最新中考数学专题复习-圆压轴八大模型题(1)-弧中点的运用

最新中考数学专题复习-圆压轴八大模型题(1)-弧中点的运用
最新中考数学专题复习-圆压轴八大模型题(1)-弧中点的运用

圆压轴题八大模型题(一)

泸州市七中佳德学校 易建洪

引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。

类型1 弧中点的运用

在⊙O 中,点C 是⌒

AD 的中点,CE ⊥AB 于点E .

(1)在图1中,你会发现这些结论吗?

①AP =CP =FP ; ②CH =AD ;

②AC 2=AP ·AD =CF ·CB =AE ·A B .

(2)在图2中,你能找出所有与△ABC 相似的三角形吗?

【分析】

(1)①由等弧所对的圆周角相等及同角或等角的余角相等得:∠CAD =∠B =∠ACE ;∠PCF =∠PFC ,所以AP =CP =FP .

(1)②由垂径定理和弧中点的性质得,⌒

DC =⌒

AC =⌒

AH ,再由弧叠加得:⌒

CH =⌒

AD ,所以CH =A D .

(1)③由共边角相似易证:△ACE ∽△ABC ,△ACP ∽△ADC ,△ACF ∽△BCA ,进而得AC 2=AE ?AB ;AC 2=AP ?AD ;AC 2=CF ?CB ;

(2)垂径定理的推论得:C 0⊥AD ,易证:Rt △ABC ∽Rt △ACE ∽Rt △CBE ∽Rt △ACF ∽Rt △BDF ∽ Rt △ACG ∽Rt △CGF .

此外还有Rt △APE ∽Rt △AOG ∽Rt △ABD ∽Rt △CPG .运用这些相似三角形可以解决相关的计算与证明题.

建议:将下列所有例题与习题转化到图1或图2上观察、比较、思考和总结。 【典例】

(2018·湖南永州)如图,线段AB 为⊙O 的直径,点C ,E 在⊙O 上,=

,CD ⊥AB ,

垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F . (1)求证:CF =BF ;

(2)若cos ∠ABE =,在AB 的延长线上取一点M ,使BM =4,⊙O 的半径为6.求证:

B

B

(图1)

(图2)

直线CM 是⊙O 的切线.

【分析】(1)延长CD 与圆相交,由垂径定理得到

,再由

得到

,等弧所对的角

相等,等角对等边。(2)由垂径定理的推论得OC ⊥

BE ,再由锐角三角函数得到边BH 、OH 的长度,由对应边成比例得BE ∥CM ,由∠MCO =∠BHO =90°证得结论。

证明:(1)延长CD 交⊙O 于G ,如图, ∵CD ⊥AB ,∴=, ∵

,∴

∴∠CBE =∠GCB ,∴CF =BF ; (2)连接OC 交BE 于H ,如图, ∵

,∴OC ⊥BE ,

在Rt △OBH 中,cos ∠OBH ==,

∴BH =×6=

,OH =

∵=

=,==,

,而∠HOB =∠COM ,

∴△OHB ∽△OCM ,∴∠OCM =∠OHB =90°,

∴OC ⊥CM ,∴直线CM 是⊙O 的切线.

【点拔】

弧中点得到弧等、弦等、圆周角等,进一步引出角平分线、垂径定理、相似三角形。再结合勾股定理、同角或等角的余角相等、中位线定理,垂径定理、相似三角形的性质定理。可以组合出综合性比较强的有关的习题组。抓边等角等是关键,要善于分解图形。

【变式运用】

1.(2018·四川宜宾)如图,AB 是半圆的直径,

AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若

=,

(图1-1)

(图4)

= .()

2.(2010·泸州)如图,在平行四边形ABCD 中,E 为BC 边上的一点,且AE 与DE 分别平分∠BAD 和∠ADC 。(1)求证:AE ⊥DE ;(2)设以AD 为直径的半圆交AB 于F ,连接

DF 交AE 于G ,已知CD =5,AE =8,求

FG

AF

值。 (1) 证明:在 ABCD 中,

∵AB ∥CD ,∴∠BAD +∠ADC =180° ∵AE 与DE 平分∠BAD 和∠ADC

∴∠EAD

=12∠BAD ,∠EDA =1

2

∠ADC ,

∴∠AED =180°-(∠EAD +∠EDA )

=180°-(12∠BAD +1

2∠ADC )

=180°-1

2

(∠BAD +∠ADC )

=180°-90°=90°

∴AE ⊥DE

(2)解:在 ABCD 中,∵AD ∥BC ∴∠EAD =∠AEB ,且∠BAE =∠DAE ∴∠BAE =∠AEB ,∴AB =BE , 同理:DC =EC =5

又∵AB =DC ,∴AB =BE = DC =EC =5, ∴BC =AD =10

在Rt △AED 中,由勾股定理可得: DE =22221086AD AE -=-= ∵∠BAE =∠EAD ,∠AFD =∠AED =90° ∴△AFG ∽△AED , ∴8463AF AE FG ED ===

3. (2012·泸州)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是AD 的中点,弦CE ⊥AB 于点H ,连结AD ,分别交CE 、BC 于点P 、Q ,连结BD 。 (1)求证:P 是线段AQ 的中点; (2)若⊙O 的半径为5,AQ =

,求弦CE 的长。

(1)证明:∵AB 是⊙O 的直径,弦CE ⊥AB , ∴⌒AC =⌒AE .又∵C 是⌒AD 的中点,∴⌒AC =⌒CD , ∴⌒AE =⌒

CD .∴∠ACP =∠CAP .∴PA =PC , ∵AB 是直径.∴∠ACB =90°.

∴∠PCQ =90°﹣∠ACP ,∠CQP =90°﹣∠CAP , ∴∠PCQ =∠CQP .∴PC =PQ .

(图1-4)

(图1-3)

A

B

C D

E

F G 图9

∴PA =PQ ,即P 是AQ 的中点;

(2)解:∵⌒AC =⌒

CD ,∴∠CAQ =∠AB C . 又∵∠ACQ =∠BCA ,∴△CAQ ∽△CB A .

∴15

32104

AC AQ BC AB ===. 又∵AB =10,∴AC =6,BC =8.

根据直角三角形的面积公式,得:AC ?BC =AB ?CH ,∴6×8=10CH .

∴CH =

24

5

.又∵CH =HE , ∴CE =2CH =48

5

4.(2014?泸州)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AC 和BD 相交于点E ,且DC 2

=CE ?C A . (1)求证:BC =CD ;

(2)分别延长AB ,DC 交于点P ,过点A 作AF ⊥CD 交CD 的延长线于点F ,若PB =OB ,CD

=,求DF 的长.

(1)证明:∵DC 2

=CE ?CA , ∴

DC CA

CE DC

=

,△CDE ∽△CAD , ∴∠CDB =∠DAC ,∵四边形ABCD 内接于⊙O , ∴BC =CD ;

(2)解:方法一:如图,连接OC , ∵BC =CD ,

∴∠DAC =∠CAB ,又∵AO =CO , ∴∠CAB =∠ACO ,∴∠DAC =∠ACO , ∴AD ∥OC ,∴

PC PO

PD PA

=

, ∵PB =OB ,CD =

2

3=

∴PC =

又∵PC ?PD =PB ?PA

4+

)=OB ?3OB ∴OB =4,即AB =2OB =8,PA =3OB =12, 在Rt △ACB 中, AC

==

∵AB 是直径,∴∠ADB =∠ACB =90°

(图1-5)

图a

∴∠FDA+∠BDC=90°,∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA,

又∵∠AFD=∠ACB=90°,

∴△AFD∽△ACB

AF

FD

AC

CB

===

在Rt△AFP中,设FD=x,则AF

∴在Rt△APF

中有,222

)(12

x

++=,

求得DF

2

方法二;连接OC,过点O作OG垂直于CD,

易证△PCO∽△PDA,可得

PC PO

PD PA

=,

△PGO∽△PFA,可得

PG PO

PF PA

=,

可得,

PC PG

PD PF

=,由方法一中PC=

=,

即可得出DF

2

5.(2015?泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.

(1)求证:四边形ABCE是平行四边形;

(2)若AE=6,CD=5,求OF的长.

【解答】(1)证明:∵AE与⊙O相切于点A,

∴∠EAC=∠ABC,∵AB=AC

∴∠ABC=∠ACB,∴∠EAC=∠ACB,

∴AE∥BC,∵AB∥CD,

∴四边形ABCE是平行四边形;

(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,

∵AE是⊙O的切线,

由切割线定理得,AE2=EC?DE,

∵AE=6,CD=5,

∴62=CE(CE+5),解得:CE=4,(已舍去负数),

由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,

又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,

设OF=x,OH=y,FH=z,

(图1-6)

图b

∵AB=4,BC=6,CD=5,

∴BF=1

2

BC﹣FH=3﹣z,

DF=CF=1

2

BC+FH=3+z,

易得△OFH∽△DFM∽△BFN,

∴DF

OF

DM

OH

=,

BF

OF

BM

OH

=,

5

32

z

x y

+

=,①

32

z

x y

-

=②,

①+②得:69

2

x y

=,①÷②得:

35

34

z

z

+

=

-

69

2

35

34

x y

z

z

?

=

??

?

+

?=

?-

?

3

4

1

3

y x

z

?

=

??

?

?=

??

,∵x2=y2+z2,∴22

91

169

x x

=+,

∴x

,∴OF

6.如图,AB是⊙O的直径,C、P是弧AB上的两点,AB=13,AC=5.

(1)如图①,若P是弧AB的中点,求PA的长;

(2)如图②,若P是弧BC的中点,求PA的长.

解:(1)如答图①,连接PB,

∵AB是⊙O的直径且P是⌒

AB的中点,

∴∠PAB=∠PBA=45°,∠APB=90°

又∵在等腰三角形△ABC中有AB=13,

(2)如答图②,连接BC,与OP相交于M点,作PH⊥AB于点H,

∵P点为⌒

BC的中点,∴OP⊥BC,∠OMB=90°,

c

(图1-7

图d

图①图②

又∵AB 为直径,∴∠ACB =90°.

∴∠ACB =∠OM B. ∴OP ∥A C.∴∠CAB =∠PO B.

又∵∠ACB =∠OHP =90°,∴△ACB ∽△0HP . ∴

AB OP =AC OH 又∵AB =13,AC =5,OP =13

2

, ∴

,解得OH =5

2

∴AH =OA +OH =9. ∵在Rt △OPH 中,有

∴在Rt △AHP 中 有 .

∴PA =

7.如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径.∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:DP ∥AB ;

(2)若AC =6,BC =8,求线段PD 的长.

解:(1)证明:如图,连接OD ,

∵AB 为⊙O 的直径,∴∠ACB =90°.

∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°. ∴∠DAB =∠ABD =45°。∴△DAB 为等腰直角三角形。 ∴DO ⊥A B.

∵PD 为⊙O 的切线,∴OD ⊥P D.

∴DP

∥A B.

(2)在Rt △ACB 中,,

∵△DAB 为等腰直角三角形,

∴.

(图1-8)

图e

∵AE⊥CD,∴△ACE为等腰直角三角形。

∴.

图f

在Rt△AED中,

∴.

∵AB∥PD,∴∠PDA=∠DAB=45°.∴∠PAD =∠PCD。

又∵∠DPA=∠CPD,∴△PDA∽△PC D.

∴.

∴PA=PD,PC =P D.

又∵PC =PA+AC,∴PD+6=PD,解得PD=.

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

2020年中考数学 圆专题复习(中等生) 学生版

2020年中考数学圆专题复习 1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=8,DE=5,求BC的长. 2.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D. (1)如图①,若∠OCA=60°,求OD的长; (2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.

3.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切 线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G. (1)求证:△EFD为等腰三角形; (2)若OF:OB=1:3,⊙O的半径为3,求AG的长. 4.如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线, 且DA=DC. (1)求证:BD为⊙O切线; (2)若AB=9,AD=12,求BD的长及⊙O的半径; (3)若⊙O的半径为6,tan∠BAC=,求CD的长.

5.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E. (1)试判断直线DE与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2,∠BAC=60°,求线段EF的长. 6.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E. (1)试判断DE与⊙O的位置关系,并说明理由; (2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

7.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF. (1)求证:CF与⊙O相切; (2)若AD=2,F为AE的中点,求AB的长. 8.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC 于点E,F是DE的中点,连接CF. (1)求证:CF是⊙O的切线. (2)若∠A=22.5°,求证:AC=DC.

中考数学专题复习 圆压轴八大模型题(2)-切割线互垂

圆压轴题八大模型题(二) 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型2 切割线互垂 在Rt △ABC 中,点E 是斜边AB 上一点,以EB 为直径的⊙O 与AC 相切于点D ,与BC 相交于点F . 【分析】(1)在Rt △ADO 中,(10+r)2=r 2+202 ,得r=15. (2)由DO ∥BC,得 DO AO BC AB =,∴402440 r r -= 得:r=15. (3)在Rt △ADO 中, DO=r ,AO=10+r , 由DO ∥BC , AD AO AC AB = 得,r=15. (4)连结DO,DO=BO,∠ODB=∠OBD;由DO ∥BC 得∠CBD=∠ODB,∴∠ABD=∠CBD. (5)由Rt △BCD ∽Rt △BDE 得BD 2 =BC ?BE. (6)由△ADE ∽△ABD 得AD 2 =AE ?AB. 【分析】 (7)由∠EBD=∠FBD 得DE=DF,∴DE=DF,又∠DFC=∠DEG,∠C=∠DGE=90°得△DCF ≌△DGE. (1)AD=20,AE=10,求r; (2)AB=40,BC=24,求r. O F E D C B A (3)AC=32,AE=10,求r. (4)∠ABD=∠CBD. (5)DB 2=BC ?BE; (6)AD 2=AE ?AB. (7)△DCF ≌△DGE; (8)DF 2 =CF ?BE; (9)AG:AC=1:2,BD=10.求r. (10)DC=12,CF=6, 求r 和BF. O F E D C B A (11)DC=12,CF=6,求CO 上任意线段的长. 图(1) 图(2) 图(3) 图(4) 图(5) 图(6) A B C G E O F D

2019年中考数学圆专题复习试卷含详解

2018-2019学年初三数学专题复习圆 一、单选题 1.下列说法,正确的是( ) A. 半径相等的两个圆大小相等 B. 长度相等的两条弧是等弧 C. 直径不一定是圆中最长的弦 D. 圆上两点之间的部分叫做弦 2.如图,在⊙O中,∠ABC=50°,则∠AOC等于() A. 50° B. 80° C. 90° D. 100° 3.已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是( ) A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定 4.如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 5. 两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是() A. 内含 B. 内切 C. 相交 D. 外切 6.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。 A. B. C. D. 7.钝角三角形的外心在() A. 三角形的内部 B. 三角形的外部 C. 三角形的钝角所对的边上 D. 以上都有可能 8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为() A. 5πcm B. 6πcm C. 8πcm D. 9πcm 9.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( ) A. 6π B. 9π C. 12π D. 15π 10.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A. 相离 B. 相切 C. 相交 D. 相切或相交 11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()

中考数学精编—初中数学圆专题复习

初中数学圆的专题圆 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若 半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1,S 2 之间的关系是 () A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)

的面积为() 例4 车轮半径为0.3m的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度() A.3.6π千米/时 B.1.8π千米/时 C.30千米/时 D.15千米/时 例5 如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有() A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

圆压轴八大模型题切割线互垂.docx

圆压轴题八大模型题(二) 引言:与圆有关的证明与计算的综合解答题, 往往位于许多省市中考题中的倒数第二题 的位置上, 是试卷中综合性与难度都比较大的习题。 一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题, 整理了这些习题的常见的结论,破题的要点, 常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 2 切割线互垂 在 Rt △ABC 中,点 E 是斜边 AB 上一点,以 EB 为直径的⊙ O 与 AC 相切于点 D ,与 BC 相交于点 F. C C C D F D F D F A E O B A E O B A E O B 图(1) 图(2) 图(3) (1)AD=20,AE=10, 求 r; (3)AC=32 , AE=10,求 r. (5)DB 2=BCBE; (2)AB=40,BC=24, 求 r. (4) ∠ ABD=∠ CBD. (6)AD 2=AEAB. 【分析】 (1) 在 Rt △ADO 中, (10+r) 2=r 2+202, 得 r=15. (2) 由 DO ∥BC,得 DO AO ,∴ r 40 r 得: r=15. BC AB 24 40 (3)在 Rt △ADO 中, AD= (10 r )2 r 2 , DO=r , AO=10+r , 由 DO ∥ BC , AD AO 得, r=15. AC AB (4)连结 DO,DO=BO,∠ ODB=∠ OBD;由 DO ∥ BC 得∠ CBD=∠ ODB,∴∠ ABD=∠ CBD. (5) 由 Rt △BCD ∽ Rt △ BDE 得 BD 2=BCBE. 2 (6) 由△ ADE ∽△ ABD 得 AD=AEAB. C C C D F D F D F G A E G O B A E O B A E O B 图 (4) 图(5) 图 (6) (7) △ DCF ≌△ DGE; (10)DC=12,CF=6, (11)DC=12,CF=6, 求 (8)DF 2=CFBE; 求 r 和 BF. CO 上任意线段的长 . (9)AG:AC=1:2,BD=10. 求 r. 【分析】 (7)由∠ EBD=∠ FBD 得 DE=DF,∴ DE=DF,又∠ DFC=∠ DEG,∠C=∠ DGE=90°得△ DCF ≌△ DGE.

深圳中考数学专题--圆

2017届深圳中考数学专题——圆 一.解答题(共30小题) 1.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长.

4.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM. (1)求证:AD是⊙O的切线; (2)若sin∠ABM=,AM=6,求⊙O的半径. 5.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O 于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径.

6.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 8.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED. (1)若∠B+∠FED=90°,求证:BC是⊙O的切线; (2)若FC=6,DE=3,FD=2,求⊙O的直径. 9.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E. (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

(完整word版)中考数学专题复习圆压轴八大模型题(学生用).doc

圆压轴题八大模型题(一) 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 1弧中点的运用 ⌒ 在⊙ O 中,点 C 是 AD的中点, CE⊥ AB 于点 E. C D P F A B (1)在图 1 中,你会发现这些结论吗? E O ①AP=CP= FP; ②CH= AD;H ②AC2=AP· AD= CF· CB= AE·AB. (2)在图 2 中,你能找出所有与△ABC相似的三角形吗? (图 1) 【典例】 (2018 ·湖南永州)如图,线段AB 为⊙ O 的直径,点C,E 在⊙ O 上,=,CD⊥AB,垂足为点D,连接 BE,弦 BE 与线段 CD相交于点F. (1)求证: CF=BF; (2)若 cos∠ABE=,在AB的延长线上取一点M ,使 BM= 4,⊙ O 的半径为 6.求证: 直线 CM 是⊙ O 的切线. 【变式运用】 1.(2018 ·四川宜宾)如图,AB是半圆的直径, AC是一条弦, D 是 AC的中点, DE⊥AB 于点 E 且 DE交 AC于点 F,DB交 AC于点 G,若=, (图 1-2)

则 =. 2.( 2018 ·泸州) 如图,在平行四边形 ABCD 中, E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠ BAD 和∠ ADC 。( 1) 求证: AE ⊥DE ; ( 2) 设以 AD 为直径的半圆交 AB 于 F ,连接 DF 交 AE 于 G ,已知 CD = 5, AE = 8,求 FG 值。 AF A D G F B E C 图9 (图 1-3) ? 3. ( 2017·泸州)如图,△ ABC 内接于⊙ O , AB 是⊙ O 的直径, C 是 AD 的中点,弦 CE ⊥ AB 于点 H ,连结 AD ,分别交 CE 、 BC 于点 P 、 Q ,连结 BD 。 (1)求证: P 是线段 AQ 的中点; (2)若⊙ O 的半径为 5, AQ = ,求弦 CE 的长。 4.( 2016?泸州)如图,四边形 ABCD 内接于⊙ O , AB 是⊙ O 的直径, AC 和 BD 相交于点 E , 且 DC 2 = CE?CA . ( 1)求证: BC = CD ; ( 2)分别延长 AB , DC 交于点 P ,过点 A 作 AF ⊥ CD 交 CD 的延长线于点 F ,若 PB = OB , CD = ,求 DF 的长.

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

中考数学圆专题练习

中考数学圆 专题练习-- 一、选择题 1.(2010年 湖里区 二次适应性考试)已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .10 cm D .15 cm 答案:C 2.(2010年教育联合体)如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论 正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 答案:D 3.(2010安徽省模拟)如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则 ⊙O 中阴影部分的面积是( ) A .433π- B .2 3π C .2 23 π- D .1 3 π 答案:A 4.(2010年重庆市綦江中学模拟1).在直角坐标系中,⊙A 、⊙B 的 位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C 5.(2010年聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片 第4题图 O D B C E A 第3题 A O B C D E

折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm 答案C 6.(2010年广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7.(2010年广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于( ) A. 60° B. 100° C. 80° D. 130° 答案:C 8.(2010年广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ). A.6.5米 B.9米 C.13米 D.15米 答案:A 9.(2010年广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30o , 则∠A 的度数为( ).[来 A.30o B.45o C.60o D.75o 答案:C 10.(2010山东新泰)已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案:D 11.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路 7题图 8题图 9题图

初中数学“圆”专题复习(初三必备)

初中数学“圆”专题复习(初三必备) 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1 , S 2 之间的关系是() A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为()

A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM. (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由. 例2 在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为() A.6分米 B.8分米 C.10分米 D.12分米

圆压轴八大模型题(4)-圆内接等边三角形

圆压轴题八大模型题(四) 泸州市七中佳德学校 易建洪 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都是在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性帮助考生解决问题。 类型4 圆内接等边三角形 如图,点P 为等边△ABC 外接圆劣弧BC 上一点. (1) 求证:PA =PB +PC ; (2) 设PA 、BC 交于点M , ① 若BP =4,PC =2,求CM 的长度. ② 若AB =4,PC =2,求CM 的长度. 【分析】 (1) 证明:连结CD .在PA 上截取PD=PC , 证得△ACD ≌△BCP ,∴AD=PB ,又DP=PC , 因此PA=PB +PC. (2)①⊙O 中△ABM ∽△CPM, 12PC MC AB MA == ∴1 2 PC MC AB MA == 设MC=x ,则AM=2x,MN=2-x ,又 在Rt △AMN 中,由勾股定理得 . (2)②过点C 作CE ⊥AP 于E ,过点A 作AN ⊥BC 于点N.由(1)可得AP=BP+CP=4+2=6,Rt △PCE 中 ,则 因此 由(2)②可得 . 【典例】 (2018·湖南常德)如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,在CD 的延 图1 图(1) 图(2) 图(3)

长线上有一点F ,使DF =DA ,AE ∥BC 交CF 于E . (1)求证:EA 是⊙O 的切线; (2)求证:BD =CF . 【分析】(1)连结OA 后,由∠OAC =30°,BC ∥AE 得∠CAE =∠BCA =60°,因此∠OAE =90°证得AE 是⊙O 的切线.(2)∠ADF =∠ABC =60°,且DF =DA 得等边△ADF ,且△ABC 也是等边三角形,可得△ADB ≌△AFC ,因此BD =CF . 【解答】证明:(1)连接OD , ∵⊙O 是等边三角形ABC 的外接圆, ∴∠OAC =30°,∠BCA =60°, ∵AE ∥BC ,∴∠EAC =∠BCA =60°, ∴∠OAE =∠OAC +∠EAC =30°+60°=90°, ∴AE 是⊙O 的切线; (2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°, ∵A 、B 、C 、D 四点共圆,∴∠ADF =∠ABC =60°, ∵AD =DF ,∴△ADF 是等边三角形,∴AD =AF ,∠DAF =60°, ∴∠BAC +∠CAD =∠DAF +∠CAD ,即∠BAF =∠CAF , 在△BAD 和△CAF 中, ∵ ,∴△BAD ≌△CAF , ∴BD =CF . 【点拨】 等边三角形的边等角等易构造三角形全等和相似,圆上一点与圆内接等边三角形三顶点的连线之间的关系探究,可以运用延长法与截短法;含60°角三角形,知两边求第三边;借相交弦或平行线得三角形相似,作等边三角形的高,借比例线段和勾股定理建方程求线段是关键。 【变式运用】 1.(2011·泸州)如图,点P 为等边△ABC 外接圆劣弧BC 上一点. 图 4-1 图a

中考数学专题:圆.(学生版)

中考数学试题专题复习:圆 【学生版】 一、选择题 1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A 、相交 B 、外切 C 、外离 D 、内含 3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点, 过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 A 、30° B 、60° C 、45° D 、50° 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1, AB=AC=AD=2.则BD 的长为 A. 14 B. 15 C. 32 D. 23 5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点, 则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°, AC∥OD,则∠AOC 的度数 A. 70° B. 60° C. 50° D. 40° 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD , 如果∠BOC = 700 ,那么∠A 的度数为 A 70 0 B. 350 C. 300 D . 200 17.填空题 1.(天津3分)如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.OB⊥AD,交AC 于点B .若OB=5,则BC 的长等于 ▲ 。

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

圆压轴八大模型题(3)-双切线组合说课讲解

圆压轴题八大模型题(三) 泸州市七中佳德学校 易建洪 引言: 与圆有关的证明与计算的综合解答题, 往往位于许多省市中考题中的倒数第二题 的位置上, 是试卷中综合性与难度都比较大的习题。 一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题, 整理了这些习题的常见的结论,破题的要点, 常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型 3 双切线组合 径在直角边——直径在直角三角形的直角边上 . Rt △PBC 中,∠ ABC =90°,Rt △PBC 的直角边 PB 上有一点 A ,以线段 AB 为直径的⊙ O 与斜 边相切于点 D. 【分析】 (1) 由 PC= 62 82 10 ,△ POD ∽△ PCB 得 DO PO ,∴ r 8 r ,∴ r=3. BC PC 6 10 2 2 2 (2) 设 BC=CD=,x 在 Rt △ PBC 中, 82+x 2=(4+x) 2, 得 BC=x=6. (3) 在 Rt △PDO 中, 42+r 2=(2+r) 2,解得 r=3. 2 (4) 由△ PDA ∽△ PBD 得: PD=PAPB. PD PA AD 1 (5) 由△ PDA ∽△ PBD 得 tan , PB=8, PB PD DB 2 ∴PD=4,PA=2,AB=6. 设 AD=x,DB=2x, 65 在 Rt △ ADB 中, x 2+(2x) 2=62, ∴AD=x= 6 5 . 5 (6) 由∠ DEC=∠ADB=90°得 OC ∥ AD. (7) 由 AB=2,则 OB=1,又 BC= 2OC= 1 ( 2)2 3, 在 Rt △OBC 中,BE ⊥OC ,得 OE= 33 ,由中 3 PA AD 1 位线定理得: AD=2OE=2 3 .DB=2 6 ,由△ PDA ∽△ PBD 得: ,设PA=x 则, PD= 2x, ( 2) PD =4, PB =8, 求 BC 的长 . ( 3) PD =4, PA =2, 求 ⊙O 的半径 r. 1 ( 5) PB =8,tan = , (7)若 AB =2, BC = , 求 PA 和 AD. 求 AD 、 PD 、PA 的长 . C C

最新中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆) 【教学笔记】 一、与圆有关的计算问题(重点) 1、扇形面积的计算 扇形:扇形面积公式 21 3602 n R S lR π= = n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积 圆锥侧面展开图: (1)S S S =+侧表底=2 Rr r ππ+ (2)圆锥的体积:2 13 V r h π= 2、弧长的计算:弧长公式 180 n R l π=; 3、角度的计算 二、圆的基本性质(重点) 1、切线的性质:圆的切线垂直于经过切点的半径. 2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半; 推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等; (2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。 注意:在圆中,同一条弦所对的圆周角有无数个。 3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 (2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧 (3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等 三、圆与函数图象的综合

一、与圆有关的计算问题 【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是() A.2﹣π B.4﹣π C.2﹣π D.π 【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2, ∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A. 【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是() A.﹣2B.﹣2C.﹣D.﹣ 解答:连接OC, ∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2, ∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2, ∴△AOC的边AC上的高是=,△BOC边BC上的高为, ∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2, 故选A. 【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()πBππ =

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

2021中考数学专题训练——圆 (解析版)

2021中考数学专题训练——圆 考点一 圆的有关概念及性质 1.(2018衢州,10,3分)如图,AC 是☉O 的直径,弦BD ⊥AO 于E,连接BC,过点O 作OF ⊥BC 于F,若BD=8 cm,AE=2 cm,则OF 的长度是?( ) A.3 cm B.6cm C. 2.5cm D.5cm 答案 D ∵AC ⊥BD,∴BE=DE=2 1BD=4 cm. 设☉O 的半径为r cm. 连接OB,则在Rt △BOE 中,r 2=42+(r-2)2,解得r=5. ∴CE=8 cm.∴BC=54 cm. 又∵OF ⊥BC,∴CF=2 1BC=52 cm, ∵OC=5 cm,∴OF=5 cm.故选D. 2.(2016杭州,8,3分)如图,已知AC 是☉O 的直径,点B 在圆周上(不与A,C 重合),点D 在AC 的延长线上,连接BD 交☉O 于点E.若∠AOB=3∠ADB,则?( ) A.DE=EB B.?DE=2EB C.3DE=DO D.DE=OB 答案 D 连接OE,∠AOB=∠ADB+∠B=3∠ADB, ∴∠B=2∠ADB,∵OE=OB, ∴∠OEB=∠B=2∠ADB=∠ADB+∠EOC, ∴∠ADB=∠EOC,∴DE=EO,∴DE=OB.故选D. 3. (2019台州,14,5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE,若∠ABC=64°,则∠BAE 的度数为_______ . 答案 52° 解析 由题意得∠D=180°-∠ABC=116°, ∵点D 关于AC 的对称点E 在边BC 上, ∴∠D=∠AEC=116°, ∴∠BAE=116°-64°=52°. ? 4.(2018杭州,14,4分)如图,AB 是☉O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB,交☉O

相关文档
最新文档