mazak小巨人马扎克伺服报警说明

mazak小巨人马扎克伺服报警说明
mazak小巨人马扎克伺服报警说明

FANUC交流伺服系统的常见故障与维修

FANUC交流速度控制单元有多种规格,早期的交流伺服为模拟式,目前一般都使用数字式伺服,在数控机床中,常用的规格型号有以下几种: 1)与FANUC交流伺服电动机AC0、5、10、20M、20、30、30R等配套的模拟式交流速度控制单元。它是FANUC最早的AC伺服产品,速度控制单元采用正弦波PWM控制,大功率晶体管驱动。在结构形式上,可以分单轴独立型、双轴一体型、三轴一体型三种基本结构。单轴独立型速度控制单元,常用的型号有 A06B-6050-H102/H103/H104/H113等;双轴一体型速度控制单元,常用的型号有 A06B-6050-H201/H202/H203等;三轴一体型速度控制单元,常用的型号有 A06B-6050-H401/H402/H403/H404等,多与FANUC 11、0A、0B等系统配套使用。 2)与FANUC交流S (L、T)系列伺服电动机配套的S (L、 C)系列数字式交流伺服驱动器,它是FANUC中期的AC 伺服产品,驱动器采用全数字正弦波PWM控制,IGBT 驱动。其中,S系列用量最广,规格最全;L系列只有单轴型结构,常用的型号有 A06B-6058-H001-H007/H102/H103等;C系列有单轴

型、双轴型两种结构,常用的单轴型有 A06B-6066-H002-H006等规格,常用的双轴型有 A06B-6066-H222~H224/H233、H234、H244等规格。 作为常用规格,S系列有单轴型、双轴型、三轴型三种结构,常用的单轴型有 A06B-6058-H001~H007/H023/H025等;常用的双轴型有A06B-6058-H221~H231/H251-H253等规格;常用的三轴型有A06B-6058-H331-H334等规格;多与FANUC 0C、11、15系统配套使用。 3)与FANUC α/αC/αM/αL系列伺服电动机配套的FANUC α系列数字式交流伺服驱动器,它是FANUC当前常用的AC伺服产品,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。FANUC α系列数字式交流速度控制单元有如下两种基本结构形式: ①各驱动公用电源模块(PSM)、伺服驱动单元(SVM)为模块化安装的结构形式,驱动器可以是单轴型、双轴型与三轴型三种结构。常用的单轴型有 A06B-6079-H101~H106等,常用的双轴型有 A06B-6079-H201~H208等规格,常用的三轴型有 A06B-6079/6080-H301~H307等规格,多与FANUC 0C、15A/B、16A/B、18A、20、21系统配套使用。

卧式加工中心说明书模板

欢迎阅读 目录 机床的主要用途和技术参数------------------------------------------------------------ 4 1 机床安全须知-------------------------------------------------------------------------- 5-10 1.1 机床启动安全注意事项------------------------------------------------------------------------- 5 1.2 安全操作指南-------------------------------------------------------------------------------------7 2 搬运及安装---------------------------------------------------------------------------- 10-14 2.1 搬运已包机床------------------------------------------------------------------------------------ 10 2.2 开箱------------------------------------------------------------------------------------------------ 10 2.3 搬运未包机床------------------------------------------------------------------------------------ 10 2.4 安装------------------------------------------------------------------------------------------------ 11 2.5 电源连接------------------------------------------------------------------------------------------14 2.6 试运行--------------------------------------------------------------------------------------------- 14 3 机床的调整与保养------------------------------------------------------------------ 15-17 3.1 预运行--------------------------------------------------------------------------------------------- 15 3.2 床身水平调整------------------------------------------------------------------------------------ 15 3.3机床液压系统的调整--------------------------------------------------------------------------- 15 3.4 定期保养------------------------------------------------------------------------------------------ 15 4 机床外观图----------------------------------------------------------------------------17-21 5 机床传动系统------------------------------------------------------------------------ 22-25 5.1机床传动系统图--------------------------------------------------------------------------------- 22 5.2 蜗杆、蜗轮、皮带轮、滚珠丝杠明细表------------------------------------------------------ 24 5.3机床滚动轴承明细表--------------------------------------------------------------------------- 25 6 机床的主要结构及性能----------------------------------------------------------- 25-29 6.1 底座------------------------------------------------------------------------------------------------ 26 6.2 立柱------------------------------------------------------------------------------------------------ 26 6.3 滑鞍和分度转台--------------------------------------------------------------------------------- 26 6.4 主轴箱及自动夹刀装置------------------------------------------------------------------------ 27 6.5 刀库结构------------------------------------------------------------------------------------------ 29 7 液压系统-------------------------------------------------------------------------------- 30-35 7.1 液压系统原理图--------------------------------------------------------------------------------- 30 7.2 液压站--------------------------------------------------------------------------------------------- 32 7.3 液压执行装置------------------------------------------------------------------------------------ 32 7.4 液压控制装置------------------------------------------------------------------------------------ 33 7.5 辅助装置------------------------------------------------------------------------------------------ 34 7.6 本机床所用液压元件明细表------------------------------------------------------------------ 35 7.7 液压系统的保护--------------------------------------------------------------------------------- 35

马扎克MAZAK参数 EIA

马扎克MAZAK参数EIA/ISO参数(F )(一) 2016-10-23 22:55:57 来源:数控学习网作者:admin 【大中小】浏览:945次评论:0条 地址(位) 名称 F1 角部减速速度的百分比(%) F2 圆弧限制速度的百分比(%) F3 高速平滑控制有效/无效 F4 固定值(0) F5 固定值(0) F6 高速平滑控制时的减速台阶幅度 F7 固定值(0) F8 高速平滑控制时角部减速系数 F9 高速平滑控制时弧限制速度系数 F10 — F11 3D 刀具补偿的矢量常数 F12 在钻刀高速深孔循环或在G83 中啄式加工的回退量 F13 在深孔钻加工循环或在G83 中快速进给的允差量 F14 坐标的旋转中心(横坐标轴) F15 坐标的旋转中心(纵坐标轴) F16 坐标旋转的水平长度 F17 坐标旋转的垂直长度 F18 坐标旋转的角度 F19 圆弧半径差的最大允许量 F20 定标功能的固定倍率 F21 自动角部倍率修调(G62)时可得到的最大内角角度

F22 自动角部倍率修调(G62)的减速区域 F23~F26 — F27 选择重启动时主轴旋转数限制(G92)的处理方式 F28 螺纹加工时的倒角角度 F29 自动角部倍率修调(G62)的倍率修调值 F30 选择G 代码类型 F31 程序编排用粗加工刀具优先方式的选择 F32 省略主轴最高/最低夹紧转速指令的R 指令时的动作 F33~F39 — F40 在磁带模式中操作方法的选择 F41 螺纹加工结束点的等待时间 F42 Z 轴方向测量时的减速领域r F43 Z 轴方向测量时的测定领域d F44 测量速度f F45 X 轴方向测量时的减速领域r F46 X 轴方向测量时的减速领域d F47~F66 公共变量名称 F67 — F68 — F69 EIA/ISO 程序重起动方法 F70 在EIA/ISO 子程序中,多重加工和重启动次数的指定模式F71 加工次序控制 F72 MAZATROL 程序形状补偿功能的选择 F73 次数学习的M 代码执行时间 F74 次数学习的S 代码执行时间

加工中心操作说明书

第一篇:编程 5 1.综述 5 1.1可编程功能 5 1.2准备功能 5 1.3辅助功能7 2.插补功能7 2.1快速定位(G00)7 2.2直线插补(G01)8 2.3圆弧插补(G02/G03)9 3.进给功能10 3.1进给速度10 3.2自动加减速控制10 3.3切削方式(G64)10 3.4精确停止(G09)及精确停止方式(G61) 11 3.5暂停(G04) 11 4.参考点和坐标系11 4.1机床坐标系11 4.2关于参考点的指令(G27、G28、G29及G30) 11 4.2.1 自动返回参考点(G28)11 4.2.2 从参考点自动返回(G29)12 4.2.3 参考点返回检查(G27)12 4.2.4 返回第二参考点(G30)12 4.3工件坐标系13 4.3.1 选用机床坐标系(G53)13 4.3.2 使用预置的工件坐标系(G54~G59)13 4.3.3 可编程工件坐标系(G92)14 4.3.4 局部坐标系(G52) 14 4.4平面选择15 5.坐标值和尺寸单位15 5.1绝对值和增量值编程(G90和G91)15 6.辅助功能15 6.1M代码15 6.1.1 程序控制用M代码16 6.1.2 其它M代码16 6.2 T代码 16 6.3主轴转速指令(S代码) 16 6.4刚性攻丝指令(M29)17 7.程序结构17 7.1程序结构17 7.1.1 纸带程序起始符(Tape Start) 17 7.1.2 前导(Leader Section) 17 7.1.3 程序起始符(Program Start) 17 7.1.4 程序正文(Program Section) 17 7.1.5 注释(Comment Section) 17 7.1.6 程序结束符(Program End) 17

ASD伺服常见问题处理方式

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换? 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理? 首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报

发那科伺服报警精选

伺服报警: n—轴(轴1—4)伺服放大器READY信号(DRDY)断开。 n—轴VRDYOFF 402 伺服报警: 没有轴控制卡。 SV卡不存在 轴控制卡和伺服软件的组合错误。 403 伺服报警: 可能的原因有: 卡/软件不匹配 ●没有提供正确的轴控制卡。 ●在FlashMemory中没有安装正确的伺服软件。 404 伺服报警: 尽管n·轴(1—4)READY信号(MCON)断开,伺服放大器READY信号 (DRDY)仍为1。或当电源打开时,即使MCON断开,DRDY 仍接通。 n·轴VRDYON 检查伺服接口模块和伺服放大器的连接。 405 伺服报警: 位置控制系统错误。在参考点返回中由于NC或伺服系统错误,可能不能 正确执行返回参考点。 (零点返回错误) 用手动参考点返回再试。 407 在简易同步控制中发生了如下错误:同步轴间的机床坐标位置偏差超过了 伺服报警:超差 参数No.8314的设定值。

伺服报警: 检测到伺服电机负载异常。或者,在Cs方式中检测到主轴电机负载异常。 n·轴转矩报警 410 当n—轴(轴1-4)停止时位置误差超过了参数No.1829的设定值。 伺服报警:n—轴超差 参阅排除故障步骤。 411 当n·轴(轴1-4)移动时位置误差超过了参数No.1828的设定值。 伺服报警:n—轴超差 参阅排除故障步骤。 413 伺服报警: n—轴(轴1—4)的误差寄存器中的数值超过了±2“。 n·轴LSI溢出 这个错误通常是由于参数设置不正确造成的。 415 伺服报警: 在n轴 (轴1—4)中定的速度高于524288000单位/秒。 n—轴移动太快 这个错误是由于CMR设置不正确造成的。 n—轴(轴1—4)在下面任一条件下产生报警。(数字伺服系统报警) 1)参数No.2020(电机型号) 设置的值超出指定范围。 2)没有给参数No.2022(电机旋转方向)设置正确的值(111 或-111) 3)参数No.2023(电机每转速度反馈脉冲数)设置了非法数据(小于0的 417

牧野加工中心说明书-牧野加工中心操作规程

牧野加工中心说明书 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 牧野加工中心安全操作规程 一、机床通电开启后,注意事项如下: 1、机床通电后,检查各开关、按钮是否正常、灵活,机床有无异常现象; 2、检查电压、油压、气压是否正常,有手动润滑的部位先要进行手动润滑; 3、机床开启后,各坐标轴手动回参考点(机床原点)。若某轴在回参考点位置前已处在零点位置,必须先将该轴移动到距离原点100mm以外的位置,再进行手动回参考点或在此位置控制机床往行程负向移动,使其回参考点; 4、在进行工作台回转交换时,台面上、护罩上、导轨上不得有异物; 5、NC程序输入完毕后,应认真校对、确保无误。其中包括代码、指令、地址、数值、正负号、小数点及语法的查对; 6、按工艺规程安装找正好夹具; 7、正确测量和计算工件坐标系,并对所得结果进行验证和验算; 8、将工件坐标系输入到偏置页面,并对坐标、坐标值、正负号及小数点进行认真核对; 9、刀具补偿值(长度、半径)输入偏置页面后,要对刀具补偿号、补偿值、正负号、小数点进行认真核对; 二、工件加工过程中,注意事项如下:

1、在进行高精密工件成型加工时,应用千分表对主轴上之刀具进行检测,使其静态跳动控制在3μm以内,必要时需重新装夹或更换刀夹系统; 2、无论是首次加工的零件,还是周期性重复加工的零件,加工前都必须按照图样工艺、程序和刀具调整卡,进行逐把刀、逐段程序的检查核对. 3、单段试切时,快速倍率开关必须置于较低档; 4、每把刀首次使用时,必须先验证它的实际长度与所给补偿值是否相符; 5、在程序运行中,要重点观察数控系统上的几种显示 坐标显示:可了解目前刀具运动点在机床坐标系及工件坐标系中的位置了解这一程序段的运动量,还有多少剩余运动量等 寄存器和缓冲寄存器显示:可看出正在执行程序段各状态指令和下一程序段的内容 主程序和子程序显示:可了解正在执行程序段的具体内容; 对话显示屏(Custom):可了解机床当前主轴转速、当前切削进给速度、主轴每转切削进给、主轴当前切削载荷及各行程轴载荷, 并可由主轴每转切削进给计算出相应刀具每刃切削量。 6、试切进刀时,在刀具运行至工件表面30~50mm处,必须在低速进给保持下,验证坐标轴剩余坐标值和X、Y轴坐标值与图样是否一致; 7、对一些有试刀要求的刀具,采用“渐进”的方法。例如,镗孔,可先试镗一小段长度,检测合格后,再镗到整个长度。使用刀具半径补偿功能的刀具数据,可由大到小,边试切边修改; 8、试切和加工中,更换刀具、辅具后,一定要重新测量刀具长度并修改好刀具补偿值和刀具补偿号; 9、程序检索时应注意光标所指位置是否合理、准确,并观察刀具与机床运动方向坐标是

伺服故障报警及处理方法

伺服故障报警及处理方法 电压过低电源电压太低。MR-E-□A:160V 以下 存储器异常1 RAM存储器异常 时钟异常印刷电路板的异常 存储器异常2 EEP-ROM异常 编码器异常1 编码器和伺服放大器之间通讯异常。 电路板异常2 CPU·零部件异常 存储器异 电机配合异常伺服放大器和伺服电机之间的配合有误。 编码器异常2 编码器和伺服放大器之间通讯异常。 主电路异常伺服放大器的伺服电机输出端(U·V·W相)接地故障。 再生制动异常制动电流超过内置再生制动电阻或再生制动选件的允许值。再生制动晶体管异常 超速转速超出了瞬时允许转速。 过流伺服放大器的输出电流超过了允许电流。 过压直流母线电压的输入在400V以上。 指令脉冲频率异常输入的指令脉冲的脉冲频率太高。 参数异常参数的设定值异常。 主电路芯子过热主电路异常过热。 伺服电机过热伺服电机的温度上升,热保护继电器动作。 过载 1 超过了伺服放大器的过载能力。负载率300%:以上负载率200%:100s以上 过载2 由于机械故障导致伺服放大器连续数秒钟以最大输出电流输出。伺服电机 的锁定时间:1s以上 误差过大偏差计数器的滞留脉冲超过编码器的分辨率×10[pulse]。

串行通讯超时RS-232C通讯的时间超过参数的设定值。 串行通讯异常伺服放大器和通讯设备(计算机等)之间出现串行通讯错误。CPU·部件异常 再生制动电流过大警告 可能会超出内置再生制动电阻或外部再生制动选件的制动 能力。 过载警告可能发生过载1,过载2报警。 伺服紧急停止警告EMG-SG之间断开。 主电路OFF警告 主电路电源断开时,伺服开启信号(SON)为ON。 伺服报警代码及处理 欠压 电源电压过低。MR-E-□A:160V 以下 <主要原因><处理方法>·电源电压太低。→检查电源系统 ·控制电源瞬间停电在60ms以上。→检查电源系统·由于电源容量过小,导致启动时电源电压下降。→检查电源系统·电源切断5秒以内在接通。→检查电源系统·伺服放大器内部故障。→更换伺服放大器存储器异常1、 时钟异常、 存储器异常2 AL.12:RAM异常 AL.13:印刷电路板异常 AL.15:EEPROM异常 <主要原因><处理方法> ·伺服放大器内部故障。→更换伺服放大器。

FANUC伺服驱动系统故障分析诊断

FANU(交流伺服驱动系统故障维修举例 例244?245 .加工过程中出现过热报警的故障维修 例244.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现伺服电动机过热报警。 分析与处理过程:本机床伺服驱动器采用的是FANUC S系列伺服驱动器,当报警时,触摸伺服电动机温度 在正常的围,实际电动机无过熟现象。所以引起故障的原因应是伺服驱动器的温度检测电路故障或是过热检测热敏电阻的不良。通过短接伺服电动机的过热检测热敏电阻触点,再次开机进行加工试验,经长时间运行,故障消失,证明电动机过热是由于过热检测热敏电阻不良引起的,在无替换元件的条件下,可以暂时将其触点短接,使其系统正常工作。 例245.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现X轴伺服电动机过 热报警。 分析与处理过程:故障分析过程同上例,经检查X轴伺服电动机外表温度过高,事实上存在过热现象。 测量伺服电动机空载工作电流,发现其值超过了正常的围。测量各电枢绕组的电阻,发现A相对地局部短 路;拆开电动机检查发现,由于电动机的防护不当,在加工时冷却液进入了电动机,使电动机绕阻对地短路。修理电动机后,机床恢复正常。 例246 .驱动器出现OVC报警的故障维修 故障现象:某配套FANUG3T-C系统、采用FANUCS系列伺服驱动的数控车床,手动运动X轴时,伺服电动 机不转,系统显示ALM414报警。 分析与处理过程:FANUC 0T-C出现ALM 414报警的含义是“X轴数字伺服报警”,通过检查系统诊断参数 DGN720?723发现其中DGN720 bit5=l,故可以确定本机床故障原因是X轴OVC过电流)报警。 分析造成故障的原因很多,但维修时最常见的是伺服电动机的制动器未松开。 在本机床上,由于采用斜床身布局,所以X轴伺服电动机上带有制动器,以防止停电时的下滑。经检查, 本机床故障的原因确是制动器未松开:根据原理图和系统信号的状态诊断分析,故障是由于中间继电器的触点不良造成的,更换继电器后机床恢复正常。 例247~例248 .参数设定错误引起的故障维修 例247 .故障现象:某配套FANUC 0TD^统的二手数控车床,配套FANU(子a系列数字伺服,开机后,系 统显示ALM417 427报警。 分析与处理过程:FANUC 0TD出现ALM 417、427报警的含义是“数字伺服参数设定错误”。 由于机床为二手设备,调试时发现系统的电池已经遗失,因此,系统的参数都在不同程度上存在错误。进一步检查系统主板,发现主板上的报警指示灯L1、L2亮,驱动器显示“-”,表明驱动器未准备好。 根据系统报警ALM417 427可以确定,引起报警可能的原因有: 1)电动机型号参数8*20设定错误。 2)电动机的转向参数8*22设定错误。 3)速度反馈脉冲参数8*23设定错误。 4)位置反馈脉冲参数8*24设定错误。 5)位置反馈脉冲分辨率PRM037bit7设定错误,等等。 通过数字伺服设定页面,在正确设定以上参数以及系统的PRM900?PRM91参数后,通过数字伺服的初始化 操作,报警消失,主板上的报警指示灯L1、L2灭,驱动器显示“ 0”,表明驱动器已经准备好,本故障排

加工中心常见报警及解决方法

旺磐加工中心的常见报警解决方法 序号报警内容含义解决方法 <一> plc报警问题 1.1 LUB LOW (油量过少) 1.11 检查润滑油泵的油位 1.12 检查油位传感器是否正常 1.13检查油位报警线路电源及输入电路是否正常(号码管为DC24V及LUB LOW) 1.2COOLANT OVERLOAD (切削液马达过载) 1.21 检查动力线是否有缺, 1.22 检查电源电压是否为额定电压 1.23 过载保护器的过载系数是否设定过小,正常为 2.5 1.24 马达是否为反转或者有烧毁 1.25 将上序问题排除后,将过载保护器上的复位按钮按下,再确定信号线是否有24V 电源输入(号码管为COOLANT OVERLOAD) 1.3 AXIS NOT HOME (3轴未归零) 1.31 在原点复归模式下分别将三轴归零,归完成报警信号即完成零 1.32 ATC NOT READY 刀库未准备好 1.33 刀库记数信号未到位,检查COUNTER信号

1.34 刀杯原位信号错误,检查TOOL CUP UP 信号 1.35 刀臂持刀点位置不正确,检查121点信号 1.4 THE CLAMP SIGNAL ERROR (夹刀信号错误) 1.41 检查夹刀到位信号线是否有异常 1.42 检查打刀缸夹刀开关是否正常 1.43 检查I/F诊断中X4的信号是否为1 1.5 AIR PRESSURE LOW (空气压力低) 1.51 检查空气压力是否5MP以上 1.52 检查空气压力输入信号的线路是否有DC24VV电压 1.6 ATC COUNTER SINGAL ERROR (刀库记数信号错误) 1.61 检查是否为记数信号接再刀库的144点上。 1.62 检查DC24电源144点与0V点之间电压是否为24V, 1.63确定I/F诊断中的X1E点信号是否正常! 1.7 THE SP-MOTOR OVERLOAD (主轴马达过载) 1.71 主轴马达过载,检查回升电阻AL1与AL2间是否为通路 1.72 检查PLC输入信号是否有24V

FANUC 0i系统故障报警信息

FANUC 0i系统故障报警信息 [ 内容简介] 总结本次故障,虽然在报警信号信息屏幕上所显示的是系统报警,给人的第一感觉就是数控系统出现问题了,但不是绝对都是这样的,这个故障就是一个例外,这实质上是一个外围故障。 1、报警信息的查看方法 数控系统可对其本身以及其相连的各种设备进行实时的自诊断。当数控机床出现不能保证正常运行的状态或异常都可以通过数控系统强大的功能,对其数控系统自身及所连接的各种设备进行实时的自诊断。当数控机床出现不能满足保证正常运行的状态或异常时,数控系统就会报警,并将在屏幕中显示相关的报警信息及处理方法。这样,就可以根据屏幕上显示的内容采取相应的措施。 一般情况下,系统出现报警时,屏幕显示就会跳转到报警显示屏幕,显示出报警信息,如图所示:

某些情况下,出现故障报警时,不会直接跳转到报警显示屏幕,如图所示: FANUC 0i数控系统提供了报警履历显示功能,其最多可存储并在屏幕上显示的50个最近出现的报警信息。大大方便了对机床故障的跟踪和统计工作。显示报警履历的操作如下:

2、FANUC 0i数控系统报警的分类 FANUC 0i数控系统的报警信息很多,可以归纳为以下类别,便于查找。 表7.1FANUC 0i数控系统报警分类 3、常见报警的故障排除思路 数控机床是当代高新技术机、电、光、气一体化的结晶,电气复杂,管路交叉林立,故障现象也是千奇百怪,各不相同。如何能

迅速找出故障、隐患,并及时排除?这是数控机床维修人员所面临的最现实、最直接的问题。 在这里,我们将以最常碰到的故障为例,学习使用FANUC 0i 数控系统提供的丰富的维修功能进行故障排除的方法。为方便起见,把由机床厂家根据不同的机床结构所可以预见的异常情况汇总后,由机床厂家自己编写错误代码和报警信息,这类故障称为外围报警(这是相对于数控系统而言)。也就是说不同结构类型的机床就会有不同的外部故障的错误代码和报警信息。而由数控系统生产厂家根据数控系统部件所能预见的异常情况汇总后,所编写的错误代码和报警信息,这类故障称为系统报警(数控系统故障)。数控系统故障的错误代码和报警信息不会因不同结构类型的机床而改变,不同型号的数控系统的系统报警可能会有所不同。系统报警是数控系统生产厂家在数控系统传递到机床厂家之前就编写好的,是固定不变的,机床厂家没法对其进行编辑和增删。 在一般情况下,外围故障的发生机率较系统故障的机率要高。不同结构类型的机床就会有不同的外围故障,而若要能够做到对外围故障做出快速准确的定位和排除,就必须对你所要维修的机床的机械结构、电气原理、数控系统、各个机床动作、操作方法有一个全面的认识。若在机床正常的时候,对机床的每一个动作进行仔细的观察,便能够在机床异常(也就是说机床动作不能正常进行)时,根据平时观察所得与之对比,从而做到对故障的快速诊断与排除。与此同时,高效地使用FANUC 0i系统提供的丰富的维修功能,包

数控铣床操作说明书

. . XK712小型数控立式铣床 操 作 说 明 书 ※广州航海高等专科学校轮机系机械教研室※ 2006年5月制

一 铣床操作流程 1 开机前必须认真阅读“机床的使用说明书”、“数控系统编程与操作”使用说明书和“变频器使用”。掌握机床的各个操作键的功能和熟悉机床的机械传动原理及润滑系统。 2 机床上电与关机顺序 机床上电先把机床左电器柜侧面的断路开关向上合闸,然后按下小幅面板(见下图)的“电源ON ”按钮,系统进入操作界面显示55#急停报警,将“急停按钮”顺时针旋开解除急停状态; 机床关机先按下“急停按钮” 按钮,再按“电源OFF ”断开系统电源,最后打下断路开关断开机床电源。 3 机床润滑 对集中式润滑泵进行加油(30#机械润滑油),然后扳动油泵手柄3-6次以保证各传动及运动副得到充足的润滑。并在每班开机前对机床提供一次润滑。检查动力电源电压是否与机床电气的电压相符接地是否正确可靠。X 、Y 、Z 方向的定位行程撞块是否松动和缺损。检查无误后,启动机床操作各控制按钮检查机床运转是否正常。 急停按钮 电源OFF 循环停止 手摇轮 警报指示灯 循环启动 电源ON

检查X、Y、Z轴的三个运动方向是否正确无误。 4 主轴旋转方向是否正确主轴的转速范围是根据机床使用说明书的主要参数对交流变频器内部参数在机床出厂前已设定好。用户不得随意擅自改变主轴的转速范围,因为主轴的转速范围是由主轴自身结构所决定。 5主轴本体上端的外六角是用来配合装卸刀具用的。装卸完刀具后必须将杯罩盖上才能启动主轴,以防止主轴转动带动其它物件伤及到人体。 …流程图如下… 注:每次开机之后都必须回机床原点

伺服驱动器报警解决方法..

保护功能 报警 代码 故障原因应对措施 控制电源 欠电压 11 控制电源逆变器上P、N 间电压低于规定值。1)交流电源电压太低。瞬时失电。 2)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 3)驱动器(内部电路)有缺陷。 测量 L1C、L2C 和r、t 之间电压。 1)提高电源电压。更换电源。 2)增大电源容量。 3)请换用新的驱动器。 过电压 12 电源电压高过了允许输入电压的范围。 逆变器上 P、N 间电压超过了规定值。 电源电压太高。 存在容性负载或UPS(不间断电源),使得 线电压升高。 1)未接再生放电电阻。 2)外接的再生放电电阻不匹配,无法吸收再 生能量。 3)驱动器(内部电路)有缺陷。 测量 L1、L2 和L3 之间的相电压。 配备电压正确的电源。 排除容性负载。 1)用电表测量驱动器上P、B 间外接电阻阻值。如果读数是“∞”,说明电阻没有真正地接入。请换一个。 2)换用一个阻值和功率符合规定值的外接电阻。 3)请换用新的驱动器。 主电源 欠电压 13 当参数Pr65(主电源关断时欠电压报警触发 选择)设成1 时,L1、L3 相间电压发生瞬时 跌落,但至少是参数Pr6D(主电源关断检测 时间)所设定的时间;或者,在伺服使能(Servo-ON)状态下主电源逆变器P-N 间相 电压下降到规定值以下。

1)主电源电压太低。发生瞬时失电。 2)发生瞬时断电。 3)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 4)缺相:应该输入3 相交流电的驱动器实际输入的是单相电。 5)驱动器(内部电路)有缺陷。 测量 L1、L2、L3 端子之间的相电压。 1)提高电源电压。 换用新的电源。 排除电磁继电器故障后再重新接通电源。 2)检查Pr6D 设定值,纠正各相接线。 3)请参照“附件清单”,增大电源容量。 4)正确连接电源的各相(L1、L2、L3)线路。单相电源请只接L1、L3 端子。 5)请换用新的驱动器。 过电流 和 接地错误 14 * 流入逆变器的电缆超过了规定值。 1)驱动器(内部电路、IGBT 或其他部件) 有缺陷。 2)电机电缆(U、V、W)短路了。 3)电机电缆(U、V、W)接地了。 4)电机烧坏了。 5)电机电缆接触不良。 6)频繁的伺服ON/OFF(SRV-ON)动作导 1)断开电机电缆,激活伺服ON 信号。如果马上出现此报警,请换用新驱动器。 2)检查电机电缆,确保U、V、W 没有短路。正确的连接电机电缆。 3)检查U、V、W 与“地线”各自的绝缘电阻。如果绝缘破坏,请换用新机器。 4)检查电机电缆U、V、W 之间的阻值。如果阻值不平衡,请换用新驱动器。 5)检查电机的U、V、W 端子是否有松动或未接,应保证可靠的电气接触。 6)请换用新驱动器。 Minas A4 系列驱动器技术资料选编- 61 - 保护功能 报警 代码 故障原因应对措施

FANUC伺服驱动系统故障分析诊断

FANUC交流伺服驱动系统故障维修举例 例244~245.加工过程中出现过热报警的故障维修 例244.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现伺服电动机过热报警。 分析与处理过程:本机床伺服驱动器采用的是FANUC S系列伺服驱动器,当报警时,触摸伺服电动机温度在正常的围,实际电动机无过熟现象。所以引起故障的原因应是伺服驱动器的温度检测电路故障或是过热检测热敏电阻的不良。 通过短接伺服电动机的过热检测热敏电阻触点,再次开机进行加工试验,经长时间运行,故障消失,证明电动机过热是由于过热检测热敏电阻不良引起的,在无替换元件的条件下,可以暂时将其触点短接,使其系统正常工作。 例245.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现X轴伺服电动机过热报警。 分析与处理过程:故障分析过程同上例,经检查X轴伺服电动机外表温度过高,事实上存在过热现象。 测量伺服电动机空载工作电流,发现其值超过了正常的围。测量各电枢绕组的电阻,发现A相对地局部短路;拆开电动机检查发现,由于电动机的防护不当,在加工时冷却液进入了电动机,使电动机绕阻对地短路。修理电动机后,机床恢复正常。 例246.驱动器出现OVC报警的故障维修 故障现象:某配套FANUC 0T-C系统、采用FANUC S系列伺服驱动的数控车床,手动运动X轴时,伺服电动机不转,系统显示ALM414报警。 分析与处理过程:FANUC 0T-C出现ALM 414报警的含义是“X轴数字伺服报警”,通过检查系统诊断参数DGN720~723,发现其中DGN720 bit5=l,故可以确定本机床故障原因是X轴OVC(过电流)报警。 分析造成故障的原因很多,但维修时最常见的是伺服电动机的制动器未松开。 在本机床上,由于采用斜床身布局,所以X轴伺服电动机上带有制动器,以防止停电时的下滑。经检查,本机床故障的原因确是制动器未松开:根据原理图和系统信号的状态诊断分析,故障是由于中间继电器的触点不良造成的,更换继电器后机床恢复正常。 例247~例248.参数设定错误引起的故障维修 例247.故障现象:某配套FANUC 0TD系统的二手数控车床,配套FANUC子α系列数字伺服,开机后,系统显示ALM417、427报警。 分析与处理过程:FANUC 0TD出现ALM 417、427报警的含义是“数字伺服参数设定错误”。 由于机床为二手设备,调试时发现系统的电池已经遗失,因此,系统的参数都在不同程度上存在错误。进一步检查系统主板,发现主板上的报警指示灯L1、L2亮,驱动器显示“-”,表明驱动器未准备好。 根据系统报警ALM417、427可以确定,引起报警可能的原因有: 1)电动机型号参数8*20设定错误。 2)电动机的转向参数8*22设定错误。 3)速度反馈脉冲参数8*23设定错误。 4)位置反馈脉冲参数8*24设定错误。

三菱加工中心说明书

第六章三菱系统铣、加工中心机床面板操作 三菱系统铣床及加工中心操作面板 三菱系统面板 6.1 面板简介 三菱系统铣床、加工中心操作面板介绍

三菱系统铣床、加工中心系统面板介绍 6.2 机床准备 6.2.1 激活机床 检查急停按钮是否松开至状态,若未松开,点击急停按钮,将其松开。点击启动电源。 6.2.2 机床回参考点 1、进入回参考点模式 系统启动之后,机床将自动处于“回参考点”模式。若在其他模式下,须切换到“回参考点”模式。

2、回参考点操作步骤 X轴回参考点 点击按钮,选择X轴,点击将X轴回参考点,回到参考点之后,X轴的回零灯变为; Y轴回参考点 点击按钮,选择X轴,点击将X轴回参考点,回到参考点之后,X轴的回零灯变为; Z轴回参考点 点击按钮,选择Z轴,点击将Z轴回参考点,回到参考点之后,Z轴的回零灯变为;回参考点前的界面如图6-2-2-1所示: 回参考点后的界面如图6-2-2-2所示: 图6-2-2-1回参考点前图图6-2-2-2 机床回参考点后图 6.3选择刀具 依次点击菜单栏中的“机床/选择刀具”或者在工具栏中点击图标“”,系统将弹出“铣刀选择”对话框。 按条件列出工具清单 筛选的条件是直径和类型 (1) 在“所需刀具直径”输入框内输入直径,如果不把直径作为筛选条件,请输入数字“0”。 (2) 在“所需刀具类型”选择列表中选择刀具类型。可供选择的刀具类型有平底刀、平底带R刀、球头刀、钻头等。 (3) 按下“确定”,符合条件的刀具在“可选刀具”列表中显示。 指定序号:(如图6-3-1-1)。这个序号就是刀库中的刀位号。卧式加工中心允许同时选择20把刀具,立式加工中心同时允许24把刀具; 图6-3-1-1 选择需要的刀具:先用鼠标点击“已经选择刀具”列表中的刀位号,再用鼠标点击“可选刀具”列表中所需的刀具,选中的刀具对应显示在“已经选择刀具”列表中选中的刀位号所在行; 输入刀柄参数:操作者可以按需要输入刀柄参数。参数有直径和长度。总长度是刀柄长度与刀具长

LG马扎克数控车床刀塔原点设置

LGMAZAK伺服刀塔原点丢失故障处理方法 4.1 利用操作面板和软体键来恢复原点 利用操作面板和软体键来恢复原点的处理步骤如下: (1)在手动状态下,按“刀箱拆散”使刀塔处于松开状态。 (2)同时按“MACHINE”→“OPTION”→“MFI+TURRET MODE”,使“TuRRET MODE”菜单反转显示。 (3)按手动转动刀具让刀具编号1的位置向主轴中心线方向移动。通过目测使刀盘和刀塔底座的上面基本对正。在操作过程中最好把1号刀装上中心钻,这样便于对正位置。 (4)再次选择“TURRET MODE”,使反转解除。 (5)选择“刀箱拆散”,将刀塔锁紧,此时要确认刀塔是否能顺利锁紧。锁紧时,如果发出异常声音或者振动时,需从步骤(1)开始重新操作。 (6)再次选择“刀箱拆散”使刀塔处于松开状态。 (7)再次同时按“MFI+TURRET MODE”,使菜单反显。 (8)选中“POSlTlON SET”,然后按刀塔旋转按扭,刀塔旋转.到达最初位置时会自动停止,参考点绝对位置即可确定。 (9)执行步骤(6)。 (10)执行步骤(4)。 (11)执行步骤(5)。 (12)选择“TURRET MODE”,使反转解除。 (13)选择“刀箱拆散”,将刀塔锁紧。 (14)关NC电源,断总电源开关。 再度通电,确认刀塔转动是否正常。 4.2 利用MR—J2—100CT软件来恢复原点 利用软件设定刀塔原点,需要知道刀塔丢失的是机械原点还是电气原点。电气原点丢失是非法断电引起的机床记忆原点丢失,刀塔实际机械位置正确;机械原点丢失是刀塔实际机械位置偏离。 4.2.1 电气原点设定 电气原点设定步骤如下: (1)在HOME模式下点刀箱拆散,使之红色反衬显示。 (2)将鼠标置于位置画面左下角,调出Windows(开始]菜单.按顺序选择[程序]→(MR—J2

相关文档
最新文档