量子力学中的代数解法

量子力学中的代数解法
量子力学中的代数解法

2014中考二轮复习专题——代数推理题

0) 2x (x a x x 12x ax =-+++-中考二轮复习专题——代数推理题 例1.老师在黑板上写出三个算式: 52一 32= 8×2,92-72=8×4,152-32=8×27,王华接着又写了两个具有同样规律的算式:112 5 2=8×12,152-72 =8×22,…… (1)请你再写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出反映上述算式的规律; (3 )证明这个规律的正确性. 例 2. 方程有且仅有一个实根,求a 的值. 例3. 已知二次函数)a c (bx 2x )c a (y 2--++=,其中a 、b 、c 是△ABC 的三边, 且b 2c a ,c a ,b a =+≥≥. (1)若这个二次函数的图像经过原点,试证:△ABC 是等边三角形; (2)若△ABC 是直角三角形,试证:这个二次函数的图像除顶点以外都在x 轴上方.

例4. 关于x 的方程)c bx (2)1x )(1x )(c a (+=-+-有两个相等实根,其中a ,b ,c 为△ABC 中∠A 、∠B 、∠C 的对边,若0c b 4ac 2a 222=+-+,求sinB 和tanA 的值. 例5.已知二次函数122+-+=m mx x y (m 为常数). (1)求证:不论m 为何值,该二次函数图象的顶点P 都在函数12++-=x x y 的图象上; (2)若顶点P 的横、纵坐标相等,求P 点坐标. 例6. 已知一次函数y 1 = 2x 和二次函数y 2 = x 2 + 1。 (1) 求证:函数y 1、y 2的图像都经过同一个定点; (2) 求证:在实数范围内,对于任意同一个x 的值,这两个函数所对应的函数值y 1 ≤ y 2 总成立; (3) 是否存在抛物线y 3 = ax 2 + bx + c ,其图象经过点(-5,2),且在实数范围内,对于同 一个x 的值,这三个函数所对应的函数值y 1 ≤ y 3 ≤ y 2总成立?若存在,求出y 3的解 析式;若不存在,说明理由。

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

第2章 逻辑代数基础 习题解答

第2章 逻辑代数基础 2.1 明下列异或运算公式。 (7)1A B A B A B ⊕= ⊕=⊕⊕ 2.2 用逻辑代数的基本公式和定律将下列逻辑函数式化简为最简与-或表达式。 (4) Y AB BD DCE AD =+++ =D(A+B)+AB+DCE =DAB+AB+DCE =D+AB+DCE =D+AB (6) ()()Y A B CD A CD AC A D =++++ ()CD A B A ACD CD ACD CD C D +++=+==+ = (9) ()()()Y A C BD A BD B C DE BC =+++++()()A BD AC B C C DE ABD B B =++++=+= (10) ()Y AC BC BD A B C ABCD ABDE =++++++ ()(1)A C B C BDE BC BD A C A BC BD ++++++++= = 2.3 证明下列恒等式(证明方法不限)。

()()()A B C A B C A B C A BC A B C A B C A BC A B C A BC A B C ⊕⊕=⊕⊕⊕+⊕+⊕+= (6)解:左式= = = = =右式 结果与等式右边相恒等,证毕。 (10)()()BC D D B C AD B B D ++++=+ ()()BC D D BC AD B BC D AD B B D =++?+=+++=+ 2.4 根据对偶规则求出下列逻辑函数的对偶式。 (2) ()()Y A B C AB C D ABC D =+++++ 解:'()[()]()Y A BC A B CD A B C D =+++++ (3) Y AB BC CA =++ 解:'()()()Y A B B C C A =+++ 2.5 根据反演规则,求出下列逻辑函数的反函数。 (2) [()]Y A BC CD E F =++ 解:[()()]Y A B C C D E F =++++ (3) Y A B CD C D AB =+++++ 解:()()Y AB C D CD A B =++ 2.6 将下列逻辑函数变换为最小项之和的表达式: (4) ()Y A B C A B C =+++++

代数方程 解法

代数方程 解法 化归思想:高次化低次:降次的方法:因式分解,换元 分式化整式:化整式的方法:去分母,换元 无理化有理:化有理方程的方法:平方法,换元 多元化一元:代入和加减消元 1.一元一次方程和一元二次方程的解法 一元二次方程的解法主要有四种: (1)直接开平方法: 适用于(mx+n )2 =h (h ≥0)的一元二次方程。 (2)配方法: 适用于所有化为一般形式后的一元二次方程。但是,具有二次项系数为1,一次项系数为偶数特点的一元二次方程,用配方法解才较简便。 配方法是通过配方将一元二次方程化成(mx+n )2 =h (h ≥0)的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。 其基本步骤是: ①首先在方程两边同除以二次项系数,把二次项系数化为1; ②把常数项移到等式的右边; ③方程两边同时加上一次项系数一半的平方; ④方程左边写成完全平方式,右边化简为常数; ⑤利用直接开平方法解此方程 用配方法解一元二次方程要注意,当二次项系数不为1时,一定要化为1,然后才能方程两边同时加上一次项系数一半的平方 (3)公式法: 适用于解一般形式的一元二次方程。利用公式() 04242 2≥--±-=ac b a ac b b x 可以解 所有的一元二次方程。

注意:当b 2-4ac ≥0时,方程才有实数解;当b 2 -4ac <0时,原方程无实数解。 (4)因式分解法: 适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。 2.含字母系数的整式方程的解法 3.特殊的高次方程的解法 (1)二项方程)0,0(0≠≠=+b a b ax n 的解法 二项方程的定义: 如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另外一边是零,那么这样的方程叫做二项方程。 关于x 的一元n 次二项方程的一般形式是 ),0,0(0是正整数n b a b ax n ≠≠=+ 二项方程的解法及根的情况: 一般地,二项方程)0,0(0≠≠=+b a b ax n 可变形为a b x n - = 可见,解一元n 次二项方程,可以转化为求一个已知数的n 次方根,运用开方运算可以求出这个方程的根。 二项方程的根的情况: 对于二项方程)0,0(0≠≠=+b a b ax n , 当n 为奇数时,方程只有且只有一个实数根。 当n 为偶数时,如果0ab ,那么方程没有实数根。 (3)因式分解法解高次方程 解高于一次的方程,基本思想就是是“降次”,对有些高次方程,可以用因式分解的方法降次。 用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解。 例题 解下列方程: (1)2x 3+7x 2-4x=0 (2)x 3-2x 2 +x-2=0 解:(1)方程左边因式分解,得 x(2x 2 +7x-4)=0 x(x+4)(2x-1)=0

高考数学经典题题精选 代数推理题

2007年高考数学经典题题精选 代数推理题 1.已知函数)(x f 满足)()()(y f x f y x f ?=+且f(1)=2 1,①当n ∈N * 时,求f(n)的表达式;②设a n =nf(n),n ∈N * ,求证:a 1+a 2+…+a n <2; ③设 )()1(n f n nf b n +=, n ∈N * ,s n =b 1+b 2+…+b n ,求11s +21s +…+n s 1 2.已知函数)(t f 对任意实数x 、y 都有++=+)()()(y f x f y x f .1)1(,3)2(3=+++f y x xy (1)若t 为自然数,试求f(t)的表达式;(2)满足条件f(t)= t 的所有整数t 能否成等 差数列若能构成等差数列,求出此数列;若不能构成等差数列,请说明理由;(3)若 t 为自然数,且t ≥4时,m t m mt t f 3)14()(2+++≥恒成立,求m 的最大值. 3.设函数f (x )=|x -a |-ax ,其中00,函数f (x )=x 3-a ,x ∈),,0[+∞设x 1>0,记曲线y=f (x )在点M(x 1,f (x 1))处的切线为l .(I )求切线l 的方程;(II )设l 与x 轴的交点是(x 2, 0) . 证明: ;)1(312a x ≥.,)2(123 1311x x a a x <<>则若 5.设 f (x ) 是定义在 [-1,1] 上的偶函数,f (x ) 与 g (x ) 的图象关于 x = 1 对称,且当 x ∈ [2,3] 时,g (x ) = a (x -2)-2 (x -2) 3 (a 为常数). (1) 求 f (x ) 的解析式; (2) 若 f (x ) 在 [0,1] 上是增函数,求实数 a 的取值范围; 若a ∈ (一6,6),问能否使 f (x ) 的最大值为 4?请说明理由. 6.对于任意实数x ,若)0() (1) (1)(>+-= +m x f x f m x f 成立, (1) 证明f(x)是以2m 为周期的函数; (2) 若f(x)在],(m m -上的解析式是2)(x x f =,写出f(x)在区间],(m m -及R 上的解析式(不必写过程)。 7.已知f (x )=x 3 +ax+b 定义在区间[-1,1]上,且f (0)=f (1),又P (x 1,y 1),Q (x 2,y 2)是其图象上的任意两个点(x 1≠x 2), (1)求证:函数f (x )的图象关于点(0,b )成中心对称图形。

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

数学问题的算术解法与代数解法

数学问题的算术解法与 代数解法 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

数学问题的算术解法与代数解法------思维训练课 教学内容:《中小学数学衔接》P75—P76 教学目的:1、让学生感受算术解法与代数解法解题,体会到代数解法在解答逆向思考和数量关系较复杂的数量关系中的优势。 2、在用算术解法与代数解法解题的过程中,让学生能主动采用代数法解题。 3、培养学生的分析能力、独立思考能力和观察比较能力。 教学重点:让学生体会到代数法解题的优势。 教学难点:能用代数法解数量关系较复杂的题。(特别是解方程的过程)教学背景:小学生们在小学阶段都习惯于用算术法解题,这是最基本的方法。他们大部分都不习惯用方程解,原因是方程的解答过程没有形成固定的模式,感到很陌生,又加上较复杂的题目方程也较复杂。在课前要专门花点时间让学生练练方程。 教学过程: 1、表面积逆向 2、鸡兔同笼 3、练习 一、比较两种方法的异同 刚才下课的时候,我观察了一下,教室里原有一些人,走出去了3人后,又进来5人。现在还有25人。原来有多少人? 你能用两种方法解答吗? 两人板演。全班齐练 1、X-3+5=25X=23 2、25-5+3=23(人) 第一种方法我们用字母来代替数列出方程,再解答,通常我们把它叫做代数解法。 第二种方法用的全都是能直接运算的数字,这种方法大家都很熟悉,我们通常叫算术解法。 这两种方法究竟有什么相同和不同呢? 相同:解决问题的思路是相同的。在条件分析时,都将用到分析法、综合法;在进行条件的处理时,都会用到数形转换、表格转换等手段。不同之处在于:使用的“工具”有区别,一是通过分析量与量之间的数量关系,用数的加、减、乘、除的计算使问题得以解决,另一个是通过建立等量关系,列出方程、解方程,使问题得以解决。 同学们,在平时的解题中,你比较喜欢什么方法呢?有多少人喜欢方代数法?有哪些人喜欢算术法?这个人数比有点大啊。 这两种方法在解题时有很大的区别,今天我们就来研究这两种方法。板书课题。 二、对比这两种解法,研究用代数解法的两种类型。 1、逆向思考

量子力学考博中用到的物理公式(复习时总结的)

初等量子力学的四块容 一、薛氏方程 C1:波函数与薛氏方程 1、付氏变换:(动量→坐标为正) /332 1()()(2)i p r r p e d p ψψπ+∞ ?-∞ = ? 2、δ函数的两个重要极限及一个积分公式 1()2i x x e d αδαπ∞ -∞ = ? (相当于物理中的波粒转换) 其推导过程: 000() 0()()()1 ()()2i x x f x f x x x dx f x dx d f x e αδαπ ∞ -∞ ∞ ∞ --∞ -∞ =-= ? ? ?两式比较得出。 2 4()lim i i x x e πααδ-=(试题1.5用到) 2 4 i i e d ξπ ξ∞ -∞ =? (好像与某个积分是一样的,只是有些变换) 3、证明技巧 等式一边含有V ,而一边没有。2 22V m ?-?+肯定是作为一个整体消去的。 4、波函数平方可积的要求 2 3(3/2) ,()s d r A r r r ψψ-+=?→∞? 全 (0s >) 可以在证明某些概率守恒的式子时(体积分→面积分 V S AdV A ds ??=???) ,可以得到一些式子的积分为0。 5、(,0) (,)x x t ψψ→ 先将(,0)x ψ展为能量本征态的线性组合(自由粒子时即可以通过付氏化为()p ψ),再 / (,)()iEt E n x t C x e ψψ-=∑。

C2:一维势场中的粒子 1、各种势类型 方势、δ势、谐振子、半壁无限谐振子(谐振子奇数解)、半壁无限方势、不对称方势阱。 2、() ()((),())n n n n n x C x C x x ψ??ψ=?=∑。*()()n n C x x dx ?ψ=?(注 意积分围) 22 11222 2 222 1122H C E C E H C E C E =+=+ 3、无限深势阱的解 )()0 n n x x a πψ=? 。222 2 2n n E ma π=(能量可通过22222P E m m -?==求得) 4、谐振子的解 22 12 ()(!)()n x n n x n e H x αψ α-=?其中α=。 5、递推关系 12()2()2()0n n n H x xH x nH x ----= 1()2()n n H x nH x -'= ()(1)()n n n x x ψψ-=-(所以对于半壁无限高的谐振子只有奇数才可以满足) C5:中心力场 1、径向波函数 ()()R r r r χ= 2 2(1)()[(())]()02l l l l r E V r r r χχμ+''?+--= 0r →时,若有20 lim ()0r r V r →=,则() l l R r r 。 2、无限深球方势阱 ○ 1S 态(0l =),其与无限深方势阱一样。 ○20l ≠时,令kr ρ= 则本征方程

中考数学压轴题分类练习 代数计算推理专题(无答案)

代数计算推理专题 1.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a+b+c=0; ③a ﹣b+c <0; ④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( ) A .①②③ B .③④⑤ C .①②④ D .①④⑤ 2如图9,平面直角坐标系中O 是原点,OABC Y 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论: ①F 是OA 的中点;②OFD ?与BEG ?相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号) 3.如图,在平面直角坐标系x y O 中,已知直线y kx =(0k >)分别交反比例函数1y x = 和9y x =在第一象限的图象于点A ,B ,过点B 作D x B ⊥轴于点D ,交1y x =的图象于点C ,连结C A .若C ?AB 是等腰三角形,则k 的值是 .

4.如图,某日的钱塘江观测信息如下: 按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点)12,0(A ,点B 坐标为)0,(m ,曲线BC 可用二次函数:s=21125 t bt c ++,(c b ,是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度; (2)11:59时,小红骑单车从乙地出发,沿江边公路以48.0千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇? (3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为48.0千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头 1.8千米共需多长时间?(潮水加速阶段速度)30(125 20-+=t v v ,0v 是加速前的速度). 5.已知函数y kx b =+,k y x = ,k 、b 为整数且1bk =. (1)讨论b,k 的取值. (2)分别画出两种函数的所有图象.(不需列表) (3)求y kx b =+与k y x = 的交点个数.

2量子力学与热力学中的随机性

2、量子力学与热力学中的随机性 戴维斯指出,在宇宙学情况下,初始奇点的随机性(即“分子混沌”)导致宇宙的时间不可逆性,混沌粒子运动是大爆炸过程中光滑宇宙流体的一个特点。如果宇宙重新收缩,终极奇点态是混沌的或随机的而不是高度有序的(块状的),这与安置在一个假想的霍金盒子中的黑洞的情形相反,在那里奇点的随机形成和随即消失带来的是时间的对称性,这种黑洞奇点的随机性是内在随机的。在宇宙学的情况下,终极奇点被赋予由宇宙动力学支配的奇点,所以塌缩到视界内的宇宙不是黑洞。但是,宇宙终极奇点如何不同于黑洞奇点,以及宇宙是否真的象戴维斯所期望的那样振荡不息,这是一个没有澄清的问题。我们认为,只有搞清各种势在决定量子波函数演化过程中如何影响从过去向未来演化的提供波ψ(t)和从未来像过去倒转演化的确认波ψ*(-t)的几率幅;特别是在各种奇点附近,由魏尔曲率决定的引力势如何影响量子波在时间两个方向上的演化几率,才能解决宇宙演化的最后结局。 引力论与量子论相统一的理论还遥遥无期,宇宙论和量子论的时间之矢已然浮现,但远未被澄清。但是,对热力学第二定律的理解却在进一步深化,这特别归功于以普里高津为首的布鲁塞尔学派的工作。普里高津提出的耗散结构论对热力学第二定律提出了新的理解:(1)热力学第二定律并不是在经典动力学基础之上的宏观近似,而是动力学的基本原理,可以从它开始建立动力学的更一般的形式体系;(2)热力学第二定律并不意味着热力学系统的单向退化,它也是进化的原动力,熵最大状态只是演化的终态,而在演化过程中,不可逆性导致自组织的出现。在远离平衡态的非线性体系中,通过耗散机制可以导致类似生命现象的复杂结构出现。走向复杂化的进化过程在一定范围内与热力学不可逆过程一致。 普里高津指出,不可逆理论的构建方式有:(1)存在着不可逆理论,它们出于描述观察到的宏观不可逆性的明显目的而被构建出来,如热力学,扩散理论等等。(2)通过引入隐含不可逆性的几率假定,从可逆的动力学方程中推导出不可逆性的理论。例如,在处理具有大数目的系统时,人们抛弃了动力学观点,而把碰撞事件或一系统状态的改变看作是马尔代夫类型的随机过程,即在某种瞬间发生的事件只依赖于那个瞬间的状态而根本不依赖于过去的历史。于是,粒子碰撞造成的不稳定性动力学关联在微观状态被打破,抹去了粒子过去运动的信息。分子运动论和统计力学就是这样构建出来的。(3)还有一些理论,它们基于时间反演不变的理论,但通过引入初始条件或通过t的拉普拉斯变换,从而成为不可逆理论,宇宙学的时间箭头就是这样引入的。 普里高津认为,几率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。因为对于具有对初始条件敏感性的不稳定系统,个体轨道变得不可计算,只能给出多种运动形式的几率分布。于是,在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系统的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性被打存了。而对于稳定体系,“个体”层次(对应于单个轨道)和“统计”层次(对应于系统)是等价的。在不可积动力学体系中,个体的某一轨道可以对应于不同的系统分布ρ,而同一系统分布ρ可以对应不同的个体轨道,过去和未来的不对称性在系统层面上涌现出来,它意味着时间反演的初始系统分布是低几率的。普里高津认为宏观的时间方向是一种突现现象,同时又主张寻求微观不可逆过程的理论描述。 概率随机性被引入物理学,第一次是热力学,第二次是量子力学。然而,这两次引入却被认为具有非常不同的含义。在热力学中,随机性被认为是主观引入的,而在量子力学中,随机性被认为是客观的,具有不可还原的终极意义。将热力学第二定律作为一个基本的事实,意味着微观层次的随机性也应该是客观而非主观的,终极的非表面的。普里高津坚决反对熵和

代数推理题怎么解

代数推理题怎么解 数学是“教会年轻人思考”的科学, 针对代数推理型问题, 我们不但要寻求它的解法是什么, 还要思考有没有其它的解法, 更要反思为什么要这样解, 不这样解行吗?我们通过典型的问题, 解析代数推理题的解题思路, 方法和技巧. 在解题思维的过程中, 既重视通性通法的演练, 又注意特殊技巧的作用, 同时将函数与方程, 数形结合, 分类与讨论, 等价与化归等数学思想方法贯穿于整个的解题训练过程当中. 例1设函数13 4)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值范围. 讲解: 由得实施移项技巧,)()(x g x f ≤ ,13 4:,4:,134422a x y L x x y C a x x x -+=--=-+≤ --令, 从而只要求直线L 不在半圆C 下方时, 直线L 的y 截距的最小值. 当直线与半圆相切时,易求得35(5= -=a a 舍去). 故)()(,5x g x f a ≤-≤时. 本例的求解在于,实施移项技巧 关键在于构造新的函数, 进而通过解几模型进行推理解题, 当中, 渗透着数形结合的数学思想方法, 显示了解题思维转换的灵活性和流畅性. 还须指出的是: 数形结合未必一定要画出图形, 但图形早已在你的心中了, 这也许是解题能力的提升, 还请三思而后行. 例2 已知不等式3 2)1(log 121212111+-≥+++++a n n n a 对于大于1的正整数n 恒成立,试确定a 的取值范围. 讲解: 构造函数n n n n f 212111)(+++++= ,易证(请思考:用什么方法证明呢?))(n f 为增函数. ∵n 是大于1的 正整数, .127)2()(= ≥∴f n f 32)1(log 121212111+-≥+++++a n n n a 要使 对一切大于1的正整数恒成立,必须12732)1(log 121≤+-a a , 即.2 511,1)1(log +≤<-≤-a a a 解得 这里的构造函数和例1属于同类型, 学习解题就应当在解题活动的过程中不断的逐类旁

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.360docs.net/doc/264563382.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

2019-2020年中考数学压轴题分类练习代数计算推理专题无答案

2019-2020年中考数学压轴题分类练习代数计算推理专题无答案 1.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a+b+c=0; ③a﹣b+c<0; ④抛物线的顶点坐标为(2,b); ⑤当x<2时,y随x增大而增大. 其中结论正确的是() A.①②③B.③④⑤C.①②④D.①④⑤ 2如图9,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论: ①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是.(填写所有正确结论的序号) 3.如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是. 4.如图,某日的钱塘江观测信息如下:

按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数:s=,(是常数)刻画. (1)求值,并求出潮头从甲地到乙地的速度; (2)11:59时,小红骑单车从乙地出发,沿江边公路以千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度). 5.已知函数,,k、b为整数且. (1)讨论b,k的取值. (2)分别画出两种函数的所有图象.(不需列表) (3)求与的交点个数. 6.如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂

相关文档
最新文档