铝合金车轮的有限元分析与疲劳寿命预测

铝合金车轮的有限元分析与疲劳寿命预测
铝合金车轮的有限元分析与疲劳寿命预测

南京理工大学

硕士学位论文

铝合金车轮的有限元分析与疲劳寿命预测

姓名:陈玉发

申请学位级别:硕士

专业:车辆工程

指导教师:王良模

20080526

炉管剩余寿命预测

剩余寿命预测 1 高温炉管剩余寿命预测的基本原则和方法 1.1 高温炉管寿命预测的基本原则 炉管检测后的最终质量通常用A、B、C三个级别进行评价。即“A”级管有较轻度或没有蠕变裂纹,这种炉管继续使用没有问题;“B”级管有一定程度的蠕变裂纹,但可以继续使用,同时应加强监视;“C”级管的蠕变深度及面积已达到极限。这类炉管不能继续使用,必须更换。要预测炉管的残余寿命,实际上就是预测“B”级管的使用年限,因为对大多数高温炉管来说,“C”级管是必须更换的。 目前,炉管的检测通常釆用专业炉管检测装置进行。虽然炉管检测装置具有它的可靠性、稳定性和准确性,但它只有一个单一的蠕变裂纹深度指标,如果要估算炉管的残余寿命必须要综合考虑,不能绝对地靠检测到“A、B”级来对炉管残余寿命下定义,因为化学成分和原始组织决定材料的原始强度,而运行时间、温度及应力的变化决定材料受蠕变损伤的程度。 根据国内外对高温炉管的研究结果,本文在对扬子石化公司芳烃厂BA1051制氢转化炉炉管进行评定时,按照如下的基本原则预测炉管的寿命。首先确定导致炉管损伤的主要原因,然后根据炉管的损伤状态,选择相应的预测方法。在对预测结果进行修正时同时兼顾其它因素的影响,在最终得到的使用寿命中应包含一定的安全余度,以适应炉管工作条件的变化。 1.2 高温炉管寿命预测的方法 为了最经济地利用炉管,剩余寿命评价技术必须准确,同时工程上又要求其实施必须简便。近年来国内外对高温炉管剩余寿命评价技术的研究投入了大量的人力和物力,提出了多种预测炉管剩余寿命的方法,归纳起来可大致可分为间接法和直接法两类。直接法即非破坏检查和破坏检查两类剩余寿命诊断技术,间接法即理论解析法。解析法和破坏检查所需时间较长,而非破坏检查可在较短时间,对较多部位进行诊断,且能定期监测。所以采用非破坏检查的方法预测炉管剩余寿命更为实用。 目前非破坏性检查的剩余寿命诊断技术主要有: (1)金属组织变化测定法,炉管长期在高温、应力和环境共同作用下服役,材料的微观组织会发生变化,如碳化物的析出、蠕变空洞的增殖等等。金属组织变化测定法就是通过测定组织的变化来评价炉管的剩余寿命。这种方法需要事先搞清楚金属组织变化与寿命之间的定量关系。目前比较成熟的法有A参数法、晶粒变形法、微结构法、另外还有空洞面积率法。A参数法是英国(ERA、CEGB)、美国(EPRI)于1983年提出的方法,其主要思路是沿主应力方向引一参考线,A参数就是参考线横切晶界总数与存在空洞晶界数的比值。预先求得各种材料的A参数与蠕变寿命比,通过复制试样法测定A参数,进行评价剩余寿命。实验验证表明:A参数能较好地定量损伤状态。空洞面积率是空洞所占面积与全观察面积的比值,它比较容易计量且与寿命的相关性好。应用该方法应注意要把蠕变空洞与碳化物或夹杂物脱落所造成的空洞区别开来,以免误判。A参数法和空洞面积率法还有两个问题需解决: a.有裂纹时,如何来测A参数和空洞面积率,虽然测定方法较多,但不同的方法得到的值不同; b.空洞分布不均匀性的计算及其影响。有些材料往往寿命后期才出现空洞,此时用A参

利用ANSYS随机振动分析功能实现随机疲劳分析.

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响 应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构 的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、 阻尼、恒定阻尼比和频率相关阻 尼比;

3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二 次谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原 理 在工程界,疲劳计算广泛采用名义应力法,即以S-N 曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这里仅介绍一种比较简单的方法,即Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时 间 -1σ ~+1σ68.3%的时间 -2σ ~+2σ27.1%的时间

铝合金车轮设计及结构分析

铝合金车轮设计及结构分析 【摘要】车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。另外,车轮还是汽车外观的重要组成部分。传统车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等诸多弊端。面对日益激烈的市场竞争,企业迫切需要采用科学的手段改善设计方法,本文所采用的CAD技术和有限元分析方法是解决上述问题的理想方法。本文运用工业设计理论,将造型设计构思表现的方法与技能应用于车轮设计中,结合车轮结构尺寸优化和形状优化,使工程技术与形式美密切结合,综合表现了车轮的性能、结构和外观美。 【关键词】铝合金车轮;有限元分析;结构设计;强度分析;疲劳分析 1.引言 普遍意义的车轮包括轮胎和金属轮辆一轮辐一轮毅两部分,本文所研究的车轮只限于金属轮惘一轮辐一轮毅部分,不包括轮胎。车轮是介于轮胎和车桥之间承受负荷的旋转件,它不仅承受着静态时车辆本身垂直方向的自重载荷,同时也经受着车轮行驶过程中来自各个方向因起动、制动、转弯、物体冲击、路面凹凸不平等各种动态载荷所产生不规则力的作用,是车辆行驶系统中重要的安全结构部件,其结构性能是车轮设计中主要因素[1]。另外,车轮作为整车外观的主要元素之一,象征着整车的档次,多变的铝合金车轮轮辐形态和明亮的色泽越来越为人们所关注,因此车轮的外观设计也因此变得越发的重要。 2.铝合金车轮的设计方法 车轮制造企业的设计手段依然采用传统的设计方法,其设计及生产流程如图1所示。 图1 传统的车轮设计流程图 产品的结构强度、疲劳性能则在产品试样制造出来后,通过试验来验证。这样导致产品的设计周期过长,成本过高。而且设计时为了保证产品的通过率,避免反复多次修改模型,设计人员往往留有过大的设计欲量,对于大批量生产的企业,这无形中造成了材料浪费,增加成本[2]。 此外,当试验失败进行结构修改时,设计人员也是凭借经验,通过局部增加材料达到提高强度的目的,缺乏理论依据,具有较强的盲目性,对于产品的结构优化更是无从入手[3]。因此,采用新的技术和手段,使车轮设计由经验类比型向科学分析计算型转变,是车轮行业一项势在必行的工作。 3.载荷的处理

综述-铝合金疲劳及断口分析报告

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

汽车轮毂有限元分析

第二章理论基础与模型建立 2.1 有限元技术及UG软件 2.1.1 有限元法基本原理 计算机辅助工程CAE(Computer Aid2ed Engineering) 指工程设计中的分析计算与分析仿真, 而有限元法FEM( FiniteElement Method) 是计算机辅助工程CAE中的一种, 另外CAE还包含了边界元法BEM(Boundary Element Method) 和有限差分法FDM( Finite Difference Method) 等。这几种方法各有其优缺点, 各有其应用领域,但有限元法的应用最广。 有限元法是求解数理方程的一种数值计算方法,是将弹性理论、计算数学和计算机软件有机结合在一起的一种数值分析技术,是解决工程实际问题的一种有力的数值计算工具。有限元是一种离散化的数值方法。离散后的单元与单元间只通过节点相联系, 所有力和位移都通过节点进行计算。对每个单元选取适当的插值函数,使得该函数在子域内部、子域分界面上(内部边界) 以及子域与外界分界面(外部边界) 上都满足一定的条件。然后把所有单元的方程组合起来, 就得到了整个结构的方程。求解该方程,就可以得到结构的近似解。离散化是有限元方法的基础。必须依据结构的实际情况,决定单元的类型、数目、形状、大小以及排列方式。这样做的目的是将结构分割成足够小的单元,使得简单位移模型能足够近似地表示精确解【13】。 因次它可以对各种类型的工程和产品的物理力学性能进行分析、模拟、预测、评价和优化,以实现产品技术创新, 故已广泛应用于各种力学、电学、磁学及很多结合学科领域; 同时, 由于它能够处理耦合问题, 使得其有更大的应用前景。你可以从专业的角度理解有限元:包括变分原理、等效积分和加权余量法等, 也可以从直观的意义上理解有限元: 把连续体划分为足够小的单元, 这些单元通过节点和边连接起来,通过选择简单函数(比如线形函数) 来近似表达位移或应力的分布或变化, 从而得到整个连续体物理量的分布和变化【14】。 2.1.2 有限元法分析过程 所谓有限元法(FEA)基本思想是把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。求解得到节点值后就可以通过设定

管道腐蚀剩余寿命预测

管道腐蚀剩余寿命预测 埋地管道长年埋置地下,不可避免地遭受腐蚀。特别是随着埋地管道服役时间的增加,管道腐蚀情况越来越严重,给管道使用单位的安全生产和经济效益带来严重的影响。开展埋地管道腐蚀的剩余寿命预测评估,对提高埋地管道事故隐患区段的预测能力,实施管道运行完整性管理具有十分重要的意义。 埋地管道因遭受内在和外在因素的破坏,使其设计寿命严重地受到威胁。其中内在因素如管道本身的擦痕、划痕、压痕等机械损伤,管道制造和施工过程中的质量问题;外在因素如地下管道受到腐蚀、人为破坏、管道运行管理不善等。目前,我国埋地管道面临着管道老化、变质等问题,管道使用寿命和剩余使用寿命问题越来越受到重视。 管道的设计寿命一般为33年,为保持管道预期设计寿命,管道使用单位都制定了严格的管道定期检测和日常维护计划,同时十分重视管道的管理、检查和维护工作,有些国家则把管道线路的腐蚀和泄漏检测纳入SCADA系统。 在役埋地管道的剩余寿命预测实际上是一个涵盖管道在线检测、安全状况评价、剩余寿命预测的一个系统工程。 与设计寿命密切相关的是埋地管道的诊断问题。所谓管道腐蚀剩余寿命的基本概念是管道个别地段的剩余使用寿命。对个别管道的持续运行寿命进行诊断,不仅可预防未来可能发生的故障,而且会对管道运行制度和预检修措施进行正确的规划。在很多情况下,还可使这段管道在降低负荷的条件下继续利用其有效期。为此,应将整个埋地管道线路划分成各自不同的典型地段(如按规则规定划分为四种地段),在此基础上进行危险区段的剩余寿命预测。 对管道内、外部结构进行早期诊断,可预测管道剩余使用寿命。埋地管道失效多数情况下是由管体外部腐蚀造成的,其主要机理是土壤的电化学腐蚀。根据管道失效的特点可将腐蚀缺陷分为均匀腐蚀、局部腐蚀和点腐蚀三大类,但因腐蚀影响因素具有极大不确定性,以及缺陷的发生和发展的不确定性(特别是对点蚀),需要从概率统计的角度出发对整条管线或整个管段的剩余寿命进行统计分析,找出其统计规律。 管道本体存在的裂纹也是影响管道使用寿命的重要因素,裂纹的扩展速度会严重影响管道的剩余寿命。所以管道剩余寿命预测中还包括低周疲劳裂纹扩展寿命评估方法,主要是规定当裂纹尺寸达到某一给定长度时的疲劳周次为疲劳裂纹的萌生寿命。但由于裂纹萌生过程中存在很大的随机性,即使同一材料在其相邻区域上截取不同的试样,同一裂纹长度指标对应的循环周期可能处于裂纹扩展的不同阶段。所以也需要利用恰当的物理模型与统计方法确定一种可靠的裂纹尺寸与寿命的关系。 研究表明,金属的老化效应和管道表面的腐蚀损伤会导致管材脆变,从而改变材料的塑

金属疲劳寿命预测

金属疲劳寿命的预测 摘要 当一个金属样品受到循环载荷时,大量的起始裂纹将在它的体内出现。样品形成了有初始裂纹的样本:样品越大,样本也越大。在作者先前的研究中表明,在极值统计的帮助下,通过估计最大预期裂纹深度能够预测疲劳极限。本来表明,在一个类似的方式下,疲劳极限以上的疲劳裂纹萌生时间是可以预测的。用最小的分布可得到最短预期初始时间的预测,代替了用最大分布估计最大裂纹尺寸,并以广泛的实验数据获得了好的赞同。 本文为构件的总的疲劳寿命估计提供了一种新的方法。当得知了预计的裂纹萌生寿命和临界裂纹尺寸时,稳定的裂纹扩展就能通过Paris law计算出来。总的疲劳寿命的估算值是裂纹萌生和裂纹扩展的总和。本文介绍的是:为发现任何一种材料裂纹萌生寿命而相应的构建设计曲线的方法。 1、介绍 估计金属构件疲劳寿命的最古老和最常用的方法是S-N曲线,尽管它的缺点众所周知。其中之一是,因观察试样缺口的光滑程度不同而使得疲劳寿命有很大的不同。有些手册尝试通过为不同的应力值浓度的因素单独设计曲线解决这个问题,如Buch。其被当时看作是避免这一问题的局部应变方法。在这种方法中,提出了无论试样的形状如何,相同的应变振幅总是相同的疲劳寿命。 一个构件的总疲劳寿命可以分为3个阶段:裂纹产生、裂纹稳定扩展和裂纹失稳生长。最后一个阶段很迅速,在估计总的疲劳寿命时可以在实际工作中忽略。利用LEFM可获得裂纹稳定生长的可靠样本。不同几何的应力强度因子和所收录例子的大量的公式都可在文献中找到,并且权函数的使用为扩展这种方法的使用提供了可能性。 用类似LEFM的方式对裂纹初始相位的建模,或裂纹的扩展做了很多的尝试,例如:Miller,Austen,Cameron and Smith。另一种方法是用局部应变方法仅对初始寿命进行估计,然后用LEFM和一个合适的计算机程序完成对总疲劳寿命的计算。 经Makkonen研究表明,统计方法能够用来预测金属构件的疲劳极限。当一个构件受到交变载荷时,大量的微裂纹将在它的内部产生,裂纹的数量取决于试样的大小。运用极值统计法来计算裂纹样品类型中的最大裂纹的估计值成为可

车轮支架结构设计和有限元分析_3097

【车轮支架结构设计和有限元分析】 摘要:为了保证车轮冲击试验的安全和稳定,有必要对车轮支架进行三维模型的结构设计和有限元分析。充分考虑冲击试验机的静态和动态受力效果,本文使用CATIA软件完成车轮支架模型设计,采用AnsysWorkbench有限元软件对车轮支架工作过程的仿真分析。 关键词:冲击试验;车轮支架;结构设计;有限元分析 引言 随着国民经济的快速发展和汽车的需求量得迅猛增长,我国汽车产业发展迅速,并且相继提高汽车技术水平,使得人们日益更加地关注汽车车轮对汽车行驶安全性和操纵稳定性的影响程度。车轮试验机作为检验车轮性能的重要设备也在根据汽车的结构调整而不断发展,由于车轮性能的好坏直接影响到整个车辆的运行操作性能,并在对汽车的安全性和舒适性方面起至关重要的作用,因此,检验车轮性能也就变得尤为重要。车轮试验机是检验车轮性能的设备,它一般包括车轮径向疲劳试验机、车轮弯曲疲劳试验机、车轮冲击试验机等。 一、车轮冲击试验机原理和标准 车轮冲击试验机的基本原理是对安装在车轮支架上试验车轮施加一个相应的冲击力,用这个外加的冲击力模拟车轮在汽车实际运行中所承受到的外界给予车轮的侧向冲击载荷。车轮试验机的基本操作过程,首先将试验车轮安装在具有倾斜角度的冲击实验工作台上,然后用国家规定的质量冲头,按照试验机国家标准所规定的高度自由落下,从而产生一个对试验车轮的冲击作用。根据试验机国家相关标准要求,试验车轮在受到冲击试验后,该车轮轮辐不得出现有目测可见的穿透裂纹,同时其轮辐也不能与轮辋出现分离现象,并且试验车轮的轮胎气压不能在试验后的60秒的时间内出现漏尽现象。如表1-1所示为车轮冲击试验的国际标准和国家标准。 通过对不同试验机标准进行分析,为了保证车轮冲击试验的数据可信和可靠,必须保证下面两个条件,一是冲击试验的下落物体的质量,另外一个就是冲击试验的下落高度。为此,本冲击试验机的车轮支架受到的冲击力全部来源于由按照规定高度自由下落的冲击板所具备的动能而产生的,因此,可以通过模拟冲击板下落的高度和冲击板的质量,进而分析车轮支架的受力和变形情况。 二、车轮支架的结构设计 在车轮冲击试验过程中,车轮支架用于安装冲击试验车轮的安装装置。在结构设计角度方面,为了保证垂直自由下落的冲击板和车轮轮辋的最高点接触,车轮支架的结构设计必须保证按车轮轴线与冲头板垂直下落方向成角度的方向安装试验车轮。根据不同的试验车轮的各种不同规格和形状,车轮试验机的安装车轮支架的位置设计为可调,为了更加精确试验数据和试验的稳定性,车轮支架应该具备校正功能。车轮支架的校正过程为,将重量为1000kg物体的作用于车轮安装中心,测量钢板梁中心在垂直方向的弯曲变形量,并且保证钢板梁的弯曲变形量处于7.5mm10%的范围之内。根据车轮安装具体要求和国家标准,针对车轮支架的结构设计主要有调整块、钢板梁、连接盘、校对块、拉杆、平导轨、挡板、侧滑轨、橡胶支架、支架座、底板构成。如图2.1所示为车轮支架结构示意图。车轮支架轴线与冲头板垂直方向角度可通过调整块实现

基于有限元分析的轿车铝合金车轮设计

摘要 轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。 在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。 首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。 利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。 关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析

ABSTRACT Lightweight is the main trends of the world's automotive industry, lightweight materials such as the use of aluminum and its alloys is an effective way. At present, most automotive aluminum and its alloy wheels have been used to do as a material, using modern design methods, based on the further realization of this lightweight wheels is the Institute of this article. In the study of the CAD software Pro / E and ANSYS finite element analysis software functions and the main characteristics, the Emphasis was the application of ANSYS, the structural strength of aluminum alloy wheel analysis of the specific process. First ,uses the Pro / E software, according to the rim of the national standards, building wheel solid model; then the model into ANSYS, by 2005 China's auto industry standard in automotive light-alloy wheels and performance requirements and test methods under the fatigue test requirements defined load and then the strength analysis and the results showed that the wheel is much less than the maximum stress allowable stress of aluminum alloy, there is further improvement possible and necessary. Then, the improved wheel models, improved results show that the weight of the wheels have been significantly reduced. The results show that the use of CAE analysis technology helps improve the design of automobile wheel level, shorten design cycles, reduce development costs. The method is universal, applicable to any of his words and models to guide the design and analysis of the wheel. Key words: Aluminum Alloy Wheels; Structural Design; Finite Element Analysis; Strength Analysis; Modal Analysis

基于有限元分析的轿车铝合金车轮设计-开题报告

毕业设计开题报告 学生姓名系部汽车与交通工程学院专业、班级 指导教师姓名职称教授从事 专业 车辆工程、 交通工程 是否外聘□是√否 题目名称基于有限元分析的轿车铝合金车轮设计 一、课题研究现状、选题目的和意义 1、课题研究现状 1)铝合金车轮的起源,发展 长时期内,钢制车轮在车轮制造业中占主导地位,随着科学技术的发展与进步,对车辆安全、环保、节能的要求日趋严格,铝合金车轮以其美观、质轻、节能、散热好、耐腐蚀、加工性能好等特点,逐步取代钢制车轮。铝合金车轮的出现到如今渐渐替代钢制车轮是一个漫长的发展阶段。在20世纪初,一些热衷于赛车的爱好者,为了能使车辆更轻以提高赛车速度,想方设法对车辆各零部件作轻量化的改进,其中车轮是重点减轻的主要对象。1923年,Bugatti公司大胆地将砂型铸造的铝合金车轮装上了赛车,加世纪30年代联邦德国汽车联合会、拜尔(BMW)发动机公司及戴姆勒一奔驰汽车公司,正式将钢制辐条式轮毂与铝制扎制轮辋相结合的车轮装上汽车,为铝合金车轮的发展奠定了基础。二次世界大战和世界性的能源危机大大刺激了汽车商的轻量化需求。1945年汽车厂商纷纷开展批量生产铝合金车轮的研究,重要集中在铝合金车轮的材质和成形工艺方面,但由于车轮的特殊安全要求,仍未能实施批量生产。直至20世纪50年代末,联邦德国还只能少量地生产铝合金车轮。1970年末,拜尔发动机公司率先将铸造铝合金车轮作为特殊部件装到了2002型轿车上,1972年又在双门小轿车上成批装上了铸造铝合金车轮,开始了铸造铝合金车轮批量用于轿车的新局面。 日本铝合金车轮工业是在1970年后至1984年之间快速发展起来的,在1984年的年产量达640万件。意大利在1979年曾生产150万件。到1980年,西欧共生产700多万件铝合金车轮(其中50%是铸造铝合金车轮),并以年产6%~7%的速度递增。1988年,美国生产的车辆中,铝合金车轮已作为好几种车型的系列部件,Pontiac SE车型的Grand Prix车更是采用了涂装彩色条带状的铝合金车轮。通用汽车公司生产的Gorvette车和另外两种Grand Prix车型也采用了铝合金车轮;Pontiao Fiero 的一种新车采用了表面为黑色的铝合金车轮;Dodge Dynasty车也把花边式样的铝合金车轮装了上去。同年,福特公司在Merkur Scorprio轿车上也装上了铝合金车轮,并把铝合金车轮定为公司系列的标准件。20世纪80年代初,美国原装轿车铝合金车轮装车率大约4%一5%,如今已超过40%。而日本目前轿车铝合金车轮装车率超过45%,欧洲国家超过50%。 我国铝合金车轮工业起步较晚,最早使用铝合金车轮是在20世纪80年代初,国营洪都机械厂

铝合金材料的疲劳研究进展

铝合金材料的疲劳研究进展 徐超,杨尚磊 (上海工程技术大学材料工程学院上海 201620) 摘要:综述了铝合金材料的疲劳研究进展,介绍了铝合金材料的疲劳裂纹萌生机制和特性、裂纹扩展规律及其扩展阶段的研究进展,同时概述了裂纹疲劳行为的影响因素和微观机理方面的最新研究进展,最后从裂纹萌生和扩展机制以及微观机理等方面概述了铝合金疲劳行为研究趋势。 关键词:铝合金疲劳裂纹萌生和扩展微观机理 0 前言 材料的疲劳性能指标是许多构件设计的重要依据之一,为此从微观上分析研究材料疲劳裂纹萌生和扩展特点以及他们与材料本证微观结构之间的关系具有重要指导意义[1]。由疲劳引起的焊接构件表面产生的裂纹萌生、扩展和断裂,都会导致一系列严重的影响,致使整个系统出现失效现象。疲劳行为的研究已经成为材料学中的一个重要分支,由于其存在的广泛性,越来越受到国内外众多学者的关注。 铝合金由于密度小、比强度高,耐蚀性好,在汽车、列车、船舶、航空、航天等领域得到了广泛的应用,同时还具有良好的成形工艺性和焊接性,因此铝合金成为在工业中应用最广泛的一类有色金属材料[2]。铝合金材料的疲劳破坏是汽车、列车、船舶、航空、航天领域中经常遇到的现象,所以对铝合金的疲劳行为的研究更具有重要意义。目前对铝合金疲劳裂纹的萌生、扩展和断裂的微观特征以及疲劳寿命的预测研究也相当广泛,因此,本文对铝合金材料的疲劳研究进行了综述。 2 铝合金材料的疲劳研究现状 2.1 疲劳裂纹的萌生 由于交变载荷的循环作用,疲劳裂纹的萌生过程往往发生在材料存在缺陷或薄弱区域以及高应力区,其通过不均匀的滑移或位移,从微细小裂纹形成而逐渐长大扩展至断裂。主要可能存在以下形式:对一般的工业合金,在交变应力作用下第二相、夹杂物与基体界面开裂;对纯金属或单相合金,尤其是单晶体,材料表面的滑移带集中形成驻留滑移带就会形成开裂;当经受较高的应力或应变幅时,晶界结合力在低于晶内滑移应力下,晶界或亚晶界处易发生开裂;另外,对高强度合金,也会由于夹杂物、第二相本身属于脆性相从而发生开裂。 由于疲劳裂纹的萌生在整个疲劳裂纹形成过程中占有相当重要的地位,因此,很多学者对疲劳裂纹的萌生进行了研究。 Chen和Tokaji[3]研究了2024铝基SiC粒子增强相复合材料的疲劳裂纹萌生行为,发现了疲劳裂纹萌生的阻力随着SiC粒子数和尺寸的增加而减小,裂纹的萌生大多数与粗大粒子有关,并且粒子和基体间的界面存在剥离现象,使得裂纹萌生于粒子尖端处,这可能与粒子的尺寸和形状相关。Campbell[4]等人研究了319-T7铸造铝合金的的疲劳裂纹萌生行为,发现疲劳萌生起源于铸造中产生的气孔等孔洞,并且裂纹源区与氧化膜的形成也有关。 Shaniavskiy[5]等人研究了飞机Tu-154M上液压泵的AL5铝合金的疲劳裂纹萌生机制,发现AL5铝合金的铸造缺陷对疲劳裂纹的萌生有很大的影响,其影响了材料疲劳裂纹萌生区的应力状态。ZHAI[6]研究了铝锂合金疲劳裂纹萌生处的强度分布情况,发现在L方向疲劳性能最差、S方向最佳,并且表面裂纹的形成随着应力水平的提高而增加,同时其表面裂纹通过韦伯公式来分析了疲劳裂纹薄弱区的密度和强度分布状况。Merati[7]观察了2024-T4合金中萌生裂纹与未萌生裂纹的粒子尺寸,发现萌生了裂纹的粒子是观察到的粒子中尺寸最大的。Payne J[8]等人采用扫描电镜(SEM)观察了7075-T651铝合金疲劳裂纹的萌生演化过程,发现粗大的第二相粒子对疲劳裂纹的萌生行为有显著的影响。Mirzajanzadeh[9]等人研究了7075铝合金试样过盈装配对疲劳裂纹萌生行为的影响,发现过盈装配的断裂试样,其疲劳裂纹萌生于开孔试样的最小横截面中间,与孔洞边缘的微动磨损有很大的关系。 显然,缺陷薄弱区、第二相粒子的粗大、气孔和孔洞集中区域、界面交界处对疲劳裂纹的萌生行为有显著的影响,是铝合金材料中主要裂纹生源。但是这些因素的对疲劳裂纹萌生的影响很复杂,需要进一步通过SEM原位观察等手段来分析其裂纹萌生的演变过程,确定其各个因素与裂纹萌生行为的关系,同时也可以改进制备工艺等手段来减少裂纹萌生。 2.2疲劳裂纹的扩展 研究疲劳裂纹的扩展规律是疲劳裂纹试验过程中的基础环节,疲劳裂纹的扩展微观模式受材料的滑移特性、晶界和晶粒取向、析出相、显微组织特征尺寸、应力水平及裂纹尖端塑性区尺寸等的影响。一般可以将疲劳裂纹的扩展分为三个阶段:近门槛扩展阶段、高速扩展阶段(Paris区)和最终断裂阶段。 Forsyth[10]把导致z字型裂纹扩展路径的纯滑移机制定义为第Ⅰ阶段裂纹扩展,并且在许多铁合金、铝合金和钦合金中都己经观察到裂纹的第Ⅰ阶段扩展。Forsyth[10]还指出对于大多数合金来说,第I阶段扩展通常很短,但是当应力强度因子范围较高时,裂纹尖端塑性区跨越多个晶粒,这时裂纹扩展开始沿两个滑移系统同时或交替进

车辆工程毕业设计39基于有限元分析的轿车铝合金车轮设计

本科学生毕业设计 基于有限元分析的轿车铝合金车轮设计 院系名称:汽车与交通工程学院 专业班级:车辆工程 学生姓名: 指导教师: 职称:教授

The Graduation Design for Bachelor's Degree Based on Finite Element Analysis Design of Car Alloy Wheels Candidate:Shen Weiliang Specialty:Vehicle Engineering Class:B07-1 Supervisor:Prof. Shi Meiyu Heilongjiang Institute of Technology

摘要 轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。 在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。 首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。 利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。 关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析

ANSYS Workbench在铝合金轮毂冲击试验中的应用

ANSYS Workbench在铝合金轮毂冲击试验中的应用 摘要:在追求环保节能的汽车行业,轻量化越来越成为高品质的代名词之一。铝合金轮毂以其良好的性能、更轻的重量、回收率高等优势成为轮毂行业的主流。本文以有限元分析软件ANSYS Workbench 为工具,对铝合金轮毂的抗冲击性进行分析和预判,为铝合金轮毂产品的开发人员提供设计依据。 关键词:有限元分析;Workbench;轮毂;冲击 中图分类号:TG11.3 文献标识码: A 文章编号:1673-1069(2016)22-126-2 0 引言 轮毂由轮辋和轮辐部分组成,轮辐又可细分为轮盘和辐条。轮辋有规定的设计标准,但轮辐的形状复杂多变,没有统一的要求。轮毂又叫轮圈,是一个高速旋转件,并且要支撑整个汽车的重量。为保证轮毂性能的合格,主要对其做冲击试验、弯曲疲劳试验和径向疲劳试验。在实际开发和生产过程中,我们发现主要影响轮毂性能合格的是其抗冲击性。 本文通过用ANSYS Workbench软件模拟对轮毂冲击应变的模拟分析,并结合实际实验结果对分析进

行验证,为轮毂开发人员提供可靠的设计依据,进而缩短开发周期、减少开发成本,从而提高企业的竞争力[1]。 1 有限元分析和ANSYS Workbench的简介 1.1 有限元分析简介 有限元分析(Finite Element Analysis,FEA)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 1.2 ANSYS Workbench的简介 ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的

轮胎的有限元分析

目录 摘要 ....................................................................................................................... III Abstract.................................................................................................................... I V 1 绪论 (1) 1.1 选题的目的和意义 (1) 1.2本课题国内外的研究现状 (1) 1.3本课题研究内容 (1) 2子午线轮胎特点 (2) 2.1 子午线轮胎的结构特点 (2) 2.2子午线轮胎的结构分析 (2) 3子午线轮胎三维整体有限元模型建立 (4) 3.1通用软件简介 (4) 3.2单元的选取 (5) 3.3 轮胎模型的简化 (8) 3.3.1模型建立的要求 (8) 3.3.2轮胎模型的简化 (9) 3.3.3几何建模 (9) 4子午线轮胎静态接触的有限元分析 (11) 4.1 有限元分析流程 (11) 4.2静态接触的载荷和边界条件的处理 (12) 4.2.1轮胎有限元模型的三维非线性 (12) 4.2.2轮胎单元材料参数的数值 (13) 4.2.3轮胎有限元分析的参数化及模型的自动生成 (14) 4.2.4 静态接触的载荷和边界条件的处理 (18) 4.3轮胎有限元结果分析 (19) 4.3.1静态接触载荷工况 (19) 4.3.2轮胎在静态接地状况下的有限元结果分析 (20) 5 总结与展望 (24) 5.1 总结 (24)

疲劳寿命预测方法

疲劳形成寿命预测方法 10船 王茹娇 080412010035 疲劳裂纹形成寿命的概念 发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称 为该材料或构件的疲劳寿命。 疲劳寿命的种类很多。从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂 纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为 止的循环次数称为裂纹形成寿命。此后扩展到临界裂纹长度acr 为止的循环次数 称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采 用的寿命性能曲线有关。此外还有三阶段和多阶段,疲劳寿命模型等。 疲劳损伤累积理论 疲劳破坏是一个累积损伤的过程。对于等幅交变应力,可用材料的S —N 曲 线来表示在不同应力水平下达到破坏所需要的循环次数。于是,对于给定的应力 水平σ,就可以利用材或零部件的S —N 曲线,确定该零件至破坏时的循环数N , 亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以 直接利用S —N 曲线估算零件的寿命。如果在多个不同应力水平下循环加载就不 能直接利用S —N 曲线来估计寿命了。对于实际零部件,所承受的是一系列循环 载荷,因此还必须借助疲劳累积损伤理论。 损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化, 循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。疲劳累积损伤 理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严 重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生 失效的总循环数有关。而且每个应力幅下产生的损伤是永存的,并且在不同应力 幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。当累积总损伤 达到临界值就会产生疲劳失效。目前提出多种疲劳累积损伤理论,应用比较广泛 的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累 积理论。 线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个 应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发 生疲劳破坏,线性损伤累积理论中典型的是Miner 理论。 根据该理论,假设在应力i σ下材料达到破坏的循环次数为i N ,设D 为最终 断裂时的临界值。根据线性损伤理论,应力i σ每作用一次对材料的损伤为i N D /, 则经过i n 次后,对材料造成的总损伤为i i N D n /。

铝合金车轮双轴疲劳寿命有限元分析

铝合金铝合金车车轮双轴双轴疲劳疲劳疲劳寿命有限元寿命有限元寿命有限元分析分析分析 胡金华1 张芳芳1朱志华2 李宝华2 郎玉玲2 阿拉腾2 李昌海 2 (1)燕山大学 河北 066004 (2)中信戴卡轮毂制造股份有限公司 河北 066004 摘 要:首先介绍了车轮双轴试验基本情况。其次简要介绍了车轮双轴试验有限元建模及疲劳寿命分析的基本过程。最后以860车轮为例,对铝合金车轮双轴疲劳试验进行了有限元疲劳寿命分析。 1 1 前言前言前言 车轮是汽车的一个重要部件,它对汽车的行驶安全性、稳定性、平顺性和牵引性有重要的作用,对能源的消耗、轮胎的寿命和驾驶员的劳动强度都有较大的影响。车轮的设计与开发需要较高的工程经验与分析水平。新设计的轿车车轮必须通过一系列的台架试验才能批量生产。目前轿车车轮台架试验主要包括弯曲疲劳试验、径向疲劳试验、冲击强度试验和双轴疲劳试验。 由于车轮工作在随机载荷之下,所以在其研制当中最关心的问题之一就是车轮的疲劳寿命,即保证车轮在使用寿命期间内不发生疲劳破坏。早期的车轮疲劳试验包括弯曲疲劳试验和径向疲劳试验。2000年,赵桂范等[1]给出了用改进的史密斯公式对车轮的疲劳寿命进行预测的计算方法。2002年,崔胜民和杨占春[2]提出了用名义应力法和局部应力应变法对车轮的疲劳寿命进行预测。王波和管迪华给出了对钢质车轮多轴疲劳寿命的预测方法。1999年,张红桩[3]在本文作者的指导下,以三维设计软件UG 和有限元分析软件ANSYS 为工具,将车轮的设计与疲劳寿命预测结合起来,建立了车轮弯曲疲劳的CAE 平台,此平台能够较可靠地预测出轮辐破坏的车轮的弯曲疲劳寿命,但是由于没有考虑各元件间的接触关系及螺栓预紧力的影响,所以不能准确地计算出法兰盘及螺栓孔附近的应力分布情况,因而对法兰盘处破坏的车轮无能为力。2000年,周荣等[4]针对钢制车轮的弯曲疲劳试验,建立了车轮弯曲疲劳试验的计算机仿真系统。此系统是以有限元分析为基础的疲劳寿命估算系统,该系统由有限元分析程序、接口程序和疲劳寿命估算程序三部分组成,给出了以有限元分析结果与名义应力法和局部应力应变法相结合对钢制车轮弯曲疲劳寿命进行预测的方法。2005年,本课题组的张国智[5]初步建立了轿车铝车轮的弯曲疲劳寿命预测、径向疲劳寿命预测和冲击强度分析的有限元模型。但是张国智[5]仅仅进行了弯曲和径向模型的有限元分析,没有进行实际意义上的疲劳分析。另外,冲击有限元分析没有针对不同类型的车轮系统地总结断裂失效准则。还需要进一步的研究总结。2007年,孙红梅[6]在本文作者指导下建立了可综合考虑轮辋刚度、弯曲应力以及车轮振动模态的基于约束变尺度优化算法的轿车车轮结构优化设计模型。该文对轿车车轮优化设计进行了有益的探索。2008年,本文作者建立了铝合金车轮冲击强度有限元分析模型并成功应用于中信戴卡公司。2009年,Mehnet[7]基于局部应变法和线弹性有限元分析对车轮径向疲劳试验进行了有限元建模。2009年,Ramanurty Raju, P. [8] 基于有限元法对

相关文档
最新文档