概率论与数理统计(经管类)公式

概率论与数理统计(经管类)公式
概率论与数理统计(经管类)公式

概率论与数理统计必考知识点

一、随机事件和概率

1、随机事件及其概率

运算律名称 表达式

交换律

A B B A +=+ BA AB =

结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(

分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+

德摩根律

B A B A =+ B A AB +=

2、概率的定义及其计算

公式名称

公式表达式

求逆公式 )(1)(A P A P -=

加法公式 )()()()(AB P B P A P B A P -+=+

条件概率公式 )

()

()(A P AB P A B P =

乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =

全概率公式

∑==

n

i i

i

A B P A P B P 1

)()()(

贝叶斯公式 (逆概率公式) ∑∞

==

1

)

()()

()()(i i

j

j j j A B P A P A B P A P B A P

伯努利概型公式 n k p p C k P k n k

k n n ,1,0,)1()(=-=-

两件事件相互独立相应

公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;

1)()(=+A B P A B P

二、随机变量及其分布

1、分布函数性质

)()(b F b X P =≤ )()()(a F b F b X a P -=≤<

2、离散型随机变量

分布名称 分布律

0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k

二项分布),(p n B

n k p p C k X P k n k

k n ,,1,0,)1()( =-==-

泊松分布)(λP ,2,1,0,!

)(===-k k e

k X P k

λλ

几何分布)(p G

,2,1,0,)1()(1=-==-k p p k X P k

超几何分布),,(n M N H ),min(,,1,,)(M n l l k C C C k X P n

N

k n M

N k M +==

=--

3、连续型随机变量

分布名称

密度函数

分布函数

均匀分布),(b a U

??

???<<-=其他,0,1

)(b x a a b x f

??

?

????

≥<≤--<=b x b x a a b a x a x x F ,1,,0)(

指数分布)(λE

????

?>=-其他,

00

,)(x e x f x λλ ?

??≥-<=-0,10,

0)(x e x x F x

λ 正态分布),(2σμN

+∞<<∞-=

--

x e

x f x 2

2

2)(21)(σμσ

π ?∞

---

=

x

t t e

x F d 21

)(2

22)(σμσπ

标准正态分布)1,0(N +∞<<∞-=-

x e

x x 2

221)(π

?

?

---

=

x

t t e

x F d 21)(2

22)(σμσπ

三、多维随机变量及其分布

1、离散型二维随机变量边缘分布

∑∑====

==?j

j

ij

j

i

i i p

y Y x X P x X P p ),()(

∑∑====

==?i

i

ij

j

i

j j p

y Y x X P y Y P p ),()(

2、离散型二维随机变量条件分布

2,1,)()

,()(==

====

===?i P p y Y P y Y x X P y Y x X P p j ij j j i j i j i

2,1,)

()

,()(======

===?

j P p x X P y Y x X P x X y Y P p i ij i j i i j i j

3、连续型二维随机变量( X ,Y )的联合分布函数??

∞-∞

-=x

y

dvdu v u f y x F ),(),(

4、连续型二维随机变量边缘分布函数与边缘密度函数

边缘分布函数:??

∞-+∞

∞-=x X dvdu v u f x F ),()( 边缘密度函数:?+∞

-=dv v x f x f X ),()( ?

?

∞-+∞∞

-=y

Y dudv v u f y F ),()( ?

+∞

-=

du y u f y f Y ),()(

5、二维随机变量的条件分布

+∞<<-∞=

y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)

()

,()(

四、随机变量的数字特征

1、数学期望

离散型随机变量:∑+∞

==1)(k k k p x X E 连续型随机变量:?

+∞∞

-=dx x xf X E )()(

2、数学期望的性质

(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =

(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质

(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<

(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:)

()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关

7、协方差和相关系数的性质

(1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =

(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++ 8、常见数学分布的期望和方差

分布 数学期望

方差

0-1分布),1(p B p

)1(p p - 二行分布),(p n B np

)1(p np -

泊松分布)(λP λ

λ

几何分布)(p G p

1 2

1p p -

超几何分布),,(n M N H N M n

1

)

1(---N m

N N M N M n

均匀分布),(b a U 2

b

a + 12

)(2

a b - 正态分布),(2σμN μ

指数分布)(λE

λ

1

2

1

λ

五、大数定律和中心极限定理

1、切比雪夫不等式

若,)(,)(2σμ==X D X E 对于任意0>ξ有2

)

(})({ξξX D X E X P ≤

≥-或2

)

(1})({ξξX D X E X P -

≥<-

2、大数定律:若n X X 1相互独立且∞→n 时,

∑∑

==?→

?n

i i

D

n

i i X E n

X n

1

1

)(1

1

(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2

σ则:

∑∑

==∞→?→

?n

i i

P

n

i i n X E n

X n

1

1

)(),(1

1

(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ?→?∑=P

n i i X n 1

1

3、中心极限定理

(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:

)1,0(~1

N n n X

Y n

k k

n ?→?-=

∑=σ

μ

(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:

?

--

+∞

→Φ==

≤--x

t n x x dt

e

x p np np

P )(21})

1({

lim 22

π

η

(3)近似计算:)(

)(

)(

)(1

1

σ

μσ

μσ

μσ

μ

σ

μn n a n n b n n b n n X

n n a P b X a P n

k k

n

k k -Φ--Φ≈-≤

-≤

-=≤≤

∑∑

==

六、数理统计

1、总体和样本

总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k n

k n x F x x x F =∏=

2、统计量

(1)样本平均值:∑

==

n

i i X n

X 1

1

(2)样本方差:∑

==--=

--=

n

i i n

i i X n X n X X n S 1

2

21

2

2

)(11

)(1

1

(3)样本标准差:∑

=--=

n

i i X X n S 1

2

)(1

1

(4)样本k 阶原点距: 2,1,1

1

==

∑=k

X

n A n

i k

i k

(5)样本k 阶中心距:∑==-=

=n

i k i

k k k X X

n

M B 1

3,2,)(1

(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。),m in(21)1(n X X X X =为最小次序统计量;),m ax(21)(n n X X X X =为最大次序统计量。

3、三大抽样分布

(1)2χ分布:设随机变量n X X X 21,相互独立,且都服从标准正态分布)1,0(N ,则随机变量

2

22212n

X X X ++=χ所服从的分布称为自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ (2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则随机变量:n

Y X T =所服从的分布称为自由

度的n 的t 分布,记为)(~n t T 性质:①)2(,2

)]([,0)]([>-=

=n n n

n t D n t E ②2

22)(21)1,0()(lim σμπ

--∞→=

=x n e N n t

(3)F 分布:设随机变量)(~),(~2212n V n U χχ,且U 与V 独立,则随机变量2

1

21),(n V n U n n F =所服从的分布称为自由度),(21n n 的F 分布,记为),(~21n n F F 性质:设),(~n m F X ,则),(~1

m n F X

七、参数估计

1、参数估计

(1) 定义:用),,(21n X X X ∧θ估计总体参数θ,称),,(21n X X X ∧θ为θ的估计量,相应的),,(21n X X X ∧

θ为总体θ的估计值。

(2) 当总体是正态分布时,未知参数的矩估计值=未知参数的最大似然估计值 2、点估计中的矩估计法:(总体矩=样本矩)

离散型样本均值:∑

==

=n

i i X n

X E X 1

1)( 连续型样本均值:dx x xf X E X ?

+∞

-=

=),()(θ

离散型参数:∑==

n

i i

X

n

X E 1

22

1

)(

3、点估计中的最大似然估计

最大似然估计法:n X X X ,,21取自X 的样本,设)]()()[,(~θθP X X P x f X i ==或则可得到概率密度:

])()(),,([),(),,,(1

1

21

1

21∏∏∏======

===

n

i i

n i i

n n n

i i

n P x X P x X X

X X P x f x x x f θθθ 或

基本步骤: ①似然函数:])([),()(1

1

∏∏===

n

i i

n

i i

P x f L θθθ或

②取对数:∑==

n

i i

X f L 1

),(ln ln θ

③解方程:0ln ,,0ln 1=??=??k

L

L θθ 最后得:),,(,),,,(212111n k k n x x x x x x ∧∧∧∧==θθθθ

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

04183概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回, 则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量 的联合分布函数为,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X Λ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。 A .21)0(=≤+Y X P B .21)1(=≤+Y X P C .21)0(=≤-Y X P D .21)1(=≤-Y X P 10.设总体X~N (2,σμ),2 σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要 用统计量( C )。

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统 §1.1 随机事件 1.随机现象: 确定现象:太阳从东方升起,重感冒会发烧等; 不确定现象: 随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等; 其他不确定现象:在某人群中找到的一个人是否漂亮等。 结论:随机现象是不确定现象之一。 2.随机试验和样本空间 随机试验举例: E1:抛一枚硬币,观察正面H、反面T出现的情况。 E2:掷一枚骰子,观察出现的点数。 E3:记录110报警台一天接到的报警次数。 E4:在一批灯泡中任意抽取一个,测试它的寿命。 E5:记录某物理量(长度、直径等)的测量误差。 E6:在区间[0,1]上任取一点,记录它的坐标。 随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。 样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。所有样本点的集合称为样本空间,记作。 举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。 3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。只包含一个样本点的单点子集{}称为基本事件。 必然事件:一定发生的事件,记作 不可能事件:永远不能发生的事件,记作 4.随机事件的关系和运算 由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。(1)事件的包含和相等 包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。 性质: 例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。 注:与集合包含的区别。 相等:若且,则称事件A与事件B相等,记作A=B。 (2)和事件 概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。 解释:包括三种情况①A发生,但B不发生,②A不发生,但B发生,③A与B都发生。 性质:①,;②若;则。 推广:可推广到有限个和无限可列个,分别记作和

概率论与数理统计浙大版概述

§3.2 二维 r.v.的条件分布 ,2,1,,),(====j i p y Y x X P ij j i 设二维离散型 r.v. ( X ,Y )的分布 若 )(1>===∑∞ =?j ij i i p x X P p 则称 ? = ===i ij i j i p p x X P y Y x X P )(),(为在 X = x i 的条件下, Y 的条件分布律 ,2,1=j ) (i j x X y Y P ===记作 二维离散 r.v.的条件分布律

若 , 0)(1 >===∑∞ =?i ij j j p y Y P p 则称 j ij j j i p p y Y P y Y x X P ?====)(),(为在 Y = y j 的条件下X 的条件分布律 ,2,1=i ) (j i y Y x X P ===记作 类似乘法公式 ) ()(),(i j i j i x X y Y P x X P y Y x X P ======) ()(j i j y Y x X P y Y P ====或 ,2,1,=j i

类似于全概率公式 ) ,()(1 1∑∑∞ =∞======j j i j ij i y Y x X P p x X P ) ()(1 j j j i y Y P y Y x X P ====∑∞ = ,2,1=i ) ,()(1 1∑∑∞ =∞======i j i i ij j y Y x X P p y Y P ) ()(1i i i j x X P x X y Y P ====∑∞ = ,2,1=j

例1把三个球等可能地放入编号为 1, 2, 3 的三个盒子中, 每盒可容球数无限. 记X 为落入 1 号盒的球数, Y 为落入 2 号盒的球数,求 (1) 在Y = 0 的条件下,X 的分布律; (2) 在X = 2 的条件下,Y 的分布律.

自考复习资料概率论与数理统计(经管类)

概率论与数理统计(经管类) 一、单项选择题 1.设A ,B 为随机事件,且B A ?,则AB 等于 A .A B .B C .AB D .A 2..将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为 A .81 B . 14 C . 38 D .12 3..设随机变量X 的概率密度为f (x )=???≤≤, ,0,10 ,2其他x x 则P {0≤X ≤}21 = A.41 B. 1 C. 21 4.已知离散型随机变量X 则下列概率计算结果正确的是 A .P (X =3)=0.2 B .P (X =0)=0 C .P (X>-1)=l D .P (X ≤4)=l 5.设二维随机变量(X ,Y)的分布律右表所示: 且X 与Y 相互独立,则下列结论正确的是 A .a =0.2,b =0.6 B .a =-0.1,b =0.9 C .a =0.4,b =0.4 D .a =0.6, b =0.2 6.设二维随机变量(X ,Y )的分布律为

则P{XY=0}= A. 121 B. 61 C. 3 1 D. 3 2 7.设随机变量X 服从参数为2的指数分布,则E (X )= A .41 B .21 C .2 D .4 8.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为 A .1 B .2 C .3 D .4 9.设总体X~N (2 ,σμ),2 σ未知,x 1,x 2,…,x n 为样本,∑=--= n 1 i 2i 2 )x x (1 n 1 s ,检验假 设H 0∶2σ=2 0σ时采用的统计量是 A.)1n (t ~n /s x t -μ-= B. )n (t ~n /s x t μ-= C. )1n (~s )1n (22 2 2-χσ-=χ D. )n (~s )1n (22 2 2 χσ-=χ 10.设x 1,x 2,x 3,x 4为来自总体X 的样本,D (X )=2σ,则样本均值x 的方差D (x )= A.214σ B.2 13 σ C.212 σ D.2 σ 11.设A 、B 为两事件,已知P (B )=21,P (B A )=3 2 ,若事件A ,B 相互独立,则P (A ) A . 91 B . 6 1 C .3 1 D .21 12.对于事件A ,B ,下列命题正确的是 A .如果A ,B 互不相容,则B ,A 也互不相容

概率论与数理统计教程(魏宗舒)第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

04183概率论与数理统计(经管类)答案

概率论与数理统计(经管类) 一、单项选择题 1.设A ,B 为随机事件,且B A ?,则AB 等于 B A .A B .B C .AB D .A 2..将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为 C A .81 B . 14 C . 38 D .12 ? 3..设随机变量X 的概率密度为f (x )=???≤≤, ,0,10 ,2其他x x 则P {0≤X ≤}21 = A A.41 B.3 1 C. 21 4.已知离散型随机变量X ! 则下列概率计算结果正确的是D A .P (X =3)= B .P (X =0)=0 C .P (X>-1)=l D .P (X ≤4)=l 5.设二维随机变量(X ,Y)的分布律右表所示:C 且X 与Y 相互独立,则下列结论正确的是A .a =,b = B .a =,b = C .a =,b = D .a =, b = 6.设二维随机变量(X ,Y )的分布律为D

则P{XY=0}= B A. 12 1 B. 61 C. 3 1 D. 3 2 7.设随机变量X 服从参数为2的指数分布,则E (X )= B A .41 B .21 C .2 D .4 8.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为D | A .1 B .2 C .3 D .4 9.设总体X~N (2 ,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--= n 1 i 2i 2 )x x (1 n 1 s ,检验假 设H 0∶2σ=2 0σ时采用的统计量是 C A.)1n (t ~n /s x t -μ-= B. )n (t ~n /s x t μ-= C. )1n (~s )1n (22 2 2-χσ-=χ D. )n (~s )1n (22 2 2 χσ-=χ 10.设x 1,x 2,x 3,x 4为来自总体X 的样本,D (X )=2σ,则样本均值x 的方差D (x )= A A.214σ B.2 13 σ C.212 σ D.2 σ 。

概率论与数理统计 重要公式

一、随机事件与概率 公式名称 公式表达式 德摩根公式 B A B A =,B A B A = 古典概型 ()m A P A n = =包含的基本事件数基本事件总数 几何概型 () ()()A P A μμ= Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -= 加法公式 P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式 P(A-B)=P(A)-P(AB),B A ?时P(A-B)=P(A)-P(B) 条件概率公式 乘法公式 )() ()(A P AB P A B P = ()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB = 全概率公式 1 ()()()n i i i P A P B P A B ==∑ 从原因计算结果 贝叶斯公式 (逆概率公式) 1 ()() ()()() i i i n i i i P B P A B P B A P B P A B == ∑ 从结果找原因 两个事件 相互独立 ()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;

二、随机变量及其分布 1、分布函数 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt ≤-∞ ?=?=≤=<≤=-???∑? 概率密度函数 计算概率: 2、离散型随机变量及其分布 分布名称 分布律 0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k 二项分布(贝努利分布) X ~B(n,p) n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布 X ~p(λ) (),0,1,2,! k P X k e k k λλ-== = 3、续型型随机变量及其分布 分布名称 密度函数 分布函数 均匀分布 x ~U(a,b) ?? ?? ?<<-=其他,0,1 )(b x a a b x f 0, (),1, =-0 , 00,)(x x e x f x λλ ???? ?≤>-=-0 , 00 , 1)(x x e x F x λ 正态分布 x ~N(2,σμ) 2 2 ()21()2μσπσ -- = -∞<<+∞ x f x e x 22 ()21 ()d 2μσπσ -- -∞ = ?t x F x e t 标准正态分布 x ~N(0,1) 2 2 1()2?π - = -∞<<+∞ x x e x 212 1 ()2t x x e dt π --∞ Φ= ? 1 )(=? +∞ ∞ -dx x f ?=≤≤b a dx x f b X a P )()(

相关文档
最新文档