第三节船用柴油机活塞修理

第三节船用柴油机活塞修理
第三节船用柴油机活塞修理

第一章.船用柴油机活塞修理

第三节.柴油机活塞修理

1 范围

本文件给出了船用柴油机活塞修理的工艺技术要求。

本文件适用于船用柴油机活塞的修理。

2 修理的工艺程序及要求

2.1 活塞从机上吊下,清洗去油污、积碳后,对活塞的外观进行全面仔细的检视,对外形尺寸、形位

公差及装配间隙进行检测,作好记录,在发现的缺陷处应作出明显的标志。

2.2 拆下活塞环、活塞销等附件,作好记录、标志,以防装复时混淆出错。

2.3 检查活塞表面有无裂纹、磨损、烧蚀、碎裂和腐蚀等缺陷,必要时可对其进行无损探伤。

2.4 测量活塞外圆表面的磨损,可用外径千分尺进行,其测量点应依据活塞长短而异,测量的部位可

参考图1。第一测点在裙部上端向下15mm~20mm,然后每隔100mm~200mm(视活塞裙部高度而定)测量一次,每一次测量应在同一截面上相互垂直的两个方向上进行,记录在表A-3-1中。圆度和圆柱度的磨损极限和活塞与缸套之间的极限间隙可参考表1、表2的要求。

图1 活塞外圆测量

垂直於曲轴

单位为毫米

2.4.1 活塞外圆磨损,圆度和圆柱度超过规定时,一般可用光车方法修理,使活塞外圆恢复正确的尺

寸及表面粗糙度。

2.4.2 当活塞与缸套的间隙过大时,铸铁、铝活塞应换新,铸钢活塞可以用堆焊加机加工方法来恢复

其原始尺寸。

2.5 活塞环槽的磨损可用样板和塞尺进行检测(图2)。记录在表A-3-1中,活塞环与槽的装配间隙

和极限间隙可参照表3规定。

图2 活塞环槽磨损的检查

2.5.1 环槽的磨损、变形和损伤,一般均可用光车、磨削方法对其进行修理。修理后环槽尺寸加大,

对此有如下几种处置办法: a ) 环槽镀铬;

b ) 环槽尺寸加大,配置加厚的活塞环,但活塞环槽之间轴向厚度的减薄量不得超过原始厚度的

20%~25%;

c ) 对大型钢质活塞,环槽的严重磨损或损伤,可用堆焊后重车环槽至原始尺寸的方法进行修复;

d ) 在环槽的下端面镶环(图3)。即先对活塞环槽进行机加工,然后装入新镶环,镶入后将环焊

在活塞上被车出的凹槽内,最后对活塞外圆及环槽上下两面精车达到规定的尺寸,其上下平面对活塞裙部中心线的垂直度应不大于0.02mm ,表面粗糙度Ra ≤1.6μm 。

图3 镶环法

2.6 测量活塞销与活塞销承的配合间隙,记录在表A-3-2中,检查销承内有无裂纹、烧蚀、机械损伤

等缺陷。配合间隙参照表4要求。

单位为毫米

2.6.1 销承的修理一般可用镗或铰孔的方法进行修整,修整后应符合如下要求:

a ) 活塞销孔中心线与活塞中心线的垂直度每100mm 长不大于0.025mm ;

b ) 活塞销孔中心线与活塞中心线的位移度,活塞直径小于200mm 的应不大于0.10mm ,活塞直径不

小于200mm 的应不大于0.20mm ;

c ) 活塞销孔的圆度和圆柱度应符合6级公差等级规定;

d ) 活塞销孔中心线的同轴度应不大于0.015mm ;

e ) 无衬套销孔的内表面粗糙度:铝活塞Ra ≤1.6μm ,钢或铸铁活塞Ra ≤3.2μm 。

2.6.2 活塞销与销孔及销孔衬套的装配间隙可参照表5的规定。

2.6.3 如果活塞销承镶有衬套,则可用更换衬套的方法来恢复其正常的配合间隙。

2.7 活塞顶部的烧蚀可用样板和塞尺进行检查(图4),测量时可将样板放在不同位置,每转45°测

量一次,其间隙大小即为烧蚀程度,超过规定的可用堆焊方法进行修理,堆焊前应先将烧蚀处全部车削(或磨削)掉露出本体金属,堆焊后再进行机械加工。对烧蚀面积大和深的允许将顶部全部切除,然后用相同的材料,造成一个新的顶部焊在活塞上。

图4 活塞顶烧蚀的检查

2.8 活塞头部的裂纹可以在彻底清除缺陷后用堆焊方法修补。针对于顶部裂纹比较集中一处的情况,

可在车床上把这一部分车削掉,然后在切除形成的孔中车出螺纹和突台,再按此用相同材料车削一带突肩的螺塞,螺塞端部应带有方形凸起,以供套扳手旋紧螺塞之用,为防螺塞松脱可以将螺塞外圈与活塞焊成一体,然后上车床车光(同时把方形凸起切除),亦可用一小螺栓在交界处把螺塞与活塞顶锁紧在一起(图5)。

样板 用塞尺测量处

图5 活塞顶裂纹的螺塞修补法

2.9焊补工艺

2.9.1 预检:

a)清除一切油污、积碳、污垢,露出本体金属;

b)对整个活塞无遗留地进行全面检查,对发现的缺陷作好标记和记录。

2.9.2 焊前预处理:

a)清除缺陷和开焊接坡口,可用机械加工,风铲、砂轮打磨、碳弧气刨等方法;

b)清除裂纹时,应先在距离裂纹两端5mm~10mm处用5mm~10mm的钻头钻止裂孔,止裂孔深度应超过裂纹深度。用碳弧气刨清除裂纹时,应先从两端向内进行刨削,以防止裂纹蔓延,随后打磨掉气刨后的坡口表面层,直至露出金属光泽;

c)低合金耐热钢制成的活塞头应在不低于焊接预热温度的情况下清除缺陷;

d)按清除缺陷的形状,开出相应的坡口(图6),坡口底部应为半园形,整个坡口外形应光滑而平滑过渡到周围的表面;

e)再次进行无损探伤,确认裂纹已彻底清除;

f)应将坡口及离坡口边缘不小于50mm范围内的油污、锈皮、氧化物、水垢等杂物清除干净,坡口外侧应适当覆盖,以防止飞溅伤及正常的表面;

g)活塞上原有镀铬、喷镀的表面,施焊前应彻底清除镀层,露出本体金属。

图6

2.9.3 焊接材料的选择,必须根据零件的化学成份、机械性能、使用条件等因素考虑。因此,对不明

材质的活塞进行修理时,应提取试样,进行材质分析,并出具书面报告。焊接材料应有出厂合格证及船检认可证书。由低合金耐热钢制成的活塞头的高温工作面焊补,使用的焊条的合金成份和机械性能应与母材相同或略高,不允许采用奥氏体耐热钢焊条焊补高温工作面。

2.9.4 焊前零件需进行预热。

2.9.4.1 预热温度应根据零件的化学成份,焊补处的厚度,焊接材料及环境温度等综合考虑,活塞头

焊补前的预热温度一般定为150℃~350℃,当环境温度过低,零件厚度大,结构复杂时预热

温度应取上限值。

2.9.4.2预热的形式,在有条件情况下,尽量采用整体预热。若采用局部预热,可在缺陷周围约150mm~

200mm范围内预热。

2.9.5 焊补

2.9.5.1 在焊补过程中,焊接工艺及程序的选择是以保证焊透,减少母材和焊缝金属的熔合比,降低

内应力,减少焊接变形为原则。

2.9.5.2焊补坡口较长且深时,可沿坡口长度方向采用多层步退焊法,多层迭加焊法和山形焊补法,

坡口的焊补熔敷次序,可根据图7所示。

图7 坡口焊补分层施焊法

2.9.5.3要在整个焊补过程中保温,并一次连续焊完,不允许中途停顿。

2.9.6 焊补后热处理

2.9.6.1焊补后应立即进行热处理,消除内应力。

2.9.6.2加热速度控制在350℃→650℃,每小时升温小于50℃。在650℃温度下保温6h以上,再从

650℃~350℃以每小时50℃降温的速度降至350℃,然后随炉冷却。

2.9.7 焊补后机加工

2.9.7.1 零件上车床时的温度不得大于50℃。

2.9.7.2 按照该型柴油机活塞的图纸进行机加工,如无依据可查,则测绘所得的图纸及技术要求必须

取得船方的认可。

2.9.8焊补和机加工结束后,应进行外观检视和无损探伤检查,其结果在工作表面上应无气孔夹渣,

缩松、咬边和裂纹等缺陷存在。

2.9.9活塞头的冷却水腔应进行液压试验,试验压力不低于0.7MPa,历时5min不渗漏。

2.10减磨环换新

2.10.1减磨环松动,过度磨损及严重拉伤应换新。

2.10.2材料推荐使用ZCuPb20Sn5。

2.10.3环槽断面形状应加工成燕尾槽。

2.10.4减磨环镶妥后,不得有松动。减磨环之间搭口间隙为3mm~5mm。

2.10.5减磨环外园与裙部外圆的径向圆跳动应不大于0.05mm,减磨环外圆、圆柱度按7级公差等级

要求。

2.10.6减磨环外圆表面粗糙度Ra≤

3.2μm。

船舶柴油机复习资料

1.柴油机特性曲线:用曲线形式表现的柴油机性能指标和工作参数随运转工况变化的规律。2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以上的气缸发生了一时无法排除的故障,所采取的停止有故障气缸运转的措施。 4.12小时功率:柴油机允许连续运行12小时的最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的110%。) 10.平均有效压力:柴油机单位气缸工作容积每循环所作的有效功。 11.热机:把热能转换成机械能的动力机械。 12.内燃机:两次能量转化(即第一次燃料的化学能转化成热能,第二次热能转化成机械能)过程在同一机械设备的内部完成的热机。 13.外燃机: 14.柴油机:以柴油或劣质燃料油为燃料,压缩发火的往复式内燃机。 15.上止点:活塞在气缸中运动的最上端位置,也是活塞离曲轴中心线最远的位置。下止点 16.行程:活塞从上止点移动到丅止点间的位移,等于曲轴曲柄半径R的两倍。 17.气缸工作容积:活塞在气缸中从上止点移动到丅止点时扫过的容积。 18.压缩比:气缸总容积与压缩室容积之比值,也称几何压缩比。 19.气阀定时:进排气阀在上.丅止点前启闭的时刻称为气阀定时,通常气阀定时用距相应止点的曲轴转角表示。 20.气阀重叠角:同一气缸在上止点前后进气阀与排气阀同时开启的曲轴转角。(进排气阀相通,依靠废气流动惯性,利用新鲜空气将燃烧室内废气扫出气缸) 21.扫气:二冲程柴油机进气和排气几乎重叠在丅止点前后120-150曲轴转角内同时进行,用新气驱赶废气的过程。 22.直流扫气:气流在缸内的流动方向是自下而上的直线运动。(空气从气缸下部扫气口,沿气缸中心线上行驱赶废气从气缸盖排气阀排出气缸) 23.弯流扫气:扫气空气由下而上,然后由上而下清扫废气。 24.横流扫气:进排气口位于气缸中心线两侧,空气从进气口一侧沿气缸中心线向上,然后再燃烧室部位回转到排气口的另一侧,再沿中心线向下,把废气从排气口清扫出气缸。 25.回流扫气:进排气口在气缸下部同一侧,排气口在进气口上方,进气流沿活塞顶面向对侧的缸壁流动并沿缸壁向上流动,到气缸盖转向下流动,把废气从排气口中清扫出气缸。 26.增压:提高气缸进气压力的方法,使进入气缸的空气密度增加,从而增加喷入气缸的燃油量,提高柴油机平均有效压力和功率。 27.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 28.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 29.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 30.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 31.有效功率:从柴油机曲轴飞轮端传出的功率。

船舶柴油机的分类

基础知识No Responses ? 二 122011 柴油机自1897年问世以来,经过一个世纪的发展,其技术已经取得了很大进步并更趋完善,在动力机械中已占据极为重要的地位。在船舶动力中也占统治地位。目前,在所有的内河及沿海中、小型船舶中,都采用柴油机作为主机和辅机;在远洋民用船舶中,在2000t以上的船舶中,以柴油机作为主机的船舶占总艘数的98%以上,占总功率的96%以上。 一、柴油机的优点 柴油机能在动力机械以及船舶动力装置中占据极为重要的地位,是因为它具有许多优越的条件。与其它热机相比,它具有如下优点: (1)热效率高。大型低速柴油机的有效效率已达到50%~53%,远远高于其他热机;而且柴油机在全工况范围内的热效率都较其它热机高。热效率高,也就是燃料消耗量小;柴油机又能燃用重油,甚至劣质重油;而且柴油机在停车状态时不需要消耗燃料。故燃料费用低,船舶的续航力大。 (2)功率范围大。柴油机的单机功率自1至80080kW,因此其适应的领域宽广。 (3)机动性好。正常起动只需3~5s,并能很快达到全负荷。有宽广的转速和负荷范围,能适应船舶航行的各种要求,而且操作简便。 (4)尺寸小,重量轻。柴油机不需要锅炉等大型附属设备,使柴油机动力装置的尺寸小、重量轻,特别适合于在交通运输等动力装置中应用。 (5)可直接反转。柴油机可设计成直接反转的换向柴油机,而且倒车性能好,使装置结构简单。 二、柴油机的类型 由于柴油机的应用广泛,因此,为满足各种不同的使用要求,柴油机的类型也就多种多样。根据柴油机的各种不同特点以及不同的分类方法,船舶柴油机大体上有以下类型: (1)按工作循环分类。有四冲程柴油机和二冲程柴油机。 (2)按进气方式分类。有增压柴油机和非增压柴油机。 (3)按曲轴转速分类。有高速、中速和低速柴油机。 高速柴油机:n>1000r/min;中速柴油机:n=300~1000r/min;低速柴油机:n<300r/min。

船用柴油机

上海国际海事信息与文献网发布时间:2007-03-20 浏览:3123 【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高可靠性、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用船舶和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、可靠性高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正

世界两大船用柴油机巨头_MAN和瓦锡兰公司发展情况

M A N B&W和W a r t s i l a是世界船用柴油机的两大著名品牌。在世界船用低速机市场,MANB&W品牌的占有率高达80%,Wartsila品牌占16%;在世界船用中速机市场,Wartsila品牌的占有率达到38%,M A N B&W品牌占27%。拥有这两大品牌产品的M A N柴油机公司和瓦锡兰公司在船用低、中、高速柴油机的设计、研发和售后服务等领域始终居于世界前列,保持着绝对垄断的地位。一、M A N公司——世界船用 低速机的霸主 MAN柴油机公司(MAN Diesel SE)是德国曼恩集团的子公司之 一,总部设在德国,是世界最主 要的船用柴油机设计、开发和制 造企业,在柴油机研制方面有百 余年的丰富经验。公司主要致力 于新产品研发、出售专利技术、 售前售后技术服务,同时也制造 小缸径低速机和中、高速机等。 1.历史沿革 M A N柴油机公司拥有最悠久 的柴油机生产历史,1897年德国 工程师鲁道夫·狄赛尔(Rudolf Diesel)在MAN柴油机公司的奥格 斯堡(Augsburg)工厂发明了世界 上第一台柴油机,英文“Diesel” 即是以狄赛尔(Diesel)的名字命 名。 1898年,鲁道夫·狄赛尔授 权丹麦B&W公司(Burmeister & Wain A/S)生产柴油机。丹麦B&W公 司成立于1846年,总部位于丹麦 哥本哈根,是丹麦一家大型船厂 和领先的柴油机生产商。该公司 世界两大船用柴油机巨头—— MAN和瓦锡兰公司发展情况 中国船舶工业经济研究中心 刘贵浙

于1971年将船厂和柴油机制造分离为两个独立的公司,柴油机制造部分于1980年被德国曼恩集团收购,改名为M A N B&W柴油机丹麦公司(MAN B&W Diesel A/S),而整个曼恩集团的柴油机业务由当时的MAN B&W柴油机公司(MAN B&W Diesel AG)负责。 2006年,德国曼恩集团为了更好地整合其在德国、丹麦、法国、英国的柴油机业务,将M A N B&W柴油机公司(M A N B&W Diesel AG)重组为MAN柴油机公司(MAN Diesel SE)。MAN柴油机公司全面负责曼恩集团的柴油机业务,德国的柴油机业务由M A N柴油机公司直接负责,海外的柴油机业务由其所属的多家海外公司负责,其中M A N B&W柴油机丹麦公司(MAN B&W Diesel A/S)即被重组为曼恩柴油机丹麦公司(MAN Diesel A/S)。 这次重组主要是将原来德国法律下注册的M A N B&W柴油机公司改变为欧盟法律下注册的M A N 柴油机公司,便于其整合在欧洲 和全球的柴油机业务;同时在公司名称中取消了“B&W”,全面采用“MAN Diesel”标识。 2.当前生产经营情况 M A N柴油机公司主要设计、开发、生产船用柴油机、发电厂用柴油发电机、涡轮增压器、螺旋桨等,其船用推进装置的世界市场份额占50%,两冲程船用低速柴油机的市场份额达80%。2007年,MAN柴油机公司的销售收入21.79亿欧元,同比增长21%;承接订单33.71亿欧元,同比增长29%;手持订单38.66亿欧元,同比增长38%;利润3.13亿欧元,同比增长36.7%。公司总资产17.41亿欧元,年底公司总人数7383人。 3.企业分布 M A N柴油机公司的两冲程柴油机生产集中在丹麦哥本哈根(阿尔法工厂),中速柴油机的生产分布在德国的奥格斯堡(动力设备、船用推进装置、发电装置)、丹麦的Holeby(发电设备)、丹麦的Frederikshavn(船用推进装置)、英国的S t o c k p o r t (动力装置、固定电源、船用推进装置、船用发电机、海洋与牵引装备)、法国的St.Nazaire(船用推进装置)。M A N柴油机公司的高速发动机部门主要生产柴油机、轻燃料和气体燃料发动机、双燃料发动机、发电设备、机械驱动和轨道牵引设备。M A N柴油机公司的涡轮增压器部门位于德国的 奥格斯堡。 表1.MAN 柴油机公司2001年—2007年主要数据 表2.MAN 柴油机公司下属公司情况 注:曼恩柴油机北美公司由曼恩资本公司(MAN Capital Corporation Inc.)100%控股,但是业务上归MAN柴油机公司管理。

船舶柴油机的分类

基础知识No Responses ? 二122011 柴油机自1897年问世以来,经过一个世纪的发展,其技术已经取得了很大进步并更趋完善,在动力机械中已占据极为重要的地位。在船舶动力中也占统治地位。目前,在所有的内河及沿海中、小型船舶中,都采用柴油机作为主机和辅机;在远洋民用船舶中,在2000t以上的船舶中,以柴油机作为主机的船舶占总艘数的98%以上,占总功率的96%以上。 一、柴油机的优点 柴油机能在动力机械以及船舶动力装置中占据极为重要的地位,是因为它具有许多优越的条件。与其它热机相比,它具有如下优点: (1)热效率高。大型低速柴油机的有效效率已达到50%~53%,远远高于其他热机;而且柴油机在全工况范围内的热效率都较其它热机高。热效率高,也就是燃料消耗量小;柴油机又能燃用重油,甚至劣质重油;而且柴油机在停车状态时不需要消耗燃料。故燃料费用低,船舶的续航力大。 (2)功率范围大。柴油机的单机功率自1至80080kW,因此其适应的领域宽广。 (3)机动性好。正常起动只需3~5s,并能很快达到全负荷。有宽广的转速和负荷范围,能适应船舶航行的各种要求,而且操作简便。 (4)尺寸小,重量轻。柴油机不需要锅炉等大型附属设备,使柴油机动力装置的尺寸小、重量轻,特别适合于在交通运输等动力装置中应用。 (5)可直接反转。柴油机可设计成直接反转的换向柴油机,而且倒车性能好,使装置结构简单。 二、柴油机的类型 由于柴油机的应用广泛,因此,为满足各种不同的使用要求,柴油机的类型也就多种多样。根据柴油机的各种不同特点以及不同的分类方法,船舶柴油机大体上有以下类型: (1)按工作循环分类。有四冲程柴油机和二冲程柴油机。 (2)按进气方式分类。有增压柴油机和非增压柴油机。 (3)按曲轴转速分类。有高速、中速和低速柴油机。 高速柴油机:n>1000r/min;中速柴油机:n=300~1000r/min;低速柴油机:n<300r/min。

船用柴油机工作原理

船用柴油机是一种船舶上用的柴油机。其工作原理如下: 一股新鲜空气被抽进或泵进发动机汽缸内,然后被运动的活塞压缩到很高的压力。当空气被压缩时,其温度升高以致它能点燃喷射进汽缸的细雾状燃油。燃油的燃烧给充进的空气增加更多的热量,引起膨胀并迫使发电机活塞对曲轴做功,曲轴依次地通过其他轴来驱动传船舶的螺旋桨。 两次燃油喷射之间的运行称为一个工作循环。在四冲程柴油发动机中,这个循环需要由活塞四个不同的冲程来完成,即吸气、压缩、膨胀和排气。如果我们把吸气和排气与压缩和膨胀结合起来,四冲程发动机就变成了两冲程发电机。 二冲程循环开始于活塞从其冲程的底部(既下止点)上升,此时汽缸边上进气口处于打开状态。此时,排气阀也打开,新鲜空气充入汽缸,把上一冲程残留的废气通过打开的排气阀吹出去。阀吹出去。 当活塞向上运行到其行程上午大约五分之一时,它就关闭进气口,同时排气阀也关闭,所以温度和压力都上升到很高的值。当活塞到达其冲程的顶部(即上止点)时,燃油阀把细雾状的燃油喷射到汽缸内的高温空气中,燃油立即燃烧,热量使压力很快上升。这样,膨胀的燃气迫使活塞在做功冲程中向下移动。当活塞向下移动到行程的一半过一点的地方,排气阀打开,高温的燃气由于其自身的压力开始通过排气阀向外流出,该压力受

助于通过进气口进入的新鲜空气。进气口是随着活塞的进一步下行而打开的。然后,另一循环又开始了。 在二冲程发动机里,曲轴转一圈做一次做功冲程,而四冲程发动机,需要曲轴转二圈才做一次做功冲程,这就是为什么二冲程发动机在相同的尺寸下能够做大约两倍于四冲程发动机所做功的原因。在当前实际使用中,具有相同缸径和相同转速的发动机,二冲程发动机输出的功率比四冲程发动机高出大约百分之八十。这种发动机功率的增加,使得二冲程发动机作为大型船舶主机而得到广泛地应用。 船用柴油机和普通柴油机的区别有两点 其一,船用油一般碱值比较高。由于船用燃油硫含量高,(一般在0.5%-3.5%范围内变化)因而要求润滑油必须有足够的碱保持性,以中和燃料燃烧后生成的酸性物质。 其二,船用油耐水性能好。船在海上航行难免遇水污染,因而要求船用润滑油必须具有良好的抗乳化性能和分水性能,而陆用柴油机油则无此工况,也无此要求。 此外,船用油具有车用柴油机油的其它一切性能。

船舶柴油机习题及答案

柴油机的基本知识 (1)柴油机的基本概念 1.( ) 柴油机是热机的一种,它是: A. 在气缸内进行一次能量转换的热机 B. 在气缸内进行二次能量转换的点火式内燃机 C. 在气缸内进行二次能量转换的往复式压缩发火的内燃机 D. 在气缸内进行二次能量转换的回转式内燃机 2.( ) 内燃机是热机的一种,它是: A. 在气缸内燃烧并利用某中间工质对外作功的动力机械 B. 在气缸内进行二次能量转换并利用某中间工质对外作功的动力机械 C. 在气缸内燃烧并利用燃烧产物对外作功的动力机械 D. 在气缸内燃烧并利用燃烧产物对外作功的往复式动力机械3.( ) 在柴油机中对外作功的工质是: A.燃油 B. 空气 C. 燃烧产物 D. 可燃混合气 4.( ) 在内燃机中柴油机的本质特征是: A. 内部燃烧 B. 压缩发火 C. 使用柴油做燃料 D. 用途不同 5. ( ) 柴油机与汽油机同属内燃机,它们在结构上的主要差异是: A. 燃烧工质不同 B. 压缩比不同 C. 燃烧室形状不同 D. 供油系统不同 6.( ) 在柴油机实际工作循环中缸内的工质是: A. 可燃混合气 B. 燃气 C. 空气 D. B+C 7.( ) 根据柴油机的基本工作原理,下列哪一种定义最准确: A. 柴油机是一种往复式内燃机 B. 柴油机是一种在气缸中进行二次能量转换的内燃机 C. 柴油机是一种压缩发火的往复式内燃机 D.柴油机是一种压缩发火的回转式内燃机 8.( ) 柴油机活塞行程的定义是指: A.气缸空间的总长度 B.活塞上止点至气缸底面的长度 C.活塞下止点至气缸底面的长度 D.活塞位移或曲柄半径R的两倍 9.( ) 柴油机压缩后的温度至少应达到: A. 110~150℃ B. 300~450℃ C. 600~700℃ D. 750~850℃ 10.( ) 影响柴油机压缩终点温度T c 和压力P c 的因素主要是: A. 进气密度 B. 压缩比 C. 进气量 D. 缸径大小11.( ) 柴油机采用压缩比这个参数是为了表示: A. 气缸容积大小 B. 工作行程的长短

中国主要船用柴油机制造厂家

1、上海中船三井造船柴油机有限公司CSSC-MES Diesel Co., Ltd. (CMD) (T) 公司简介 上海中船三井造船柴油机有限公司(英文名称:CSSC-MES Diesel Co.,Ltd.英文简称:CMD)是由中国船舶工业集团公司、中国船舶工业股份有限公司和日本三井造船株式会社共同投资组建的一家船用大功率低速柴油机制造企业。公司位于上海临港新城重装备产业区内,占地近40万平方米,南临洋山深水港,北靠浦东国际航空港,区位优势非常明显。 公司总投资超过28亿元,分两期建设,一期工程投资达14亿元,目前注册资本7.06亿元。公司拥有大型数控装备和现代化重型测试设备,并引进曼恩和瓦锡兰专利技术,主要生产气缸直径600mm以上的船用大功率低速柴油机。 2008年,公司已形成100万马力的柴油机年生产能力;2009年一期项目完工后,公司将形成170万马力的柴油机年生产能力;公司全面建成后将形成超过300万马力的柴油机年生产能力,必将成为中国船用低速柴油机制造领域的核心和中坚力量。截至目前,公司累计交付柴油机突破200万马力,并于2008年7月成功制造中国首台世界最大缸径柴油机CMD-MAN B&W 8K98MC。2008年,公司通过了上海市高新技术企业认定和ISO9001:2000质量管理体系认证。 https://www.360docs.net/doc/1318120528.html,/EnHome.aspx 2、南车资阳机车有限公司始CSR ZiYang Locomotive Co., Ltd. (CSR) (F) 公司简介 中国南车旗下的南车资阳机车有限公司始建于1966年,是由铁道部兴建并培育壮大的中国西部唯一的机车制造企业。公司是四川省重大装备八大产品链重点企业,四川省“大集团、大企业”重点培育企业之一,在我国重大装备制造自主创新和西部大开发中发挥着重要作用。 公司累计新造各型机车数量居国内第二,出口到亚洲、非洲、美洲的16个国家,是土库曼斯坦、越南最大的机车供应商。公司生产的发动机应用到机车、船舶、发电领域,是工程船舶成套设备和大功率燃气机知名供应商。公司生产的中速发动机曲轴国内市场占有率达70%,出口到德国、日本、美国、韩国、印度、巴基斯坦等国家,是印度最大的机车曲轴供应商。 公司拥有先进的精密设备和检测仪器,共有各类机械设备2400余台套,通过优化整合企业优质资源,形成了以六轴电力机车、出口内燃机车为代表的机车产业,以燃气发动机、船用发动机为代表的发动机产业,以全断面隧道掘进机、隧道快速施工机械为代表的重型装备产业,以中速发动机全纤维锻钢曲轴、大型锻铸件为代表的优势零部件产业。 公司通过了“中国国家实验室”认可,是国家一级计量单位,通过了ISO9001质量管理体系2000版、ISO14000环境管理体系和OHSMS18000职业健康安全管理体系认证。 公司设立了国家级博士后科研工作站,大力实施“外引内联”的技术创新战略,相继引进美国EMD机车径向转向架制造技术、美国卡特彼勒公司36系列发动机制造技术、德国MAN公司 27/38、32/40船用发动机制造技术、日本三菱公司30G燃气发动机制造技术,企业核心竞争力不断提升。公司与西南交通大学等大专院校、科研院所广泛合作,努力成为我国知名的机车、发动机、全断面隧道掘进机以及曲轴等关键零部件的高标准研发制造中心。 秉持“诚信、敬业、创新、超越”企业精神的南车资阳机车有限公司,正携手四海宾朋,致力于交通和动力装备速度与力量的持续提升,向着更高的目标不断迈进。 https://www.360docs.net/doc/1318120528.html,/index.asp 3、大连船用柴油机有限公司Dalian Marine Diesel Works (T) 公司简介 中国船舶重工股份有限公司大连船用柴油机有限公司(DMD),主要生产DMD-WARTSILA系列和DMD-MAN系列重型船舶主机,同时进行重大工艺装备制造。以船舶动力领域优秀专家组成

船舶柴油机知识点梳理

上止点(T.D.C)是活塞在气缸中运动的最上端位置。 下止点(B.D.C)同上理。 行程(S)指活塞上止点到下止点的直线距离,是曲轴曲柄半径的两倍。 缸径(D)气缸内径。 气缸余隙容积(Vc)、气缸工作容积(Vs),气缸总容积(Va)、余隙高度(顶隙)。 柴油机理论循环(混合加热循环):绝热压缩、定容加热、定压加热、绝热膨胀、定容放热。混合加热循环理论热效率的相关因素:压缩比ε、压力升高比λ、绝热指数k(正相关)、初期膨胀比ρ(负相关)。 实际循环的差异:工质的影响(成分、比热、分子数变化,高温分解)、汽缸壁的传热损失、换气损失(膨胀损失功、泵气功)、燃烧损失(后燃和不完全燃烧)、泄漏损失(0.2%,气阀处可以防止,活塞环处无法避免)、其他损失。 活塞的四个行程:进气行程、压缩行程、膨胀行程和排气行程。 柴油机工作过程:进气、压缩、混合气形成、着火、燃烧与放热、膨胀做功和排气等。 四冲程柴油机的进、排气阀的启闭都不正好在上下止点,开启持续角均大于180°CA(曲轴转角)。气阀定时:进、排气阀在上下止点前后启闭的时刻。 进气提前角、进气滞后角、排气提前角、排气滞后角。 气阀重叠角:同一气缸的进、排气阀在上止点前后同时开启的曲轴转角。(四冲程一定有,增压大于非增压) 机械增压:压气泵由柴油机带动。 废气涡轮增压:废气送入涡轮机中,使涡轮机带动离心式压气机工作。 二冲程柴油机的换气形式:弯流(下到上,再上到下)、直流(直线下而上)。 弯流可分:横流、回流、半回流。直流:排气阀、排气口。 横流:进排气口两侧分布。回流:进排气口同侧,排气口在进气口上面。 半回流:进排气的分布没变,排气管中装有回转控制阀。 排气阀——直流扫气:排气阀的启闭不受活塞运动限制,扫气效果较好。 弯流扫气的气流在缸内的流动路线长(通常大于2S),新废气掺混且存在死角和气流短路现象,因而换气质量较差。横流扫气中,进排气口两侧受热不同,容易变形。但弯流扫气结构简单,方便维修。直流扫气质量好,但是结构复杂,维修较困难。 柴油机类型: 低速柴油机n≤300r/min Vm<6m/s 中速柴油机3001000r/min Vm>9m/s 按活塞和连杆的连接方式:筒形活塞式(无十字头式)柴油机,十字头式柴油机。 两者间的区别:筒式活塞承受侧推力,活塞导向作用由活塞下部筒式裙部来承担。活塞与连杆连接:活塞销。十字头活塞侧推力由导板承担,导向由十字头承担。活塞与连杆连接:活塞杆(垂直方向做直线运动)。 两者的优缺点:十字头式柴油机的活塞与缸套不易擦伤和卡死,气缸下部设隔板,能避免曲轴箱的滑油污染,利于燃烧劣质燃料。活塞下方密闭,可作为辅助压气泵。但重量和高度大,结构复杂。筒式柴油机的体积小,重量轻,结构简单。 多缸机气缸排列可以分为直列式、V型(夹角90°、60°、45°)、W型(较高的单机功率与标定功率的比值) 从柴油机功率输出端向自由端看,正车时按顺时针方向旋转的柴油机称为右旋柴油机,反之,左旋。双机双桨上,由船艉向船艏看,机舱右舷的为右旋柴油机,左舷的为左旋柴油机,右机操纵侧在左侧,排气在右侧,左机相反。(单台布置的船舶主柴油机为右旋柴油机)。

船舶柴油机活塞环故障分析Microsoft Word 文档 (3)

目录 1. 活塞环的工作条件----------------------------------------------2 2. 活塞环的主要故障----------------------------------------------3 3. 影晌活塞环工作的主要因素--------------------------------------4 3.1活塞环硬度和缸套硬度匹配------------------------------------5 3.2活塞环搭口间隙----------------------------------------------6 3.3活塞环和缸套的几何配合状况----------------------------------7 3.4活塞环槽----------------------------------------------------8 3.5燃油品质和气杠油量------------------------------------------9 3.6日常维护修理------------------------------------------------10 结束语------------------------------------------------------------11 参考文献----------------------------------------------------------12

内容摘要 活塞环是柴油机燃烧室的组成零件之一。具有保持活塞与气缸套之间有效密封的作用和将活塞热量传递给汽缸壁的散热作用,以及调节气缸润滑油的作用。活塞环又是柴油机的易损零件。主要损坏形式有:过度磨损、折断、粘着、和弹力丧失等。此文通过对活塞环故障实例的分析,阐述了产生故阵的主要原因和主要影响因素,对日常运行管理提出了切实可行的建议,还对新型活塞环磨损监控系统作了简单介绍。 关健词活塞环搭口间隙故障维护管理影响监控 前言 活塞环的主要作用是密封燃烧室,保证活塞到达上止点时,燃烧室内的新鲜空气有足够的温度和压力,满足燃油自燃的温度,并使燃烧迅速、及时和完善;切实保证气缸内高压燃气膨胀作功而不泄漏,对燃油燃烧和柴油机的工作状态起着至关重要的作用。众所周知,活塞环的密封作用,是靠活塞环本身的弹性,和在气缸内气体压力的作用下紧贴于气缸壁和活塞环槽平面来实现的。但是,活塞环和气缸套这对摩擦副工作条件非常恶劣,摩擦损失占到整个柴油机摩擦损失功率的55%---65%。活塞环运行中的管理和维护,对保证柴油机的安全可靠和经济运行显得尤为重要。

船用柴油机的现状及发展趋势

船用柴油机的现状及发展趋势 船用柴油机被誉为船舶的动力“心脏”,可分为低速、中速、高速柴油机。目前,MAN和W?rtsil?(瓦锡兰)是全球船用柴油机两大品牌,其中MAN是船用低速机龙头,瓦锡兰是船用中速机龙头。 1 低速柴油机 工作原理:通过活塞的两个冲程完成一个工作循环的柴油机称为二冲程柴油机,油机完成一个工作循环曲轴只转一圈,与四冲程柴油机相比,它提高了作功能力,在具体结构及工作原理方面也存在较大差异。 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正时、排气正时,挖掘柴油机热效率潜力;采用新材料,改进零部件的设计,随负荷控制气缸冷却水和气缸润滑油,以求提高零部件的工作可靠性,增加柴油机的使用寿命;通过电子控制技术,达到柴油机运行的智能化。该公司

船舶柴油机发展趋势

【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高可靠性、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用船舶和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、可靠性高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保

持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer 和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC 型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正时、排气正时,挖掘柴油机热效率潜力;采用新材料,改进零部件的设计,随负荷控制气缸冷却水和气缸润滑油,以

第三节船用柴油机活塞修理

第一章.船用柴油机活塞修理 第三节.柴油机活塞修理 1 范围 本文件给出了船用柴油机活塞修理的工艺技术要求。 本文件适用于船用柴油机活塞的修理。 2 修理的工艺程序及要求 2.1 活塞从机上吊下,清洗去油污、积碳后,对活塞的外观进行全面仔细的检视,对外形尺寸、形位 公差及装配间隙进行检测,作好记录,在发现的缺陷处应作出明显的标志。 2.2 拆下活塞环、活塞销等附件,作好记录、标志,以防装复时混淆出错。 2.3 检查活塞表面有无裂纹、磨损、烧蚀、碎裂和腐蚀等缺陷,必要时可对其进行无损探伤。 2.4 测量活塞外圆表面的磨损,可用外径千分尺进行,其测量点应依据活塞长短而异,测量的部位可 参考图1。第一测点在裙部上端向下15mm~20mm,然后每隔100mm~200mm(视活塞裙部高度而定)测量一次,每一次测量应在同一截面上相互垂直的两个方向上进行,记录在表A-3-1中。圆度和圆柱度的磨损极限和活塞与缸套之间的极限间隙可参考表1、表2的要求。 图1 活塞外圆测量 垂直於曲轴

单位为毫米 2.4.1 活塞外圆磨损,圆度和圆柱度超过规定时,一般可用光车方法修理,使活塞外圆恢复正确的尺 寸及表面粗糙度。

2.4.2 当活塞与缸套的间隙过大时,铸铁、铝活塞应换新,铸钢活塞可以用堆焊加机加工方法来恢复 其原始尺寸。 2.5 活塞环槽的磨损可用样板和塞尺进行检测(图2)。记录在表A-3-1中,活塞环与槽的装配间隙 和极限间隙可参照表3规定。 图2 活塞环槽磨损的检查

2.5.1 环槽的磨损、变形和损伤,一般均可用光车、磨削方法对其进行修理。修理后环槽尺寸加大, 对此有如下几种处置办法: a ) 环槽镀铬; b ) 环槽尺寸加大,配置加厚的活塞环,但活塞环槽之间轴向厚度的减薄量不得超过原始厚度的 20%~25%; c ) 对大型钢质活塞,环槽的严重磨损或损伤,可用堆焊后重车环槽至原始尺寸的方法进行修复; d ) 在环槽的下端面镶环(图3)。即先对活塞环槽进行机加工,然后装入新镶环,镶入后将环焊 在活塞上被车出的凹槽内,最后对活塞外圆及环槽上下两面精车达到规定的尺寸,其上下平面对活塞裙部中心线的垂直度应不大于0.02mm ,表面粗糙度Ra ≤1.6μm 。 图3 镶环法 2.6 测量活塞销与活塞销承的配合间隙,记录在表A-3-2中,检查销承内有无裂纹、烧蚀、机械损伤 等缺陷。配合间隙参照表4要求。 单位为毫米

船用柴油机主要系统介绍-燃油-滑油-冷却

第五章柴油机系统 第一节燃油系统 一、作用和组成 燃油系统是柴油机重要的动力系统之一,其作用是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。该系统通常由五个基本环节组成:加装和测量、贮存、驳运、净化处理、供给。 燃油的加装是通过船上甲板两舷装设的燃油注入法兰接头进行的。这样,从两舷均可将轻、重燃油直接注入油舱。注入管应有防止超压设施。如安全阀作为防止超压设备,则该阀的溢油应排至溢油舱或其他安全处所。注入接头必须高出甲板平面,并加盖板密封,以防风浪天甲板上浪时海水灌入油舱。燃油的测量可以通过各燃油舱柜的测量孔进行,若燃油舱柜装有测深仪表的话,也可以通过测深仪表,然后对照舱容表进行。 加装的燃油贮存在燃油舱柜中。对于重油舱,一般还装设加热盘管,以加热重油,保持其流动性,便于驳油。 燃油系统中还装设有调驳阀箱和驳运泵,用于各油舱柜间驳油。 从油舱柜中驳出的燃油在进机使用前必须经过净化系统净化。燃油净化系统包括燃油的加热、沉淀、过滤和离心分离。图5-1示出了目前大多数船舶使用的重质燃油净化系统。 图5-1 重质燃油净化系统 1-调驳阀箱;2-沉淀油柜燃油进口;3-高位报警;3-低位报警;4-温度传感器;5-沉淀油柜;6、16-水位传感器;7-供油泵; 8-滤器;9-气动恒压阀;9’-流量调节器;10-温度控制器;11、12-分油机;13-连接管;14-日用柜溢油管;15-日用油柜从图可以看出,通过调驳阀箱1,燃油被驳运泵从油舱送入沉淀油柜5,每次补油量限制在液位传感器3与3之间,自动调节蒸汽流量的加温系统加速油的沉淀分离并且可使沉淀油柜

提供给供油泵7的油温变化幅度很小。供油泵后设气动恒压阀9和流量控制阀9’,以确保平稳地向分油机输送燃油,有利于提高净化质量。燃油进入分油机前,通过分油机加热器加温,加热温度由温度控制器10控制,使进入分油机的燃油温度几乎保持恒定。系统设有既能与主分油机串联也能并联的备用分油机,还设有备用供油泵,提高了系统的可靠性。分油机所分的净油进入日用油柜15,日用油柜设溢流管。在船舶正常航行的情况下,分油机的分油量将比柴油机的消耗量大一些,故在吸入口接近日用油柜低部设有溢流管,可使日用油柜低部温度较低、杂质和水含量较多的燃油引回沉淀柜,既实现循环分离提高分离效果,又使分油机起停次数减少,延长分油机使用寿命。沉淀柜和日用柜都设有水位传感器6、16,以提醒及时放残。 燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的使用,其预热温度大大提高。为避免在使用高(700mm2/s)重油时因预热温度过高而汽化,出现了一种加压式燃油系统。如图5-2所示,在日用燃油柜与燃油循环油路之间增设一台输送泵,保证柴油机喷油泵进口处的燃油压力为800kPa(循环泵出口压力为1Mpa),循环油路(回路)中压力为400kPa,防止燃油系统在高预热温度(如150℃)时发生汽化和空泡现象。 图5-2 加压式燃油供给系统 二、主要设备与作用 1.重油驳运泵 重油驳运泵的作用是将任一重油舱中的重油驳至重油沉淀柜中进行沉淀澄清处理;在各

船用柴油机活塞损伤

目录 摘要 ................................................................................................................... 错误!未定义书签。Abstract .................................................................................................................. 错误!未定义书签。 1 前言…………………………………………………………………………………………………….错误!未定义书签。 2 活塞的制造 (1) 2.1活塞材料的选择 (1) 2.1.1 中低速机的活塞材料 (1) 2.1.2 中高速机活塞的材料 (1) 2.1.3大型低速二冲程柴油机活塞材料 (1) 2.2活塞毛坯的制造 (1) 2.2.1整体式铸铁活塞毛坯的制造 (1) 2.2.2整体式铝活塞毛坯的制造 (1) 2.3活塞的加工的技术要求 (2) 2.3.1活塞的尺寸精度 (2) 2.3.2活塞的形状精度 (2) 2.3.3活塞的位置精度 (2) 3 活塞损伤的情况 (3) 3.1活塞外圆表面的磨损与修复 (4) 3.1.1一般情况及原因 (4) 3.1.2损伤造成的后果 (4) 3.1.3检测方法 (4) 3.1.4维修方法 (5) 3.2 活塞环槽的磨损与修复 (5) 3.2.1 一般情况及原因 (5) 3.2.2 损伤造成的后果 (6) 3.2.3 检测方法 (6)

关于柴油机连杆设计

第一章绪论 1.1 课题的意义及主要工作 1.1.1 课题的背景和意义 近百年来,柴油机因其功率范围大、效率高、能耗低,在各型民用船舶和中小型舰艇推进装置中确立了其主导地位。新材料、新工艺、新技术的不断开发使用,为柴油机注入了新的活力,使其在动力机械,尤其在船舶动力方面依然发挥着无法替代的作用。据统计,在 2000吨以上的船舶中,柴油机作为动力的超过 95%,预计这一情况仍将持续下[]1 去。受油价的影响,以及一些柴油机的缺点(比如烟度和噪声)被一一克服,现在在乘用车市场,柴油动力开始渐渐显示其独特魅力。 但是,由于受各种因素的影响,我国的柴油机研究还是落后于世界先进水平。经历多年的市场实践,国内柴油发动机生产企业已不再满足于凭借引进产品获得市场上的暂时领先,而认识到核心技术是最关键的,只有通过引进、消化、吸收的途径,自己掌握了核心技术,企业才会有发展后劲并获得可持续发展的条件。随着我国造船事业的进一步发展,作为船舶配套中最重要的一个环节,柴油机技术的发展瓶颈已日益凸显。因此,必须研发具有我国自主知识产权的柴油机,以提高我国船舶制造的国产率。 发动机是船舶的心脏,而发动机连杆则是承受强烈冲击力和动态应力最高的动力学负荷部件,其在工作中承受着急剧变化的动载荷,再加上连杆的高频摆动产生的惯性力,会使连杆杆身发生形变,轻则会影响曲柄连杆机构的正常工作,使机械效率下降。重则会破坏活塞的密封性能,使排放恶化,甚至造成活塞拉缸、拉瓦,使发动机无法正常工作。因此对其刚度和强度提出了很高的要求。 以往,连杆的的制造以铸造法和锻造法为主;20世纪80年代以来,由于采用粉末锻造法大批量生产的粉锻连杆具有力学性能优、尺寸精度高、质量较轻及质量偏差很小等特点,因而相继在发达国家快速发展,逐渐取代铸造和锻造连杆[]2。而高密度烧结法制造连杆也快速发展,并具有良好的力学性能。 1.1.2 主要工作 本课题的工作可以分为三大部分。第一部分为连杆的结构和基本尺寸的设计过程;第二部分为运用UG对所设计的连杆进行三维建模装配;第三部分为柴油机连杆的有限元分析及强度校核。

相关文档
最新文档