.1单相桥式半控整流电路................................................................ 5鹅娅尽損鹌惨歷茏鴛賴。

2.2 单相桥式半控整流电路带纯电阻性负载情况............................ 7籟丛妈羥为贍偾蛏练淨。

2.3 单相桥式全控整流电路.............................................................. 12預頌圣鉉儐歲龈讶骅籴。

2.4 单相桥式全控整流电路带纯电阻性负载情况.......................... 14渗釤呛俨匀谔鱉调硯錦。

2.5 单相桥式全控整流电路带电阻电感性负载情况...................... 16铙誅卧泻噦圣骋贶頂廡。结论 .............................................................................................................. 18擁締凤袜备訊顎轮烂蔷。参考文献:................................................................................................... 19贓熱俣阃歲匱阊邺镓騷。致谢 .............................................................................................................. 20坛摶乡囂忏蒌鍥铃氈淚。

基于MATLAB的整流电路仿真分析

专业:学号:姓名:指导老师:

摘要:随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的整流电路有三相桥式全控整流电路和单相桥式可控电路。由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析。对单相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究,既进一步加深了三相桥式全控整流电路和单相桥式可控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。蜡變黲癟報伥铉锚鈰赘。

关键词:三相桥式全控整流电路,单相桥式半控整流,单相桥式全控整流,建模,仿真

MATLAB-based simulation analysis of the rectifier circuit買鲷鴯譖昙膚遙闫

撷凄。

Abstract:With the social production and scientific and technological development, the rectifier circuit in the automatic control system, measurement system and generator excitation system, and other fields increasingly widespread. Commonly used three-phase bridge rectifier circuit with full-controlled single-phase bridge rectifier circuit and control circuit. As the rectifier circuit involves the exchange of signals, DC signals and trigger signals, including thyristors, capacitors, inductors, resistors and other components, using conventional circuit analysis method appeared to be quite complicated, high-pressure situations is difficult to experiments carried out smoothly. Matlab provides a visual simulation tool Simtlink circuit simulation model can be directly set up, free to change simulation parameters and immediately available to any of the simulation results, intuitive, eliminating the need for further programming steps. In this paper, Simulink full control of three-phase bridge rectifier circuit model, for different control angle, the bridge under fault conditions were simulated analysis. Controlled single-phase bridge rectifier circuit parameters and the different nature of the work load of the comparative analysis and research, both to further deepen the three-phase full-controlled bridge rectifier circuit and controlled single-phase bridge rectifier circuit theory, while for modern power electronics experiment experimental teaching lay a good foundation.綾镝鯛駕櫬鹕踪韦辚糴。

Keywords:Fully-controlled, three-phase, bridge, rectifier, circuit, single-phase, half-controlled rectifier bridge, single-phase full-controlled bridge, rectifier modeling, simulation驅踬髏彦浃绥譎饴憂锦。

第一章三相桥式全控整流电路的仿真

随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。猫虿驢绘燈鮒诛髅貺庑。

1.1 电路的构成及工作特点

三相桥式全控整流电路原理图如图1所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。锹籁饗迳琐筆襖鸥娅薔。

图1 三相桥式全控整流电路原理图

其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次

相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。同理,三相半波整流电路称为3脉动整流电路。α>0时,Ud的波形出现缺口,随着α角的增大,缺口增大,输出电压平均值降低。当α=2π/3时,输出电压为零,所以电阻性负载时,α的移相范围是O~2π/3;当O≤α≤π/3时,电流连续,每个晶闸管导通2π/3;当π/3≤α≤2π/3时,电流断续,个晶闸管导通小于2π/3。23α=π/3是电阻性负载电流连续和断续的分界点。構氽頑黉碩饨荠龈话骛。

1.2 建模及仿真

根据三相桥式全控整流电路的原理可以利用Simulink内的模块建立仿真模型如图2所示。设置三个交流电压源Va,Vb,Vc相位角依次相差120°,得到整流桥的三相电源。用6个Thyristor构成整流桥,实现交流电压到直流电压的转换。6个pulse generator产生整流桥的触发脉冲,且从上到下分别给1~6号晶闸管触发脉冲。輒峄陽檉簖疖網儂號泶。

图2 三相桥式全控整流电路仿真模型

1.3参数设置及仿真

三相电源的相位互差120°,交流峰值电压为l00 V,频率为50 Hz。晶闸管的参数为:Rn=0.001 Ω,Lon=0.000 1 H,Vf=0 V,Rs=50 Ω,Cs=250×10-9。负载电阻性设R=45 Ω,电感性负载设L=1 H。脉冲发生器脉冲宽度设置为脉宽的50 %,脉冲高度为5 V,脉冲周期为0.016 7 s,脉冲移相角随着控制角的变化对“相位角延迟”进行设置。尧侧閆繭絳闕绚勵蜆贅。

根据三相桥式全控整流电路的原理图,对不同的触发角α会影响输出电压进行仿真,负载为阻感特性。

从以上仿真波形图可知改变不同的控制角,输出电压在发生不同的变化。

(1)当触发角α=0°时的输出电压波形如图3所示。

图3 触发角α=0°时的输出电压波形图

(2)当触发角α=60°时的输出电压波形如图4所示。

图4 触发角α=60°时的输出电压波形图

(3)当触发角α=90°时的输出电压波形如图5所示。

图5 触发角α=90°时的输出电压波形图

1.4 故障分析

由于高压强电流的情况,整流电路晶闸管很容易出现故障。假设以下情况对故障现象进行仿真分析,当α=30°,负载为阻感性时,仿真分析故障产生的波形情况。识饒鎂錕缢灩筧嚌俨淒。

(1) 只有一个晶闸管故障波形如图6所示。

图6 一个晶闸管故障波形图

(2) 同一相的两个晶闸管故障波形如图7所示。

图7 同一相的两个晶闸管故障波形图

(3) 不同桥且不同相的两个晶闸管发生故障时的仿真波形如图8所示。

图8 不同桥但不同相的两个晶闸管故障波形图

从以上故障仿真波形图来看,不同的晶闸管出现故障时,产生的波形图是不一样的,所以,通过动态仿真能有效知道整流电路出现故意时候的工作情况,同时也加深对三相全控整流电路的理解和运用。凍鈹鋨劳臘锴痫婦胫籴。

1.5 小结

通过仿真和分析,可知三相桥式全控整流电路的输出电压受控制角α和负载特性的影响,文中应用Matlab的可视化仿真工具simulink对三相桥式全控整流电路的仿真结果进行了详细分析,并与相关文献中采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。采用Matlab/Simulink对三相桥式全控整流电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,得到了一种直观、快捷分析整流电路的新方法。应用Matlab/Simulink进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观地观察到仿真结果随参数的变化情况。恥諤銪灭萦欢煬鞏鹜錦。

第二章基于MATLAB的单相桥式整流电路仿真分析

整流电路尤其是单相桥式可控整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统等其他领域。因此对单相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。鯊腎鑰诎褳鉀沩懼統庫。

2.1单相桥式半控整流电路

图9中VT1和VT2为触发脉冲相位互差180?的晶闸管,VD1和VD2为整流二极管,由这四个器件组成单相桥式半控整流电路。电阻R和电感L为负载,若假定电感L足够大,即ωL≥R,由于电感中电流不能突变,可以认为负载电流在整个稳态工作过程中保持恒值。由于桥式结构的特点,只要晶闸管导通,负载总是加上正向电压,而负载电流总是单方向流动,因此桥式半控整流电路只能工作在第一象限,因为ωL≥R,所以不论控制角α为何值,负载电流id的变化很小。硕癘鄴颃诌攆檸攜驤蔹。

图9 单相桥式半控整流电路原理

在u2正半周,触发角α处给晶闸管VT1施加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段若忽略器件的通态压降则负载压降ud 不会出现负的情况。在u2负半周触发角α时刻,VT2与VD3触发导通,同时向VT1施加反向电压并使之关断,u2经VT2和VD3向负载供电。u2过零变正时,VD4导通,VD3关断。VT1和VD4续流,负载压降ud 又变为零。 根据上述分析,可求出输出负载电压平均值为:阌擻輳嬪諫迁择楨秘騖。

2cos 19.02cos 122sin 2122)(2αα

πττπτα+=+==

?u u u u a d a d

(1) α 角的移相范围为180°。输出电流的平均值为:

2cos

α

1R 20.92cos α1πR 222R d d u u u i +=+==

(2)

流过晶闸管的电流平均值只有输出直流平均值的一半,即:

2cos

α

1R 20.45d 21dvr u i i +==

(3) 流过晶闸管的电流有效值:

πα

παπττπτα-+1

=

1=?2sin 222

)(2)sin 22(2R a d a R VT u u i

(4) 单相桥式半控整流电路的仿真模型如图10所示。

图10 单相桥式半控整流电路的仿真模型

2.2 单相桥式半控整流电路带纯电阻性负载情况

相应的参数设置:①交流电压源参数U=100V,f=50Hz;②晶闸管参数Rn=0.001Ω,Lon=0H,Vf=0.8V,Rs=10Ω,Cs=250e-6F;③负载参数R=10Ω,L=0H,C=inf;④脉冲发生器触发信号1、2的振幅为5V,周期为0.02s(即频率为50Hz),脉冲宽度为15%。

设置触发信号1的初相位为0s(即0?),触发信号2的初相位为0.01s(即180?),此时的仿真结果如图11(a)所示;设置触发信号1的初相位为0.0025s(即45?),触发信

号2的初相位为0.0125s(即225?),此时的仿真结果如图11(b)所示。氬嚕躑竄贸恳彈瀘颔澩。

(a)控制角为0?

(b)控制角为45?

2.3 单相桥式半控整流电路带电阻电感性负载情况

带电阻电感负载的仿真与带纯电阻负载的仿真方法基本相同,只需将RLC串联分支负载参数设置为R=1Ω,L=0.01H,C=inf。此时的仿真结果分别如图12(a)、图12(b)所示。釷鹆資贏車贖孙滅獅赘。

图12 带电阻电感性负载单相桥式半控整流电路的仿真模型

(a)控制角为0?

(b)控制角为45?

2.3 单相桥式全控整流电路

单相可控整流电路中应用最多的是单相桥式全控整流电路,如图13所示。在单相桥式全控整流电路中,每一个导电回路中有2个晶闸管,即用2个晶闸管同时导通以控制导电的回路。怂阐譜鯪迳導嘯畫長凉。

图13 单相桥式全控整流电路

上文已经就单相桥式半控整流电路在纯电阻性负载时进行了较为详尽的分析,而且全控电路与半控电路在纯电阻性负载时的工作情况基本一致,同时晶闸管承受的最大正向电压和反向电压也同前述电路相同,分别为 2

22u 和22u 。谚辞調担鈧谄动禪泻類。 以下重点分析带电阻电感负载时的工作情况。

VT1和VT4组成一对桥臂,在u2正半周(即a 点电位高于b 点电位)承受电压u2,若在触发角α处给晶闸管VT1和VT4施加触发脉冲使其开通,电流从电源a 端经VT1、R 、VT4流回电源b 端,ud=u2。在u2过零时关断。假设电路已工作于稳态,id 的平均值不变。负载中有电感时电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id 连续且近似为一水平直线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id ,并不关断。嘰觐詿缧铴嗫偽純铪锩。

VT2和VT3组成另一对桥臂,在u2正半周承受电压-u2,至ωt=π+α时刻,给VT2 和VT3施加触发脉冲,因为VT2 和VT3本已经承受正向电压,故两管导通。在u2过零时关断。VT2 和VT3导通后,分别给VT4 和VT1施加反向电压使其关断。流过VT1和VD4的电流迅速转移到VT2 和VT3上,此过程称为换相,亦称换流。在下一周期重复相同过程,如此循环。熒绐譏钲鏌觶鷹緇機库。

若4个晶闸管均不导通,则负载电流id 为零,负载电压ud 也为零。

根据上述分析,可求出输出负载电压平均值为:

ααπαπαcos 0.9u cos u π22wt sinwtd u d u 22)(22=1==+? (5) 晶闸管移相范围为90°。晶闸管承受的最大正反向电压均为 。

晶闸管导通角θ与α无关,均为180°。

电流的平均值和有效值分别为:

d i i dT

21= (6) d d i

i i T

707.021== (7)

变压器二次侧电流i 2的波形为正负各180°的矩形波,其相位由α决定,有效值i 2= i d 。带电阻电感性负载单相桥式全控整流电路的仿真模型如图14所示。鶼渍螻偉阅劍鲰腎邏蘞。

图14 单相桥式半控整流电路的仿真模型

2.4 单相桥式全控整流电路带纯电阻性负载情况

带纯电阻性负载情况相应的参数设置与前述单相桥式半控整流电路相同。

设置触发信号1和触发信号4的初相位为0s(即0?),触发信号2和触发信号3的初相位为0.01s(即180?),此时的仿真结果如图15(a)所示;设置触发信号1和触发信号4的初相位为0.005s(即90?),触发信号2和触发信号3的初相位为0.015s(即270?),此时的仿真结果如图15(b)所示。纣忧蔣氳頑莶驅藥悯骛。

图15 带纯电阻性负载单相桥式半控整流电路的仿真模型

(a)控制角为0?

(b)控制角为90?

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

基于MATLAB的Boost电路仿真

知识就堤力量— 基于Matlab 的Boost 电路仿真 姓名: 学号: 班级:

知识就堤力量 1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: iT. n Boost电路的结构 ⑻开关状态1 (S闭合)(b)开关状态2 (S关断)

3、Matlab 仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。 4- Vo |t\a ?E MeJsnuramQ Stfi?RLC Ewnch HR ltd g e Sours I ll c —— ScQpe (c)开关状态3 (电感电流为零) Scoptl V Current Measurement Diode KDT Cm rue nt Measuremehti C T

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

基于MATLAB的整流电路仿真分析

密级:公开 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2008—2012年) 题目基于MATLAB的整流电路仿真分析 学科部: 专业: 班级: 学号: 学生姓名: 指导教师: 起讫日期:

目录 摘要 ............................................................................................................... Ⅰ矚慫润厲钐瘗睞枥庑赖。Abstract . (Ⅱ) 第一章三相桥式全控整流电路的仿真....................................................... 0聞創沟燴鐺險爱氇谴净。 1.1 电路的构成及工作特点.................................................................. 0残骛楼諍锩瀨濟溆塹籟。 1.2 建模及仿真...................................................................................... 1酽锕极額閉镇桧猪訣锥。 1.3参数设置及仿真............................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.4 故障分析.......................................................................................... 3謀荞抟箧飆鐸怼类蒋薔。 1.5 小结.................................................................................................. 4厦礴恳蹒骈時盡继價骚。第二章基于MATLAB的单相桥式整流电路仿真分析................................. 5茕桢广鳓鯡选块网羈泪。 2.1单相桥式半控整流电路................................................................ 5鹅娅尽損鹌惨歷茏鴛賴。 2.2 单相桥式半控整流电路带纯电阻性负载情况............................ 7籟丛妈羥为贍偾蛏练淨。 2.3 单相桥式全控整流电路.............................................................. 12預頌圣鉉儐歲龈讶骅籴。 2.4 单相桥式全控整流电路带纯电阻性负载情况.......................... 14渗釤呛俨匀谔鱉调硯錦。 2.5 单相桥式全控整流电路带电阻电感性负载情况...................... 16铙誅卧泻噦圣骋贶頂廡。结论 .............................................................................................................. 18擁締凤袜备訊顎轮烂蔷。参考文献:................................................................................................... 19贓熱俣阃歲匱阊邺镓騷。致谢 .............................................................................................................. 20坛摶乡囂忏蒌鍥铃氈淚。

内点法matlab仿真doc资料

编程方式实现: 1.惩罚函数 function f=fun(x,r) f=x(1,1)^2+x(2,1)^2-r*log(x(1,1)-1); 2.步长的函数 function f=fh(x0,h,s,r) %h为步长 %s为方向 %r为惩罚因子 x1=x0+h*s; f=fun(x1,r); 3. 步长寻优函数 function h=fsearchh(x0,r,s) %利用进退法确定高低高区间,利用黄金分割法进行求解h1=0;%步长的初始点 st=0.001; %步长的步长 h2=h1+st; f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); if f1>f2 h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3; f3=fh(x0,h3,s,r); end else st=-st; v=h1; h1=h2; h2=v; v=f1; f1=f2; f2=v; h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3;

f3=fh(x0,h3,s,r); end end %得到高低高的区间 a=min(h1,h3); b=max(h1,h3); %利用黄金分割点法进行求解 h1=1+0.382*(b-a); h2=1+0.618*(b-a); f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); while abs(a-b)>0.0001 if f1>f2 a=h1; h1=h2; f1=f2; h2=a+0.618*(b-a); f2=fh(x0,h2,s,r); else b=h2; h2=h1; f2=f1; h1=a+0.382*(b-a); f1=fh(x0,h1,s,r); end end h=0.5*(a+b); 4. 迭代点的寻优函数 function f=fsearchx(x0,r,epson) x00=x0; m=length(x0); s=zeros(m,1); for i=1:m s(i)=1; h=fsearchh(x0,r,s); x1=x0+h*s; s(i)=0; x0=x1; end while norm(x1-x00)>epson x00=x1; for i=1:m s(i)=1; h=fsearchh(x0,r,s);

基于MATLAB的Boost电路仿真

基于Matlab的Boost 电路仿真 姓名: 学号: 班级:

1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: Boost 电路的结构 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)

(c) 开关状态3 (电感电流为零) 3、Matlab仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真,均可以得到精确的仿真结果。采用Matlab仿真分析方法,可直观、详细的描述Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分析,便于我们真正掌握Boost电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。

PID控制算法的matlab仿真

PID 控制算法的matlab 仿真 PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。被控对象的传递函数如下: ()1d s f Ke G s T s τ-= + 其中各参数分别为30,630,60f d K T τ===。MATLAB 仿真框图如图1所示。 图1 2 具体内容及实现功能 2、1 PID 参数整定 PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。在此处选用扩充临界比例度法对PID 进行整定,其过程如下: 1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为 60d τ=,故可选择采样周期1s T =。 2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K , 使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。 3) 选择控制度为 1.05Q =,按下面公式计算各参数:

0.630.490.140.014p k i k d k s k K K T T T T T T ==== 通过仿真可得在1s T =时,0.567,233k k K T ==,故可得: 0.357,114.17,32.62, 3.262p i d s K T T T ==== 0.0053.57 p s i i p d d s K T K T K T K T === = 按此组控制参数得到的系统阶跃响应曲线如图2所示。 01002003004005006007008009001000 0.20.40.60.811.21.41.6 1.8 图2 由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。根据以下原则对控制器参数进行调整以改善系统的暂态过程: 1) 通过减小采样周期,使响应曲线平滑。 2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。 3) 减小比例系数与微分时间常数,以减小系统的超调。 改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

LMMSE算法信道均衡MATLAB仿真

一.信道均衡的概念 实际的基带传输系统不可能完全满足无码间串扰传输条件,因而码间串扰是不可避免的。当串扰严重时,必须对系统的传输函数 进行校正,使其达到或接近无码间串扰要求的特性。理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频,和相频特性从而减小码间串扰的影响这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 均衡分为频域均衡和时域均衡。频域均衡是从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。而时域均衡,则是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。 频域均衡在信道特性不变,且传输低速率数据时是适用的,而时域均衡可以根据信道特性的变化进行调整,能够有效地减小码间串扰,故在高速数据传输中得以广泛应用。 时域均衡的实现方法有多种,但从实现的原理上看,大致可分为预置式自动均衡和自适应式自动均衡。预置式均衡是在实际传数之前先传输预先规定的测试脉冲(如重复频率很低的周期性的单脉冲波形),然后按“迫零调整原理”自动或手动调整抽头增益;自适应式均衡是在传数过程中连续测出距最佳调整值的误差电压,并据此电压去调整各抽头增益。一般地,自适应均衡不仅可以使调整精度提高,而且当信道特性随时间变化时又能有一定的自适应性,因此很受重视。这种均衡器过去实现起来比较复杂,但随着大规模、超大规模集成电路和微处理机的应用,其发展十分迅速。 二.信道均衡的应用 1.考虑如图所示的基带等效数据传输系统,发送信号k x 经过ISI 失真信道传输,叠加高斯加性噪声。 图1基带等效数据传输模型 设发送信号采用QPSK 调制,即(1)k x j =±±ISI 信道的冲击响应以向量的形式表示为h 2211[,,,]T L L L h h h --+=???。典型的ISI 信道响应向量有三种: h [0.04,0.05,0.07,0.21,0.5,0.72,0.36,0,0.21,0.03,0.07]T A =--- h [0.407,0.815,0.407]T B = h [0.227,0.46,0.6888,0.46,0.227]T C = k ω为实部与虚部独立的复高斯白噪声,其均值为零,方差为2 ωσ。 2.实现目的

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

基于MATLAB的电路模型仿真应用

基于MATLAB的电路模型仿真应用实验指导书 一、实验目的 1、掌握采用M文件及SIMULINK对电路进行仿真的方法。 2、熟悉POWERSYSTEM BLOCKSET 模块集的调用、设置方法。 3.进一步熟悉M脚本文件编写的方法和技巧。 二、实验原理 1、通过M文件实现电路仿真的一般仿真步骤为: (1)分析仿真对象——电路; (2)确定仿真思路——电路分析的方法; (3)建立仿真模型——方程; (4)根据模型编写出仿真程序; (5)运行后得到仿真结果。 2、采用SIMULINK仿真模型进行电路仿真 可以根据电路图利用SIMULINK中已有的电子元件模型直接搭建仿真模块,仿真运行得到结果。 通过SIMULINK仿真模型实现仿真为仿真者带来不少便利,它免除了仿真者在使用M文件实现电路仿真时需要进行理论分析的繁重负担,能更快更直接地得到所需的最后仿真结果。但当需要对仿真模型进行一定理论分析时,MATLAB的M 语言编程就有了更大用武之地。它可以更令灵活地反映仿真者研究电路的思路,可更加灵活地将自身

想法在仿真环境中加以验证,促进理论分析的发展。因此,可根据自己的实际需要,进行相应的选择:采用SINMULIN模块搭建电路模型实现仿真非常直观高效,对迫切需要得到仿真结果的用户非常适用;当用户需要深刻理解及深入研究理论的用户来说,则选择编写M文件的方式进行仿真。 注意:本节实验的电路SINMULINK仿真原理,本节实验主要是应用提供的电路仿真元件搭建仿真模型,类似于传统仿真软件PSPICE 的电路仿真方法。采用SIMULINK进行电路仿真时元器件模型主要位于仿真模型窗口中SimPowerSystems节点下。其中本次实验可能用到的模块如下: ●“DC Voltage Source” 模块:位于SimPowerSystems 节点下的 “Electrical Sources”模块库中,代表一个理想的直流电压源; ●“Series RLC Branch” 模块:位于SimPowerSystems 节点下的 “Elements”模块库内,代表一条串联RLC 支路。通过对其参数的设置,可以将其变为代表单独的或电阻、或电容、或电感的支路。如设定:电 阻值Resistance=5,电感值Inductance=0,电容值Capacitance=inf,则表示一个电阻值为5 欧姆的纯电阻元件。 ●“Parallel RLC Branch”模块:位于SimPowerSystems 节点下的 “Elements”模块库内,代表一条并联RLC 支路。通过对其参数的设置,可以将其变为或电阻、或电容、或电感并联的支路。 ●“Current Measurement” 模块:位于SimPowerSystems 节点下下的 “Measurements”模块库内,用于测量所在支路的电流值。 ●“Voltage Measurement” 模块:位于SimPowerSystems 节点下下的 “Measurements”模块库内,用于测量电压值。 ●“Display” 模块:位于Simulink 节点下的“Sinks”模块库内,用于 输出所测信号的

神经网络学习算法matlab仿真

东南大学自动化学院 智能控制概论 神经网络学习算法研究 学院: 姓名: 学号: 日期:

目录 1 任务要求叙述 ..................................................... 错误!未定义书签。 2 系统分析及设计原理 ......................................... 错误!未定义书签。 3 设计实现.............................................................. 错误!未定义书签。4仿真验证.. (6) 5 讨论与分析.......................................................... 错误!未定义书签。

一.任务要求叙述 (1)任务 (a) 运行算法,观察和分析现有学习算法的性能; clear all;close all; nu=20;pi=3.1415926; for i=1:nu p(i)=2*pi*i/nu; t(i)=0.5*(1+cos(p(i))); end minmax=[min(p(:)) max(p(:))] net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm net.trainParam.epochs = 10000; net.trainParam.goal = 0.0001; net.trainParam.show=200; net.trainParam.lr=0.1; net.trainParam.mc=0.6; %0.9 default value; available for momentum net = train(net,p,t); y1 = sim(net,p); figure(2); plot(p,t,'*-',p,y1,'r--') %************** test data ****************** nu2=nu*3/2; for i=1:(nu2) p2(i)=2*pi*i/(nu2); t2(i)=0.5*(1+cos(p2(i))); end y2 = sim(net,p2); figure(3); plot(t2,'*-');hold on; plot(y2,'r'); xlabel('times');ylabel('outputs'); figure(4); plot(t2-y2); xlabel('times');ylabel('error'); (b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。 (2)要求 提交完整的报告,包括:封面(题目、个人学号姓名等信息)、目录、任务要求叙述、系

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

基于Matlab的交交变频电路仿真研究

摘要:本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab7.0 仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频;余弦交点法;Matlab仿真 Abstract: The principium of the AC-AC frequency converter with three phases input and one phase output is introduced in the first place.The control method of the AC-AC frequency converter is particularly analysed through discussing cosine-cross method in the second place. The AC-AC frequency converter’s simulation model is builded by the Matlab7.0 at last. Key words:AC-AC frequency converter; cosine-cross method; Matlab simulation 1、引言[1] 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 2、交-交变频电路的工作原理[2][3] 交交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

相关文档
最新文档