正弦定理

正弦定理
正弦定理

课题:正弦定理

授课类型:新授课●教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点

正弦定理的探索和证明及其基本应用。

●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程

Ⅰ.课题导入

如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。A

思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角∠C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c

==, A

sin sin sin a

b

c

c A

B

C

=

=

= b c

从而在直角三角形ABC 中,sin sin sin a

b

c

A

B

C

=

=

C a

B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则

sin sin a

b

A

B

=

C

同理可得sin sin c

b

C B =

, b a 从而

sin sin a

b

A

B

=

sin c

C

=

A c B

(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥, C

由向量的加法可得 A B A C C B

=+ 则 (j AB j AC CB ?=?+ A B

∴j AB j AC j CB ?=?+? j

()()00cos 900cos 90-=+-j AB A j CB C

∴sin sin =c A a C ,即

sin sin =a c

A C

同理,过点C 作⊥j BC ,可得 s i n s i n

=b c B C 从而

s i n s i n a

b

A

B =

sin c

C

=

类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

sin sin a

b

A

B

=

sin c

C

=

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)

sin sin a

b

A

B

=

sin c

C

=

等价于

sin sin a

b

A

B

=

sin sin c

b

C

B

=

sin a

A

=

sin c

C

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如sin sin b A

a B

=

; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如

sin sin a

A B b

=

。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析]

例1.在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。 解:根据三角形内角和定理,

0180()=-+C A B

000180(32.081.8)=-+

066.2=;

根据正弦定理,

00

sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,

00

sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 评述:对于解三角形中的复杂运算可使用计算器。

例2.在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,

0sin 28sin40sin 0.8999.20

==≈b A B a

因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,

000

180

()180(4064)76

=-+≈-+=C A B ,

00

sin 20sin7630().sin sin40==≈a C c cm A ⑵ 当0116≈B 时,

000

180

()180(40116)24

=-+≈-+=C A B , 0

sin 20sin2413().sin sin40==≈a C c cm A 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 Ⅲ.课堂练习

第5页练习第1(1)、2(1)题。

[补充练习]已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:

sin sin a

b

A

B

=

sin c

C

=

=

()0sin sin sin a b c

k k A B C

++=>++;

或sin a k A =,sin b k B =,sin c k C =(0)k > (2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。 Ⅴ.课后作业

第10页[习题1.1]A 组第1(1)、2(1)题。 ●板书设计 ●授后记

北师大版高中数学必修5正弦定理2

正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点 正弦定理的推导及其证明过程. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ?中,设90C =?,则 sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b c A B C ==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有 sin AD B c =,sin AD C b =,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a c A C =,

所以sin sin sin a b c A B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =?-=.同样可得sin sin sin a b c A B C ==.综上可知,结论成立. 证法2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则s i n A D c B =,sin B E a C =,sin C F b A =.所以111sin sin sin 222ABC S ab C ac B bc A ?===,每项同除以12abc 即得:sin sin sin a b c A B C ==. 探索 4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢? 在ABC ?中,有BC BA AC =+ .设C 为最大角,过点A 作AD BC ⊥于D (图(3)), 于是BC AD BA AD AC AD ?=?+? .设AC 与AD 的 夹角为α, 则0||||cos(90)||||cos BA AD B AC AD α=???++? , 其中,当C ∠为锐角或直角时,90C α=?- ;当

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

正弦定理第二课时教案1

§1.1 正弦定理第二课时教案 主备人:刘权 备课组长:刘权 共2课时第二课时 一、学习目标 1. 熟练掌握正弦定理及其变式的结构特征和作用 2. 探究三角形的面积公式 3. 能根据条件判断三角形的形状 4. 能根据条件判断某些三角形解的个数 二、重难点: 重点:正弦定理的应用;难点:已知两边及其中一边对角时三角形解的个数 三、学法指导 1.利用正弦定理可以将三角形中的边角关系互化,同时要注意互补角的正弦值相等这一关系的应用; 2.利用正弦定理判定三角形形状,常运用变形形式,结合三角函数的有关公式,得出角的大小或边的关系。 四、课前预习 1.正弦定理____________________===________ 2.正弦定理的几个变形 (1)a =________ ,b=_________ ,c=_________ (2)sinA=_______, sinB=________ , sinC=_______ (3)a:b:c =____________________. 3.在解三角形时,常用的结论 (1)在ABC ?中,A>B ?_________?_____________ ( 2 ) sin(A+B)=sinC ( 3 ) 三角形的面积公式: ______________________________________________ 五、课堂探究 1.正弦定理:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使C k c B k b A k a sin ,sin ,sin ===; (2)正弦定理的变形形式: 1)————————————————————; 2)————————————————————; 3)————————————————————. (3)利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:

人教课标版高中数学必修5《正弦定理》基础训练

《正弦定理》基础训练 一、选择题 1.在 中,三个内角,,A B C 的对边分别为,,a b c ,若 sin cos a b A B =,则角B 的大小为 ( ) A .6π B .4π C .3π D .2π 2.在中,::4:1:1A B C =,则::a b c = ( ) A .4:1:1 B .2:1:1 C .2:1:1 D .3:1:1 3.在 中,下列关系中一定成立的是 ( ) A .a bsinA > B .a bsinA = C .a bsinA ≤ D .a bsinA ≥ 4.在中,30,2sin sin sin a c b B b A C B ο +-===+-,则 ( ) A .2 B .3 C 2

D .3 2 5.在 中,45,30,2,A B b a ??===则的值为 ( ) A .4 B .22 C .3 D .2 6.在 中,若15,10,60,sin a b A B ?====则 ( ) A . 3 3 B . 63 C . 22 D . 32 7. 的三个内角,,A B C 的对边分别为,,a b c ,若 cos 2cos A b B a ==,则角C 的大小为 ( ) A .60? B .75? C .90? D .120? 8.在 中,3,3,60,a b A B ?===那么角等于 ( ) A .30? B .60?

C .300??或15 D .600??或12 9.已知中,43,2,30,b c C ?===那么此三角形 ( ) A .有一解 B .有两解 C .无解 D .解的个数不确定 10.设 中,内角,,A B C 的对边分别为,,a b c ,且满足cos cos ,a B bC A c -=则是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 二、填空题 11.在 中,若1 3,cos 2 a A ==-,则 的外接圆半径为 。 12.在单位圆上有三点A ,B ,C ,设在中,内角,,A B C 的对边分别为,,a b c , 则 2sin 2sin sin a b c A B C ++= 。 13.在中,角,,A B C 的对边分别为,,a b c , 若6 3,2,cos ,=3 a B A A b ===则 。 14.在 中,角,,A B C 的对边分别为,,a b c , 若21,3,,=3 b c C a π ===则 。 15.在 中,角sin 120,5,7,sin B A A B B C C ? ===则 的值为 。

6.4.2 第二课时 余弦定理、正弦定理(原卷版)-高一数学同步备课系列

6.4.2第二课时余弦定理、正弦定理【课时分层练】 2020-2021学年高一数学同步备课系列【培优题】 一、单选题 1.在ABC 中,内角A ?B ?C 所对的边分别是a ?b ?c ,已知14 b c a -=,2sin 3sin B C =,ABC 的 ,则a =( ) A .2 B .3 C .4 D .5 2.在ABC 中,2sin 22C a b a -=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形 D .直角三角形 3.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为72?的等腰三角形(另一种是两底角为36?的等腰三角形),例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中, 12 BC AC =.根据这些信息,可得sin54?=( ). A B C D

4.在200m 高的山顶上,测得山下一塔顶和塔底的俯角分别是30、60,则塔高为( ) A .4003m B .300m C .400m D .600m 5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知6a =cos 3sin A a B =,则ABC 面积的最大值是( ) A . B . C . D .6.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且A ,B ,C 成等差,1b =,则a c +的取值范围是( ) A .(]1,2 B .(]0,2 C .( D .( 7.在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三边长求三角形的面积, 若三角形的三边长分别为,,a b c ,则其面积S =,其中()12 p a b c =++,现有一个三角形边长,,a b c 满足7,5a b c +==,则此三角形面积最大值为( ) A . B C . D 8.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c 已知21sin 222A b c +=,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9.在ABC 中,内角A ,B ,C 所对边分别为a ,b ,c .若3A π ∠=,4AC = , ABC S =,则 sin sin a b A B +=+( ) A . B .3 C D

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理练习 含答案上课讲义

正弦定理练习含答 案

课时作业1 正弦定理 时间:45分钟 满分:100分 课堂训练 1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π 12 B.π 6 C.π4 D.π3 【答案】 D 【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =3 2, ∴∠A =π 3. 2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π 3,a =3,b =1,则c 等于( ) A .1 B .2 C.3-1 D. 3 【答案】 B 【解析】 由正弦定理a sin A =b sin B , 可得3sin π3=1sin B ,sin B =12, 故∠B =30°或150°,

由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B. 3.在△ABC 中,若tan A =13,C =5 6π,BC =1,则AB =________. 【答案】 102 【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =10 10.由正弦定理得AB =BC sin C sin A =1×sin 56π 1010 =10 2. 4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长. 【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A . 【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B , 又∵0°<∠C <180°,∴∠C =60°或120°. (1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;

高中数学 第二章 正弦定理教学设计 北师大版必修5

《正弦定理》教学设计 一、教学内容分析 本节内容安排在《普通高中课程标准实验教科书·数学必修5》(北师大版)第二章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。 根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。 二、学情分析 对于高一的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造

1.1.1正弦定理公式及练习题

一、引入 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们是否能得到这个边、角关系准确量化的表示呢?这就是我们今天要学习的内容:正弦定理,故此,正弦定理是刻画任意三角形中各个角与其对边之间的关系。 二、新授

1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R C c B b A a 2sin sin sin ===(注:为△ABC 外接圆半径) 2、正弦定理常见变形: (1)边化角公式:A R a sin 2=,B R b sin 2=,C R c sin 2= (2)角化边公式:R a A 2sin =,R b B 2sin =,R c C 2sin = (3)C B A c b a sin :sin :sin ::= (4)R C B A c b a C c B b A a 2sin sin sin sin sin sin =++++=== (5) C c B b C c A a B b A a sin sin sin sin sin sin ===,, (6)B c C b A c C a A b B a sin sin ,sin sin ,sin sin === 3、三角形中的隐含条件: (1)在△ABC 中,c b a >+,c b a <-(两边之和大于第三边,两边只差小于第三边) (2)在△ABC 中,B A b a B A B A B A B A >?>>?>;;cos cos sin sin (3)在△ABC 中,,cos )cos(sin )sin(C B A C B A C B A -=+=+?=++,π 2 cos 2sin C B A =+ 考试·题型与方法 题型一:解三角形 例1:(1)在△ABC 中,已知A=45°,B=30°,c=10,解三角形; (2)在△ABC 中,B=30°,C=45°,c=1,求b 的值及三角形外接圆的半径。 变式训练:在△ABC 中,已知下列条件,解三角形: (1);,,?===602010A b a (2);,,?===606510C c b (3);,,?===4532A b a 例2:下列条件判断三角形解得情况,正确的是( ) A.有两解?===30,16,8A b a B. 有一解?===60,20,18B c b C. 无解?===90,2,15A b a

1.1.1正弦定理 (2)

1.1.1正弦定理 (一)教学目标 1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形中的一类简单问题 2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 (二)教学重、难点 重点:正弦定理的探索和证明及其基本应用。 难点:正弦定理的推导即理解 (三)教学过程 1[创设情景] 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。 A 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B 2[探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt?ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,你有什么发现? A B a C 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: C b a A c B 结论: 类似可推出,当?ABC是钝角三角形时,以上关系式仍然成立。 讨论探究:对于上面的性质,你能给出证明么? 正弦定理: [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2) sin sin a b A B = sin c C =等价于 sin sin a b A B =, sin sin c b C B =, sin a A = sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如 sin sin b A a B =; β ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 3[例题分析] 例1.:已知?ABC,根据下列条件,解三角形 (1)∠A= 60,∠B= 30,a=3; (2) ∠A= 45,∠B= 75,b=8;

正弦定理教案公开课

第 1 课时: §1.1 正弦定理(1) 民和高级中学 刘永宏 【三维目标】 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2. 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1. 在问题解决中,培养学生的自主学习和自主探索能力和处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】 重点:正弦定理的证明和应用 难点:1向量知识在证明正弦定理时的应用; 2 正弦定理在解三角形时的应用思路. 【教学教法的选择】 以问题驱动、层层铺垫,运用“发现—探究”教学模式。 【学法与教学用具】学法指导:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别 利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、直尺、 【授课类型】新授课 【课时安排】1课时 【教学设计】 教学流程及过程 学生活动 设计意图 一. 复习引入、发现问题 问题1、 在Rt △ABC,C 为直角,那么边角之间有哪些关系? sinA=c a ,sinB=c b ,sinC=c c =1,…… 即c=A a sin ,c=B b sin ,c=C c sin . ∴A a sin =B b sin =C c sin 引导学生发现问题

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

1.1正弦定理(优质课比赛)

《正弦定理》第一课时 尊敬的各位专家、评委、老师们: 大家好! 我是第号参赛选手,我今天说课的课题是:正弦定理 (选自人教A版新课程标准实验教材必修5第一章第一节第一课时) 这里我将从教学背景分析、教法学法分析两大块先谈谈我对本节课的教学认识,再以“教什么,怎么教,为什么这样教”的思路,来说明我的教学过程和设计,最后是教学评价。 首先是教学背景分析我分三小点来说明: 一、教学背景分析 1、教材分析 随着解三角形在实际测量和物理中的广泛使用,正弦定理作为解三角形最有力的工具之一,有着很高的学习价值,从知识上讲它又是函数知识和平面三角形知识的的交汇,是任意三角形边角关系准确量化的表示,通过本节课对定理的探索,无论在知识上,还是思想方法上对后续的学习都有重要的意义,因此我认为,本节课的重点是定理的发现和证明,及定理的简单运用。 2、学情分析 正弦定理是在学生已经学习三角形知识,解直角三角形、向量知识,三角函数等知识后对任意三角形边角关系的探索,学生有了一定的知识基础,但学生对知识的构建、论证能力还不强,探究过程中在思维上难免会受限,另外学生的合作交流意识、知识的运用能力还有待加强。因此我认为本节课的难点是定理的发现、证明及已知两边和一边对角时的解三角形。 根据上述教材、学情的分析,我制定如下教学目标: 3、教学目标 (1)知识和技能 引导学生发现正弦定理的内容,探索证明正弦定理的方法; 简单运用正弦定理解三角形。 (2)过程和方法 通过对定理的探究,培养学生发现数学规律的思维方法和能力; 通过对定理的证明和运用,培养学生独立解决问题的能力、体会分类讨论和数形结合的思想方法. (3)情感态度价值观 通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物的规律,培养探索精神和创新意识,体会数学的使用价值。 为了使学生能够达到本节课设定的教学目标,我再从教法和学法上进行分析。(首先是教法分析) 二、教法学法分析 1、教法分析 根据教材的内容和编排的特点,本讲我将以“教师为主导,以学生为主体”,'采用“师生互动"为基础的“启发——探究式课堂教学模式”,用层层深入的话题将学生引入对定理的发现证明运用过程中,使教师始终站在学生思维和兴趣的最近发展区上,有效的组织教学。

高三数学教案 正弦定理2

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定ABC 的边CB 及B ,使边AC 绕着顶点C 转动。 A 思考:C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 , ,又 , A 则 b c 从而在直角三角形ABC 中, C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=,则, C 同理可得, b a 从而 A c B ?∠∠∠?sin a A c =sin b B c =sin 1c C c == sin sin sin a b c c A B C = = =sin sin sin a b c A B C = = ?sin sin a B b A =sin sin a b A B = sin sin c b C B = sin sin a b A B = sin c C =

正弦定理教学设计韩婷

《正弦定理》教学设计 宁夏六盘山高级中学韩婷

正弦定理(第1课时) 一、教学目标分析 1、知识与技能:通过对任意三角形边长和角度关系的探索,发现并证明正弦定理;能理解其内容的实质和作用;会运用正弦定理解决一些简单的三角度量问题。 2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;在正弦定理的证明方法中,渗透分类讨论思想和“从特殊到一般、一般到特殊”化归转化的思想方法。 3、情感、态度与价值观:以实际问题为背景,激发学生的好奇心与求知欲;又通过正弦定理的发现与证明过程培养学生的探索精神和创新能力。逐步培养应用数学知识参与社会活动的意识和成就感 二、教学重点、难点分析 重点:通过对任意三角形边、角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。 难点:正弦定理的发现及证明 三、教学方法: 本节课主要采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以解决问题为落脚点,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形中边角关系的探究中去。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。

五、教学媒体: 1、预、学案的使用:学生通过课前使用预案、课堂上使用学案,明确学习的目标和学习的重点;课后回收学案,教师可以及时了解学生课堂上的活动效率,以便个别指导,查漏补缺。 2、PPT和《几何画板》的使用,不仅形象直观地呈现问题,而且可节省大量的时间、空间。 六、教学过程设计:

1.1.1 正弦定理1

第一章 解三角形 §1.1.1 正弦定理(1) 一、学科核心素养培育目标 1.通过学生自主学习,小组讨论,教师点拨任意三角形边长和角度关系的探索,熟记正弦定理的内容及其证明方法; 2,通过学生小组讨论交流教师点拨会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 二、学习重点、难点 1.重点:正弦定理的探索和证明及其基本应用. 2.难点:正弦定理的探索和证明及其基本应用. 三、预习提纲 1.预习时间:20-30分钟(晚自习完成) 2.预习内容:步步高2-3页 3.达成度:完成步步高相关题目 四、学习过程预设 学生活动一.自主探究 Rt ?ABC 中,设BC=a,AC=b,AB=c, ,有sin a A c =,sin b B c =,又sin 1c C c ==则sin sin sin a b c c A B C === 那么对于任意的三角形, 以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况: 1.叙述正弦定理的内容: 2.正弦定理的变形 ①边化角:a = ,b = ,c = ; ②角化边:sin A = ,sin B = ,sin C = ; 3.正弦定理的推论: ::a b c = 从而知正弦定理的基本作用为: ① ② 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作_______ 活动二 已知两角及一边解三角形 标杆例1. 在ABC ?中,已知45A =,60B =,42a =cm ,解三角形.

变式:在ABC ?中,已知45B =,60C =,12a =cm ,解三角形. 五、课堂小结 六、巩固训练 七、课堂教学反思

1.1正弦定理和余弦定理第二课时精品教案

1.1正弦定理和余弦定理 【课题】:1.1.2余弦定理 【教学目标】: (1)知识与技能:使学生掌握余弦定理及推论,并会初步运用余弦定理及推论解三角形 (2)过程与方法:通过对三角形边角关系的探究,能证明余弦定理,了解从三角方法、解析方法、向量方法和正弦定理等途径证明余弦定理 (3)情态与价值:使学生掌握余弦定理及推论,并会初步运用余弦定理及推论解三角形【教学重点】:余弦定理的发现和证明过程及其基本应用; 【教学难点】:余弦定理的探究和证明方法,余弦定理与勾股定理的联系 【课前准备】:多媒体电脑平台.

22 2 2 2 2 2 22222cos c a b a b a b c a b a b a b ab C =-=+-?=+-??+-()()

22 2 2 2 2 2 22222cos c a b a b a b c a b a b a b ab C =-=+-?=+-??+-()() BC = a . 2 (sin )a C C cos A

1.在△ABC 中: (1)已知b =8,c =3,A =60°,求a ; (2)已知a =20,b =29,c =21,求B ; (3)已知a =3 3 ,c =2,B =150°,求b ; (4)已知a =2,b = 2 ,c = 3 +1,求A . 解:(1)由a 2=b 2+c 2-2bc cos A 得a 2=82+32-2×8×3cos60°=49,∴a =7. (2)由cos B =c 2+a 2-b 22ca 得cos B =202+212-292 2×20×21 =0,∴B =90°. (3)由b 2=a 2+c 2-2ac cos B 得b 2=(3 3 )2+22-2×3 3 ×2cos150°=49,∴b =7. (4)由cos A =2222 b c a +-得cos A =( 2 )2+( 3 +1)2-222 2 ( 3 + 1) = 2 2 ,∴A =45° 2.在△ABC 中,已知222 a a b c b +=-,则内角C 等于 ( ) A .90 B .60 C .120 D . 30 解: 222a ab c b +=-,2222cos a b c ab ab C ∴+-=-=,1 cos 2 C ∴=- 0180C <<,120C ∴= 3. 在△ABC 中,其三边长分别为,,a b c ,且三角形面积222 4a b c S +-=,则角 C =_________ 解:2222cos cos 1 sin ,tan 1,454422 a b c ab C ab C S ab C C C +-= ===∴=∴= 4.在△ABC 中,sin :sin :sin 2:3:4A B C =,判断△ABC 三角形的形状 解: sin :sin :sin 2:3:4,::2:3:4A B C a b c =∴= ,2,3,4,a b c a b c ∴<<===设则 222cos 491630,C a b c C ∴=+-=+-=-<∴为钝角 △ABC 为钝角三角形 (中档题) 5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边, 2,3a b ==, cos C =1 3 ,则其外接圆的半径为( )

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

相关文档
最新文档