圆压轴八大模型题(4)-圆内接等边三角形

圆压轴题八大模型题(四)

泸州市七中佳德学校 易建洪

引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题

的位置上,是试卷中综合性与难度都比较大的习题。一般都是在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性帮助考生解决问题。

类型4 圆内接等边三角形

如图,点P 为等边△ABC 外接圆劣弧BC 上一点. (1) 求证:PA =PB +PC ; (2) 设PA 、BC 交于点M ,

① 若BP =4,PC =2,求CM 的长度. ② 若AB =4,PC =2,求CM 的长度. 【分析】

(1) 证明:连结CD .在PA 上截取PD=PC , 证得△ACD ≌△BCP ,∴AD=PB ,又DP=PC , 因此PA=PB +PC.

(2)①⊙O 中△ABM ∽△CPM,

12PC MC AB MA == ∴1

2

PC MC AB MA == 设MC=x ,则AM=2x,MN=2-x ,又

在Rt △AMN 中,由勾股定理得

.

(2)②过点C 作CE ⊥AP 于E ,过点A 作AN ⊥BC 于点N.由(1)可得AP=BP+CP=4+2=6,Rt △PCE 中

,则

因此

由(2)②可得

. 【典例】

(2018·湖南常德)如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,在CD 的延

图1

图(1)

图(2) 图(3)

长线上有一点F ,使DF =DA ,AE ∥BC 交CF 于E . (1)求证:EA 是⊙O 的切线; (2)求证:BD =CF .

【分析】(1)连结OA 后,由∠OAC =30°,BC ∥AE 得∠CAE =∠BCA =60°,因此∠OAE =90°证得AE 是⊙O 的切线.(2)∠ADF =∠ABC =60°,且DF =DA 得等边△ADF ,且△ABC 也是等边三角形,可得△ADB ≌△AFC ,因此BD =CF .

【解答】证明:(1)连接OD , ∵⊙O 是等边三角形ABC 的外接圆, ∴∠OAC =30°,∠BCA =60°, ∵AE ∥BC ,∴∠EAC =∠BCA =60°,

∴∠OAE =∠OAC +∠EAC =30°+60°=90°, ∴AE 是⊙O 的切线;

(2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°, ∵A 、B 、C 、D 四点共圆,∴∠ADF =∠ABC =60°,

∵AD =DF ,∴△ADF 是等边三角形,∴AD =AF ,∠DAF =60°, ∴∠BAC +∠CAD =∠DAF +∠CAD ,即∠BAF =∠CAF , 在△BAD 和△CAF 中, ∵

,∴△BAD ≌△CAF ,

∴BD =CF . 【点拨】

等边三角形的边等角等易构造三角形全等和相似,圆上一点与圆内接等边三角形三顶点的连线之间的关系探究,可以运用延长法与截短法;含60°角三角形,知两边求第三边;借相交弦或平行线得三角形相似,作等边三角形的高,借比例线段和勾股定理建方程求线段是关键。

【变式运用】

1.(2011·泸州)如图,点P 为等边△ABC 外接圆劣弧BC 上一点.

4-1

图a

(1)求∠BPC 的度数; (2)求证:PA =PB +PC ;

(3)设PA ,BC 交于点M ,若AB =4,PC =2,求CM 的长度.

(1)解:∵△ABC 为等边三角形,∴∠BAC =60°, ∵点P 为等边△ABC 外接圆劣弧BC 上一点, ∴四边形ABPC 是圆的内接四边形

∴∠BPC +∠BAC =180°,∴∠BPC =120°, (2)证明:连结C D .在PA 上截取PD =PC , ∵AB =AC =BC ,∴∠APB =∠APC =60°, ∴△PCD 为等边三角形,

∴∠PCD =∠ACB =60°,CP =CD ,

∴∠PCD ﹣∠DCM =∠ACB ﹣∠DCM ,即∠ACD =∠BCP , 在△ACD 和△BCP 中,

AC BC ACD BCP CP CD =??

∠=∠??=?

,∴△ACD ≌△BCP , ∴AD =PB ,∵PA =AD +DP ,DP =PC , ∴PA =PB +PC ;

(3)解:∵△PCD 和△ABC 都为等边三角形, ∴∠MDC =∠ACM =60°,CD =PC , 又∵∠DMC =∠CMA ,

∴△CDM ∽△ACM ,AB =4,PC =2,

∴CM :AM =DM :MC =DC :AC =PC :AC =2:4=1:2, 设DM =x ,则CM =2x ,BM =4﹣2x ,PM =2﹣x , AM =4x ,AD =AM ﹣DM =4x ﹣x =3x ∵∠BMP =∠CMA ,∠PBM =∠CAM , ∴△BPM ∽△ACM ,

∴BP :AC =PM :CM ,即3x :4=(2﹣x ):2x , 解得x =

113

3

-±(舍去负号), 则x =

1133-+,∴CM =2213

3

-+. 2.如图,已知AD 是△ABC 外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC

的外接圆于点F ,连结FB 、F C . (1)求证:FB =FC ; (2)FB 2=FA ·FD ;

(3)若AB 是△ABC 的外接圆的直径,∠EAC =120°,BC =6cm ,求AD 的长.

证明:(1)∵AD 平分∠EAC ,

图b

图4-2

∴∠EAD =∠DA C .

∵四边形AFBC 内接于圆, ∴∠DAC =∠FB C .

∵∠EAD =∠FAB =∠FCB , ∴∠FBC =∠FCB , ∴FB =F C .

(2)∵∠FAB =∠FCB =∠FBC ,∠AFB =∠BFD , ∴△FBA ∽△FDB ,∴

FB

FA

FD FB =

∴FB 2=FA ·F D .

(3)解:∵AB 是圆的直径,

∴∠ACB =90°.∵∠EAC =120°, ∴∠DAC =

2

1

∠EAC =60°. ∵四边形ACBF 内接于圆,

∴∠DAC =∠FBC =60°,又FB =FC ,

∴△BFC 是等边三角形,∴∠BAC =∠BFC =60°, ∴∠D =30°.∵BC =6,∴AC =23,

∴AD =2AC =43.

3.(2016·德阳)如图,点D 是等边三角形ABC 外接圆上一点.M 是BD 上一点,且满足DM =DC ,点E 是AC 与BD 的交点. (1)求证:CM //AD ;

(2)如果AD =1,CM =2.求线段BD 的长及△BCE 的面积. 解:(1)∵ABC 是正三角形,

∴⌒AB =⌒

BC ,∴∠ADB =∠BDC =60°, 又∵DM =DC ,∴CDM 是等边三角形,

即DM =CM =CD ,

∴∠DMC =60°,∴∠ADB =∠DMC =60°,

∴CM ∥AD ;

(2)∵∠DAC =∠DBC ,∠BMC =∠ADC =120°,

而AC =BC ,∴ADC ≌BMC ,∴BM =AD =1, ∴BD =BM +MD =1+2=3

由(1)可得,ADE ∽CME ,而AD =1,CM =2, ∴

2

1

ME DE CE AE CM AD === 又∵MD =2,∴DE =23,ME =4

3

∵AE CE =12,且点E 在线段AC 上,∴AE =1

3AC , ∵∠BAC =∠BDC =60°,∠ABD =∠ACD ,

∴ABE ∽

DCE ,∴DC AB =EC BE , ∴3

41322+=AC

AB

,

又∵AB =AC ,∴AB 2=7,即AB =7=BC , ∵AD =1,CM =2,CM =CD ,∴AD :CD =1:2,

E D M C

B

图4-3

图4-4

又∵∠ADE =∠CDE =60°,∴BD 平分∠ADC ,

∴AE :CE =AD :CD =1:2,∴CE =2

3AC ,

∴S

BCE =23×S ABC =23×34×(7)2=7

6

3.

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

中考数学(相似提高练习题)压轴题训练附详细答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I. (1)求证:AF⊥BE; (2)求证:AD=3DI. 【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点, ∴AD=BD=CD,∠ACB=45°, ∵在△ADC中,AD=DC,DE⊥AC, ∴AE=CE, ∵△CDE沿直线BC翻折到△CDF, ∴△CDE≌△CDF, ∴CF=CE,∠DCF=∠ACB=45°, ∴CF=AE,∠ACF=∠DCF+∠ACB=90°, 在△ABE与△ACF中,, ∴△ABE≌△ACF(SAS), ∴∠ABE=∠FAC, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE (2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形, ∴EC∥DF,EC=DF, ∴∠EAH=∠HFD,AE=DF, 在△AEH与△FDH中, ∴△AEH≌△FDH(AAS), ∴EH=DH, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE, ∵M是IC的中点,E是AC的中点, ∴EM∥AI, ∴, ∴DI=IM, ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。 (2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.

中考数学专题复习 圆压轴八大模型题(2)-切割线互垂

圆压轴题八大模型题(二) 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型2 切割线互垂 在Rt △ABC 中,点E 是斜边AB 上一点,以EB 为直径的⊙O 与AC 相切于点D ,与BC 相交于点F . 【分析】(1)在Rt △ADO 中,(10+r)2=r 2+202 ,得r=15. (2)由DO ∥BC,得 DO AO BC AB =,∴402440 r r -= 得:r=15. (3)在Rt △ADO 中, DO=r ,AO=10+r , 由DO ∥BC , AD AO AC AB = 得,r=15. (4)连结DO,DO=BO,∠ODB=∠OBD;由DO ∥BC 得∠CBD=∠ODB,∴∠ABD=∠CBD. (5)由Rt △BCD ∽Rt △BDE 得BD 2 =BC ?BE. (6)由△ADE ∽△ABD 得AD 2 =AE ?AB. 【分析】 (7)由∠EBD=∠FBD 得DE=DF,∴DE=DF,又∠DFC=∠DEG,∠C=∠DGE=90°得△DCF ≌△DGE. (1)AD=20,AE=10,求r; (2)AB=40,BC=24,求r. O F E D C B A (3)AC=32,AE=10,求r. (4)∠ABD=∠CBD. (5)DB 2=BC ?BE; (6)AD 2=AE ?AB. (7)△DCF ≌△DGE; (8)DF 2 =CF ?BE; (9)AG:AC=1:2,BD=10.求r. (10)DC=12,CF=6, 求r 和BF. O F E D C B A (11)DC=12,CF=6,求CO 上任意线段的长. 图(1) 图(2) 图(3) 图(4) 图(5) 图(6) A B C G E O F D

2017年中考数学相似三角形压轴题(20200706220513)

相似三角形中考压轴试题 、选择题 1. (2014 年江苏宿迁 3 分)如图,在直角梯形 ABCD 中,AD // BC , / ABC=90 °, AB=8 , AD=3 , BC=4 , 、填空题 1. (2015贺州)如图,在△ ABC 中,AB =AC =15,点D 是BC 边上的一动点(不与 B 、C 重合),/ ADE = / B = Za, DE 交 AB 于点 E ,且 tan Za = 3 ?有以下的结论:①△ ADEACD ;②当CD =9时,△ ACD 4 与厶DBE 全等;③厶BDE 为直角三角形时, 21 24 BD 为12或 :④0 v BE < ,其中正确的结论是 (填 4 5 入正确结论的序号) 三、解答题 1. (2014年福建三明14分)如图,在平面直角坐标系中, 抛物线y=ax 2+bx+4与x 轴的一个交点为 A ( 2 , 0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B . (1) 求抛物线的函数表达式; (2) 经过B , C 的直线I 平移后与抛物线交于点 M ,与x 轴交于点 N ,当以B , C , M , N 为顶点的四边形 是平行四边形时,求出点 M 的坐标; (3) 若点D 在x 轴上,在抛物线上是否存在点 P ,使得△ PBD ◎△ PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由. 点P 为AB 边上一动点,若△ PA ^ PBC 是相似三角形,则满足条件的点 P 的个数是【 A. 1个 B. 2个 D. 4个 C. 3个 C

2 2. (2014年湖北十堰12分)已知抛物线C i: y=a(x+1)—2的顶点为A,且经过点B (- 2 , - 1). (1 )求A点的坐标和抛物线C i的解析式; (2)如图1,将抛物线 6向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C , D两点,求S A OAC : S A OAD 的值; (3)如图2,若过P (-4 , 0), Q (0 , 2 )的直线为I,点E在(2)中抛物线C?对称轴右侧部分(含顶 点)运动,直线m过点C和点E.问:是否存在直线m,使直线I, m与x轴围成的三角形和直线I, m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 3. (2014 年湖南郴州10 分)如图,在Rt △ ABC中,/ BAC=90。,/ B=60 °C=16cm , AD 是斜边 BC上的高,垂足为D, BE=1cm .点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH .点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t (s). (1 )当t为何值时,点G刚好落在线段AD 上? (2)设 正方形MNGH与Rt △ ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD等腰

圆压轴八大模型题切割线互垂.docx

圆压轴题八大模型题(二) 引言:与圆有关的证明与计算的综合解答题, 往往位于许多省市中考题中的倒数第二题 的位置上, 是试卷中综合性与难度都比较大的习题。 一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题, 整理了这些习题的常见的结论,破题的要点, 常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 2 切割线互垂 在 Rt △ABC 中,点 E 是斜边 AB 上一点,以 EB 为直径的⊙ O 与 AC 相切于点 D ,与 BC 相交于点 F. C C C D F D F D F A E O B A E O B A E O B 图(1) 图(2) 图(3) (1)AD=20,AE=10, 求 r; (3)AC=32 , AE=10,求 r. (5)DB 2=BCBE; (2)AB=40,BC=24, 求 r. (4) ∠ ABD=∠ CBD. (6)AD 2=AEAB. 【分析】 (1) 在 Rt △ADO 中, (10+r) 2=r 2+202, 得 r=15. (2) 由 DO ∥BC,得 DO AO ,∴ r 40 r 得: r=15. BC AB 24 40 (3)在 Rt △ADO 中, AD= (10 r )2 r 2 , DO=r , AO=10+r , 由 DO ∥ BC , AD AO 得, r=15. AC AB (4)连结 DO,DO=BO,∠ ODB=∠ OBD;由 DO ∥ BC 得∠ CBD=∠ ODB,∴∠ ABD=∠ CBD. (5) 由 Rt △BCD ∽ Rt △ BDE 得 BD 2=BCBE. 2 (6) 由△ ADE ∽△ ABD 得 AD=AEAB. C C C D F D F D F G A E G O B A E O B A E O B 图 (4) 图(5) 图 (6) (7) △ DCF ≌△ DGE; (10)DC=12,CF=6, (11)DC=12,CF=6, 求 (8)DF 2=CFBE; 求 r 和 BF. CO 上任意线段的长 . (9)AG:AC=1:2,BD=10. 求 r. 【分析】 (7)由∠ EBD=∠ FBD 得 DE=DF,∴ DE=DF,又∠ DFC=∠ DEG,∠C=∠ DGE=90°得△ DCF ≌△ DGE.

九年级相似三角形压轴题

初三相似三角形压轴题 一.选择题(共1小题) 1.(2013?江干区一模)如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离都相等,如果直角梯形ABCD的三个顶点A、B、D分别在平行直线l1、l5、l2上,∠ABC=90°且AB=3AD,则tanα=() A.B.C.D. 二.填空题(共3小题) 2.(2013?宁波模拟)如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x 轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E, F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x 的函数关系式为. 3.(2012?南岗区一模)在平行四边形ABCD中,对角线AC、BD相交于点0,点E在边AD上,且AE:DE=1:3,连接BE,BE与AC相交于点M,若AC=6,则M0的长是. 4.(2004?深圳)在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂 足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,则的值是.

三.解答题(共12小题) 5.(2012?重庆模拟)如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG. (1)试求△ABC的面积; (2)当边FG与BC重合时,求正方形DEFG的边长; (3)设AD=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,并写出定义域; (4)当△BDG是等腰三角形时,请直接写出AD的长. 6.(2012?亭湖区一模)如图,在△ABC中,∠ACB=90°,AC=BC=2,M是边AC的中点,CH⊥BM于H. (1)试求sin∠MCH的值; (2)求证:∠ABM=∠CAH; (3)若D是边AB上的点,且使△AHD为等腰三角形,请直接写出AD的长为. 7.(2011?莆田)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F. (1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心; (2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P. ①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

中考数学压轴题常见辅助线

一、添辅助线有二种情况: 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(完整word版)中考数学专题复习圆压轴八大模型题(学生用).doc

圆压轴题八大模型题(一) 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 1弧中点的运用 ⌒ 在⊙ O 中,点 C 是 AD的中点, CE⊥ AB 于点 E. C D P F A B (1)在图 1 中,你会发现这些结论吗? E O ①AP=CP= FP; ②CH= AD;H ②AC2=AP· AD= CF· CB= AE·AB. (2)在图 2 中,你能找出所有与△ABC相似的三角形吗? (图 1) 【典例】 (2018 ·湖南永州)如图,线段AB 为⊙ O 的直径,点C,E 在⊙ O 上,=,CD⊥AB,垂足为点D,连接 BE,弦 BE 与线段 CD相交于点F. (1)求证: CF=BF; (2)若 cos∠ABE=,在AB的延长线上取一点M ,使 BM= 4,⊙ O 的半径为 6.求证: 直线 CM 是⊙ O 的切线. 【变式运用】 1.(2018 ·四川宜宾)如图,AB是半圆的直径, AC是一条弦, D 是 AC的中点, DE⊥AB 于点 E 且 DE交 AC于点 F,DB交 AC于点 G,若=, (图 1-2)

则 =. 2.( 2018 ·泸州) 如图,在平行四边形 ABCD 中, E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠ BAD 和∠ ADC 。( 1) 求证: AE ⊥DE ; ( 2) 设以 AD 为直径的半圆交 AB 于 F ,连接 DF 交 AE 于 G ,已知 CD = 5, AE = 8,求 FG 值。 AF A D G F B E C 图9 (图 1-3) ? 3. ( 2017·泸州)如图,△ ABC 内接于⊙ O , AB 是⊙ O 的直径, C 是 AD 的中点,弦 CE ⊥ AB 于点 H ,连结 AD ,分别交 CE 、 BC 于点 P 、 Q ,连结 BD 。 (1)求证: P 是线段 AQ 的中点; (2)若⊙ O 的半径为 5, AQ = ,求弦 CE 的长。 4.( 2016?泸州)如图,四边形 ABCD 内接于⊙ O , AB 是⊙ O 的直径, AC 和 BD 相交于点 E , 且 DC 2 = CE?CA . ( 1)求证: BC = CD ; ( 2)分别延长 AB , DC 交于点 P ,过点 A 作 AF ⊥ CD 交 CD 的延长线于点 F ,若 PB = OB , CD = ,求 DF 的长.

相似三角形选择压轴题精选

2014年1月发哥的初中数学组卷.选择题(共30小题) 1. (2013?南通)如图.Rt△ ABC内接于O O BC为直径,AB=4, AC=3 D是忑的中点,CD与AB的交点为E,贝偿等 DE 2. (2013?黑龙江)如图,在直角梯形ABCD中, AD// BC / BCD=90,/ ABC=45 , AD=CD CE平分/ ACB交AB于点E,在BC上截取BF=AE连接AF交CE于点G 连接DG交AC于点H,过点A作AN L BC垂足为N, AN交CE于点 M则下列结论;①CM=AF②CELAF;3A ABF^A DAH④GD 平分/ AGC其中正确的个数是() J k\ C X F A. 1 B. 2 C. 3 D. 4 3. (2013?海南)直线I1//I2//I,且l 1与l 2的距离为1, 12与l 3的距离为3,把一块含有45°角的直角三角形如图 4. (2013?德阳)如图,在OO 上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q, 已知:OO半径为-,tan / ABC』,则CQ的最大值是() 2 4 B. C. 3 D. AC与直线丨2交于点D,则线段BD的长度为() C.- D.- rr4 于() A. 4

OD=AD=3寸,这两个二次函数的最大值之和等于( ) 5. (2012?宁德)如图,在矩形 ABCD 中, AB=2 BC=3 点 E 、F 、G H 分别在矩形 ABCD 的各边上,EF// AC// HQ EH// BD// FQ A . (1) ( 2) (3) B. ( 1) (3) C. (1) (2) D. (2) (3) A (4, 0), O 为坐标原点,P 是线段OA 上任意一点(不含端点 O, A ),过P 、O 两点 的二次函数y 1和过P 、A 两点的二次函数 y 的图象开口均向下,它们的顶点分别为 BC,射线OB 与 AC 相交于点D.当B.丄 D. 20 T C. 2 ii D. 2. | ; 6. (2012?泸州)如图,矩形 ABCD 中, E 是BC 的中点,连接 AE ,过点E 作EF 丄AE 交DC 于点F ,连接AF.设一^ =k , F 列结论:(ABE^A ECF (2) AE 平分/ BAF ( 3)当 k=1时,△ ABE^A ADF 其中结论正确的是( 7. (2012?湖州)如图,已知点 A . 5 A. . I

中考压轴题之相似(含非常详细的解答)

因动点产生的相似三角形 例1:如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ. (1)若△BPQ与△ABC相似,求t的值; (2)如图2,连接AQ、CP,若AQ⊥CP,求t的值; (3)试证明:PQ的中点在△ABC的一条中位线上. 图1 图2 思路点拨 1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ. 3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然. 满分解答 (1)Rt△ABC中,AC=6,BC=8,所以AB=10. △BPQ与△ABC相似,存在两种情况: ①如果BP BA BQ BC =,那么 510 848 t t = - .解得t=1. ②如果BP BC BQ BA =,那么 58 8410 t t = - .解得 32 41 t=. 图3 图4 (2)作PD⊥BC,垂足为D. 在Rt△BPD中,BP=5t,cos B=4 5 ,所以BD=BP cos B=4t,PD=3t. 当AQ⊥CP时,△ACQ∽△CDP. 所以AC CD QC PD =,即 684 43 t t t - =.解得 7 8 t=.

图5 图6 (3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是BC 的中点,E 是AB 的中点. 所以PQ 的中点H 在△ABC 的中位线EF 上. 例2:如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. 图1 思路点拨 1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答 (1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-. 因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得3 3 a = .

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案 一、相似 1.如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s 的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出 发,用t(s)表示移动时间(0≤t≤9),求: (1)当t为何值时,∠ANM=45°? (2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论; (3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似? 【答案】(1)解:对于任何时刻t,AM=2t,DN=t,NA=9-t,当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t, 解得:t=3(s), 所以,当t=3s时,△MAN为等腰直角三角形 (2)解:在△NAC中,NA=9-t,NA边上的高DC=12,∴S△NAC= NA?DC= (9-t)?18=81-9t. 在△AMC中,AM=2t,BC=9, ∴S△AMC= AM?BC= ?2t?9=9t. ∴S四边形NAMC=S△NAC+S△AMC=81(cm2). 由计算结果发现: 在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变) (3)解:根据题意,可分为两种情况来研究,在矩形ABCD中:①当NA:AB=AM:BC 时,△NAP∽△ABC,那么有: ( 9-t):18=2t:9,解得t=1.8(s), 即当t=1.8s时,△NAP∽△ABC; ②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有: ( 9-t):9=2t:18,解得t=4.5(s), 即当t=4.5s时,△MAN∽△ABC; 所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似

圆压轴八大模型题(4)-圆内接等边三角形

圆压轴题八大模型题(四) 泸州市七中佳德学校 易建洪 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都是在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性帮助考生解决问题。 类型4 圆内接等边三角形 如图,点P 为等边△ABC 外接圆劣弧BC 上一点. (1) 求证:PA =PB +PC ; (2) 设PA 、BC 交于点M , ① 若BP =4,PC =2,求CM 的长度. ② 若AB =4,PC =2,求CM 的长度. 【分析】 (1) 证明:连结CD .在PA 上截取PD=PC , 证得△ACD ≌△BCP ,∴AD=PB ,又DP=PC , 因此PA=PB +PC. (2)①⊙O 中△ABM ∽△CPM, 12PC MC AB MA == ∴1 2 PC MC AB MA == 设MC=x ,则AM=2x,MN=2-x ,又 在Rt △AMN 中,由勾股定理得 . (2)②过点C 作CE ⊥AP 于E ,过点A 作AN ⊥BC 于点N.由(1)可得AP=BP+CP=4+2=6,Rt △PCE 中 ,则 因此 由(2)②可得 . 【典例】 (2018·湖南常德)如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,在CD 的延 图1 图(1) 图(2) 图(3)

长线上有一点F ,使DF =DA ,AE ∥BC 交CF 于E . (1)求证:EA 是⊙O 的切线; (2)求证:BD =CF . 【分析】(1)连结OA 后,由∠OAC =30°,BC ∥AE 得∠CAE =∠BCA =60°,因此∠OAE =90°证得AE 是⊙O 的切线.(2)∠ADF =∠ABC =60°,且DF =DA 得等边△ADF ,且△ABC 也是等边三角形,可得△ADB ≌△AFC ,因此BD =CF . 【解答】证明:(1)连接OD , ∵⊙O 是等边三角形ABC 的外接圆, ∴∠OAC =30°,∠BCA =60°, ∵AE ∥BC ,∴∠EAC =∠BCA =60°, ∴∠OAE =∠OAC +∠EAC =30°+60°=90°, ∴AE 是⊙O 的切线; (2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°, ∵A 、B 、C 、D 四点共圆,∴∠ADF =∠ABC =60°, ∵AD =DF ,∴△ADF 是等边三角形,∴AD =AF ,∠DAF =60°, ∴∠BAC +∠CAD =∠DAF +∠CAD ,即∠BAF =∠CAF , 在△BAD 和△CAF 中, ∵ ,∴△BAD ≌△CAF , ∴BD =CF . 【点拨】 等边三角形的边等角等易构造三角形全等和相似,圆上一点与圆内接等边三角形三顶点的连线之间的关系探究,可以运用延长法与截短法;含60°角三角形,知两边求第三边;借相交弦或平行线得三角形相似,作等边三角形的高,借比例线段和勾股定理建方程求线段是关键。 【变式运用】 1.(2011·泸州)如图,点P 为等边△ABC 外接圆劣弧BC 上一点. 图 4-1 图a

2017年中考数学相似三角形压轴题

相似三角形中考压轴试题 一、选择题 1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4, 点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】 A.1个 B.2个 C.3个 D.4个 二、填空题 1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE= ∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4 .有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5 ,其中正确的结论是(填 入正确结论的序号). 三、解答题 1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2 +bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B . (1)求抛物线的函数表达式; (2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形 是平行四边形时,求出点M 的坐标; (3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.

2.(2014年湖北十堰12分)已知抛物线C1: 2 yax12的顶点为A,且经过点B(﹣2,﹣1). (1)求A点的坐标和抛物线C1的解析式; (2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点, 求S△OAC:S△OAD的值; (3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与 y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边 BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发, 与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止 运动,点N到达点C时停止运动.设运动时间为t(s). (1)当t为何值时,点G刚好落在线段AD上? (2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关 于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰 三角形?

2017年挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2.1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3.1 代数计算及通过代数计算进行说理问题 §3.2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 §4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两 边表示出来,按照对应边成比例,分AB DE AC DF =和 AB DF AC DE =两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢? 我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减. 图1 图1 图2 例 1 湖南省衡阳市中考第28题 二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示); (2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值; (3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?

圆压轴八大模型题(3)-双切线组合说课讲解

圆压轴题八大模型题(三) 泸州市七中佳德学校 易建洪 引言: 与圆有关的证明与计算的综合解答题, 往往位于许多省市中考题中的倒数第二题 的位置上, 是试卷中综合性与难度都比较大的习题。 一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题, 整理了这些习题的常见的结论,破题的要点, 常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 3 双切线组合 径在直角边——直径在直角三角形的直角边上 . Rt △PBC 中,∠ ABC =90°,Rt △PBC 的直角边 PB 上有一点 A ,以线段 AB 为直径的⊙ O 与斜 边相切于点 D. 【分析】 (1) 由 PC= 62 82 10 ,△ POD ∽△ PCB 得 DO PO ,∴ r 8 r ,∴ r=3. BC PC 6 10 2 2 2 (2) 设 BC=CD=,x 在 Rt △ PBC 中, 82+x 2=(4+x) 2, 得 BC=x=6. (3) 在 Rt △PDO 中, 42+r 2=(2+r) 2,解得 r=3. 2 (4) 由△ PDA ∽△ PBD 得: PD=PAPB. PD PA AD 1 (5) 由△ PDA ∽△ PBD 得 tan , PB=8, PB PD DB 2 ∴PD=4,PA=2,AB=6. 设 AD=x,DB=2x, 65 在 Rt △ ADB 中, x 2+(2x) 2=62, ∴AD=x= 6 5 . 5 (6) 由∠ DEC=∠ADB=90°得 OC ∥ AD. (7) 由 AB=2,则 OB=1,又 BC= 2OC= 1 ( 2)2 3, 在 Rt △OBC 中,BE ⊥OC ,得 OE= 33 ,由中 3 PA AD 1 位线定理得: AD=2OE=2 3 .DB=2 6 ,由△ PDA ∽△ PBD 得: ,设PA=x 则, PD= 2x, ( 2) PD =4, PB =8, 求 BC 的长 . ( 3) PD =4, PA =2, 求 ⊙O 的半径 r. 1 ( 5) PB =8,tan = , (7)若 AB =2, BC = , 求 PA 和 AD. 求 AD 、 PD 、PA 的长 . C C

中考相似三角形专题复习2015-2018安徽中考相似压轴题

希望教育 2019年中考数学一轮复习讲义 学生:全慧 第一讲 相似三角形 1、比例 对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a c b d = (即ab =bc ),我们就说这四条线段是成比例线段,简称比例线段. 1.若 322=-y y x , 则_____=y x ; 2.以下列长度(同一单位)为长的四条线段中,不成比例的是( ) A .2,5,10,25 B .4,7,4,7 C .2,,,4 D .2,5,52,25 3.若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , 则___________,____,===c b a ; 4.:若 43===f e d c b a , 则______=++++f d b e c a 5、已知,求代数式的值. 2、平行线分线段成比例 定理:平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长 度成比例。 推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。 练习1,如下图,EF ∥BC ,若AE ∶EB=2∶1,EM=1,MF=2,则AM ∶AN=____,BN ∶NC=_____ 2、已知:如图,ABCD ,E 为BC 的中点,BF ︰FA =1︰2,EF 与对角线BD 相交于G ,求BG ︰BD 。 3、如图,在ΔABC 中,EF 行于三角形一边的直线与其他两边或两边延长线相交,所截得的三角形与 判定1. 两个角对应相等的两个三角形__________. 判定2. 两边对应成_________且夹角相等的两个三角形相似. 判定3. 三边对应成比例的两个三角形___________. 判定4.斜边和 对应成比例的两个直角三角形相似 常见的相似形式: 1. 若DE∥BC(A 型和X 型)则______________. 2.子母三角形(1) 射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形) (2)∠ABD=∠c

中考数学专题复习 圆压轴八大模型题(6)-圆外一点引圆的切线和直径的垂线

圆压轴题八大模型题(六) 泸州市七中佳德学校 易建洪 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型5 圆外一点引圆的切线和直径的垂线 如图, 点P 是⊙O 外的一点,过点P 作PA 与⊙O 相切于点A ,PO ⊥BO 于点O ,交AB 于点C. (1)求证:CP =AP ; (2)延长BO 交⊙O 于点D ,连结AD ,过点P 作PE ⊥AB 于点E ,找出与△BOC 相似的三角形. (3)若⊙O ,OC =1,求PA 的长. 【分析】(1)如图3连接OA 得OA =OB ,∴∠OAB =∠B ,由等角的余角相等得∠PCA =∠PAC ,∴PC =P A. (2)由∠APE =∠CPE =∠B 得:△BOC ∽△BAD ∽△PCE ≌△PAE . (3)在Rt △OPA 中,设PC =PA =x ,则有(x +1)2=1+x 2 .解得PA =x =2. 基本图形及其变式图 1. 如图1~6,PA 与圆O 相切于点A ,PD ⊥BO (或BO 的延长线)于点D ,直线AB 与PD 相交于点C ,求证:PA =P C. O P C B A P E P A O C B 图1 图(1) 图3 图(2) 图(3) 图2 E A B C P O

【典例】 (2018 湖北随州)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙ O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点. (1)求证: MD =MC ; (2)若⊙O 的半径为5,AC =4,求MC 的长. 【分析】(1)连接OC ,利用切线的性质证明即可; (2)根据相似三角形的判定和性质以及勾股定理解答即可. 解:(1)连接OC ,∵CN 为⊙O 的切线, ∴OC ⊥CM ,∠OCA +∠ACM =90°, ∵OM ⊥AB ,∴∠OAC +∠ODA =90°, ∵OA =OC ,∴∠OAC =∠OCA , ∴∠ACM =∠ODA =∠CDM , ∴MD =MC ; (2)由题意可知AB =5×2=10,AC =4, ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴BC = , ∵∠AOD =∠ACB ,∠A =∠A ,∴△AOD ∽△ACB , ∴ ,即 ,可得:OD =2.5, 设MC =MD =x ,在Rt △OCM 中,由勾股定理得:(x +2.5)2 =x 2 +52 , 解得:x =, 即MC = . C (D ) 图(4) 图(5) 图(6) 图6-1 图a

相关文档
最新文档