数学建模案例_停车场的优化设计

数学建模案例_停车场的优化设计
数学建模案例_停车场的优化设计

案例16 停车场的优化设计

随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。

假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。

我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。

再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽

车之间的横向间距。

考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =-=米,如图1所示。

对于大客车,我们设其最小转弯半径为110B =米,与此同时,大型车转弯时转向中心到内侧转向车轮轨迹间的最小距离为21 2.27.8B B =-=米。

本文的目的就是讨论应当整体设计车位的排布。对于给定的停车场,我们的目标就是尽可能多地增加车位数,或者说,使每辆车占据的停车场面积尽可能小。

一 仅有一种车型的局部车位位置

大型客车和小轿车在停车时占地面积相差很大,一般都是分区停泊的。现在,让我们先来看看只限于停放小轿车的简单情况,并且先不考虑停车场的实际大小,只是来研究一下应当如何给出局部设计,才能使每辆车占据的停车场地面积最小。

对于每一个车位,为了便于该车位上的小轿车自由进出,必须有一条边是靠通道的,设该矩形停车位的长边与通道的夹角为(0)2π

θθ≤≤,其中2π

θ=便是车

辆垂直从通道驶入车位,0θ=就是车辆从通道平行驶入车位,即平时所说的平行泊车。为了留出通道空间和减少停车面积,显然,我们可以假设该通道中的所

图1

有车位都保持着和该车位相同的角度平行排列,如图2所示。

上图中,小轿车是自东向西行驶顺时针转弯θ角度驶入车位的。我们来具体研究一下小轿车驶入车位的情况,见图3,其中1C 为最小转弯半径,R 为通道的最小宽度。我们假定小轿车的最外端在半径为1C 的圆周上行驶,且此时轿车的最内端在半径为2C 的圆周上随之移动,然后以θ角度进入停车位,所以通道的最小宽度12cos R C C θ=-。

在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,我们来看一下一排车位之间的各个数据,见图4。

图2

图3

每辆车均以角度θ停放,用W 表示小轿车停车位宽度,L 表示小轿车停车位长度(这里L 的最上方并没有取到最上端是考虑到车身以外的小三角形区域可以留给对面停车位使用),o L 表示停车位末端的距离,易见他们分别是停车角θ的函数,且有

sin W C W θ

= 1sin cos 2

L W L C C θθ=+ 01(cot )cos 2

L W L C C θθ=+ 11cos 2W L C θ= 现在按照图4所示,计算一下每辆车占据的停车场面积()S θ.考虑最佳排列的极限情况,假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积012

L L ?,因为它们被平均到每个车位上去的公摊面积很小,可以不计。从车辆所占的停车位来看,它占据的面积为W L ?,另外,它所占的通道的面积为W R ?。考虑到通道对面(也就是图4的下部)也可以有类似的一排车位可以相互借用此通道,所以可以对占用的通道面积减半,于是我们得到:

()212cos cos 122sin 2sin 2sin W W W W L C C C C C S WL WR C C θθθθθθ

=+=++- (1) 我们的目标就是求出()S θ的最小值。

将1 5.5C =米,2 3.8C =米,5L C =米, 2.5W C =米代人(1)式,可得

图4

() 6.875 1.625cos 12.5sin sin S θθθθ=+

-,()21.625 6.875cos sin S θθθ

-'=, 所以当 1.62513cos 6.87555θ==,即76.33θ?≈时,()S θ达到最小,且(){}min 19.18S θ=平方米。

需要说明的是,当0θ=时车位与车道平行,此时每辆车都得采用平行泊车的方式进入车位,这是现实生活中马路边的停车位常见的情况,在一般的停车场中几乎很少看到。平行泊车对驾驶员的技术要求较高,所以我们不考虑这样的情况。事实上,即便要计算在这种情况下每单位车辆所占据的停车场面积()S θ也不困难,只不过对于平行泊车,所要求的每个车位的长和宽不应再是上面所说的L C 和W C ,特别是停车位的长度L C 将变得更长(否则,停泊的车辆将无法进出),其所要求的行车道的最小宽度也得足够大,以便能让泊车车辆通过,车位图形需按小轿车路线重新绘制,读者可以自行计算并得到这些数据,计算结果表明,平行泊车是每辆车所占的平均面积明显地大于平方米。

上述对车位的局部分析表明,当停车位与通道夹角76.33θ?≈时,可以使每单位车辆占据停车场的面积达到最小。

二 仅有一种车型的全局车位排列

上面的局部分析告诉我们,如果保持一排车位方向一致,且与单向通道的夹角为76.33θ?≈,可使单位车辆占据的面积最小,此时宽度为R 的单向通道分别提供给其两边的停车位使用。在通道两边都各安排一排小轿车车位时,考虑到路线的单行性质,通道两边的停车位角度θ应该相对,如图5所示。

对每一排停车位,其一边为通道,另一边则可以是另一排停车位或者是停车场的边缘。所以停车排数C P 最多只能是通道数I P 的两倍,即:

2C I P P ≤ (2)

另一方面,如果按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,确实也可以达到2C I P P =。即(2)式中的等号是可以成立的。此时,车位数可以达到停车位位置的最大值,排列情况同样可以见图5. 图5显示,在每排车位数相当大或者说,在不考虑整个停车场四角浪费的那些面积时,我们可以使每单位车辆占用的停车场面积最小,并且对于小轿车来说,此最小值在车位角度76.33θ?≈时达到。

我们再来计算一下停泊车辆均为大型客车时的最佳角度,将模型(1)修改为:

()212cos cos 2sin 2sin 2sin W W W W L B B B B B S B B θθθθθθ

=++- (3) 并且将相应数据代人(3)得到:

()157.2cos 37.5sin sin S θθθθ=+

-, ()27.215cos sin S θθθ

-'= 取θ使()0S θ'=,即7.2cos 0.4815θ==,求得当61.31θ?≈,此时每单位大型客车占据的停车场面积最小,每辆车占据的面积为()50.66S θ=(平方米)。

综上所述,对于只有一种车型的足够大的停车场,按照现有的车辆尺寸大小图5

计算,我们将采用图5的排列方式设计停车位。对于小轿车,设计车位角度为76.33?,单位车辆占据的停车场面积为平方米。对于大型客车,设计的车位角度为61.31?,单位车辆占据的停车场面积为平方米。

三 两种车型的停车场设计的理想情况

对于两种车型,即小轿车和大型客车同时存在的情况,如果对于足够大的停车场地,我们可以根据:(1)9:1αα-=的比例要求,计算出所需的小轿车车位排数和大型客车车位排数,以及每排的停车数目。根据第二部分的讨论,我们可以按一排停车位,一行通车道,一排停车位这样三排为一组的方式组合出停车场的结构,设小轿车有g C 组,大型客车有g B 组,每组的一排长度为G 米。

根据第一部分,对于小轿车的停车位置宽度 2.5 2.573sin sin 76.33

W C W θ?=

==(米),而对于大型客车,其停车位置的宽度3 3.420sin sin 61.31

W B W θ?===(米)。所以,对于小轿车,每一组可以停放的车辆数目为22.537G ?,该停车场中总共可以停放22.537g C G

??辆小轿车,而对于大型客车,同样可以得总车位数为23.420g B G

g g 。根据

22:9:12.537 3.420g g C G B G ????=的比例要求,我们可以得到: 6.77:1g g C B =。 综上所述,对于足够大的停车场地,我们可以用一排停车位,一条通车道,一排停车位为一组的形式来平行设计车位,大体结构可参见图 5.至于小轿车组和大型客车组的比例,可以按照近似于:1的形式,例如,取近似值7:1,13:2,20:3,27:4,34:5等比例建造。

四 具体停车场车位设计

上面我们讨论的都是理想情况,现实中很多停车场的占地面积并不一定很大,而且从图5的设计安排来看,理想情况下的每一组车位都必须为车辆能够自由进出而设置一个入口和一个出口,这样的设计既不经济也不安全。特别是对于某些收费的停车场或者要重点考虑安全设施的停车场,将不得不在众多的出入口设置收费点或关卡而增加成本,这显然不是最好的安排,那么对于一个具体形状

和面积给定的停车场,我们将根据前面理想情况的讨论做出改进,以得到更合理的设计规划。

图6为某公共场所附设的停车场,它是一个长90米,宽45米的矩形区域,该矩形区域的四个角落有照明灯设置,其占据矩形角上的形状为边长2.5米正方形,见图6的星号区域。区域南边,西边,北边是围墙,东边是马路,这是可以作为停车场出入口的唯一的一条边。根据对当地实际情况的调查,该停车场位设计应考虑5至6个大型客车车位,其余都作为小轿车车位设计。现在我们就按照上述要求来对这块停车场进行车位的具体安排。

90米的停车场长边可以当作足够长的边来看待,我们将90米为一排来设计小轿车的车位,即每排车位与矩形的长边平行。在理想情况下,根据第一部分讨论可知,最佳设计下的车位长度为:

1sin cos 5sin 76.33 1.25cos76.33 5.1542

L W L C C θθ??=+=+=(米) 停车场通道宽度为:

12cos 5.5 3.8cos 76.33 4.602R C C θ?=-=-=(米),

所以,理想情况下的一组(即两排车位中间加一条行通车道)的宽度约为:

214.91L R +=(米)

于是,45米宽可以考虑安置三组这样的车位,如图6的Ⅰ,Ⅱ和Ⅲ。

45

在小轿车的总体布局确定下来后,我们再来具体确定大型客车的车位。考虑到大型车的转弯半径比较大,借用专门为小轿车车位设计的通道是肯定不行的。相对来说,大型客车停车位只占总停车位的很小一部分,在设计停车场的位置市,为了节省面积以增加车位数,应该将所有大客车位置放在一块,同样以矩形并排的形式放置。大客车在停车场中的停放方式也可以采用直角停放的停车方式,并按照其特殊的位置设置特殊宽度的通道。另外考虑到其进出上的困难情况,一般可安置在停车场的出口部分,例如,将其安排在东边靠马路处(注:东边临街,没有围墙),且垂直东边的马路横向占用小轿车的车位设置6个大型客车车位,大客车可直接由马路开进停车位,见图6的右边6个横向车位。

剩下的事情就是得解决出入口问题了,由于只能在东边设置出入口,并且Ⅰ,Ⅱ,Ⅲ三组区域为相互能借助对方区域的车位排列位置设置,通道形式方向应该间隔,即Ⅰ向东,Ⅱ向西,Ⅲ向东,或者Ⅰ向西,Ⅱ向东,Ⅲ向西。为此,必须在停车场的最西边设置南北走向的一排通道,以便让Ⅰ,Ⅱ,Ⅲ区车位的车辆都能够换向出入,具体可以参照图6的设置。

最后,考虑到既然在最西边已经设置了南北走向的一排通道,我们可以在该通道的西边设置一排车位,此时该车位设计的车辆出入可以占用南北通道,所以这排车位的设计是最合理的,如图6中的区域Ⅳ.

根据如上的分析,我们对该停车场的车位大致设计成图 6.东边的中部为入口,北部和南部为出口,这样,即使在车辆较多的时候不至于难以驶出,通道方向也如图6所示。大型客车的车位已经确定为6个,小轿车车位的个数我们将根据Ⅰ,Ⅱ,Ⅲ的车位角度θ进行变化。

由于东西走向的通道和南北走向通道已经是垂直拐弯,所以毫无疑问,区域Ⅳ的车位将垂直排列,去掉两边照明灯设置后西边宽度为40米,正好可以设置16个车位(2.5米宽和5米长),垂直于西边。我们可以计算出西边通道的宽度为12cos 5.52R C C π

=-=(米)。考虑到对称性质,我们设横向的6排的小轿车位

个数分别是1X ,2X ,2X ,2X ,2X ,1X 个,并建立如下的小轿车车位个数模型:

12max 2416X X X =++

1020325 2.5905 5.5290..63cos 450,1,202W L W i B L X W L X W L B s t L R C X i θπθ≤??+++≤??++++≤??++≤?>=??≤≤??且为整数 (4) 将公式sin W C W θ=,1sin cos 2L W L C C θθ=+,01(cot )cos 2

L W L C C θθ=+,12cos R C C θ=-和数据5L C =, 2.5W C =,1 5.5C =,2 3.8C =,12.5L B =,3W B =分别代人(4)式,化简后可得:

12max 2416X X X =++ 21

221820sin 5cos 33sin 2sin cos 0.5cos 26.8sin 4sin cos cos ..300sin 14cos 2850,1,202

i X X s t X i θθθθθθθθθθθθπθ≤+??≤--??≤--??-≤?>=??≤≤??且为整数 (5) 对于模型(5),如直接利用计算机编程求解会遇到一些麻烦,先是涉及θ的变化,然后又涉及1X 和2X 。为此,我们先用微积分知识来讨论一下。

对于第一个限制条件1820sin 5cos θθ≤+,设()120sin 5cos f θθθ=+,易求

得 ()120cos 5sin f θθθ'=- 当1tan 4θ=时,函数有唯一的驻点,所以()1f θ在0,4π??????

内的最大值为()1111max 0,arctan ,1844f f f π??????≥?? ? ??????

? 于是,θ的取值范围应限制在区间,42ππ??????内,容易发现当,42ππθ??∈????时, 20sin 5cos θθ+,233sin 2sin cos 0.5cos θθθθ--

226.8sin 4sin cos cos θθθθ--,300sin 14cos θθ-

都为严格单调递增函数,这是求上面模型解的关键所在。只要求出

1820sin 5cos θθ≤+和300sin 14cos 285θθ-≤

的解集的交集,然后选取该交集中最大的θ即可,记此最大的θ为0θ,取

21000033sin 2sin cos 0.5cos 31X θθθθ??=--=??

和22000026.8sin 4sin cos cos 23X θθθθ??=--=??

模型的解就得到了(式中[]...表示取整运算)。

利用数值计算或者计算机编程容易求出1820sin 5cos θθ≤+的解集为46.78890θ??≤≤,300sin 14cos 285θθ-≤的解集为4574.288θ??≤≤,于是454.78874.288θ?≤≤,取

74.288θ?=

21000033sin 2sin cos 0.5cos 31X θθθθ??=--=??

22000026.8sin 4sin cos cos 23X θθθθ??=--=??

所以最后得到小轿车车位数目应该为170个,Ⅰ,Ⅱ,Ⅲ区域的停车位方位角可取74?左右。

五 结束语

停车场的优化设计实际上是一个比较复杂的非线性整数规划问题。我们从最理想的情况出发,建立了一个一般停车场大致可以参考的布局和模型,然后又给出了一个具体的案例分析来加以说明。现实生活中,对于给定范围的停车场设计,可以根据特定的需要,结合理想情况下的基本布局,并加以调整,进行局部修改而得出较好的设计方案。

参考文献:

[1] 何文章,宋作忠,数学建模与实验[M].哈尔滨工程大学出版社,2002

[2] 周明,孙树栋,遗传算法原理及应用[M]。北京:国防工业出版社,1999

[3] Williams H P.Model Building in Mathematical Wiley &Sons,1978

[4] 宋作忠,何文章,基于遗传算法的交易中心停车场优化设计[J].数学的实践与认识,2004,1

基于数学建模的停车场优化设计

基于数学建模的停车场优化设计 张伟 江西旅游商贸职业学院江西南昌330000 摘要:停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。文章通过数学建模方法探讨停车场的优化设计,的目的就是希望找出缓解停车困难的有效办法。 关键词:数学建模;停车场优化;应用数学 一、引言 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”,而通道越宽越多,就会使得容纳的车辆数越少。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α?=。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。 考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =?=米,如图1所示。

停车场泊位设计数学模型模板

停车场的泊位设计数学建模学号:1407022046 班级:14数学与应用数学2班姓名:刘桃摘要:“停车场的泊位设计”数学模型是利用数学模型的计算来规划出一种使用更合理、利用率高的停车场车位停泊方案。近几年来,随着人们生活水平的提高,私家车的数量越来越多,汽车的停泊就成为一个越来越重要的问题,如果汽车停泊问题不能合理的解决,将会影响到汽车的使用。许多大型公司或者是商场门前,都设有自己的停车场,停车场的面积是有限的,而我们希望的就是在这有限的面积内尽可能停放更多的汽车。当然,停放尽可能多的汽车只是建造停车场时一个需要解决的问题,一个比较成功的停车场还需要具备的就是良好的汽车疏导能力,这就需要在停车场设计时更合理的安排汽车的停放位置。 当停车场面积一定的时候,合理安排空间使得更多的车辆能够停泊进来。此次建立的模型是通过探究车辆停放角度与停车场面积的方程,继而对面积函数进 300*100m的停车场最佳泊位情况,进而行求解,得到车位最佳设计角度,解出2 推广到一般的2 *s tm,同时对车型进行分类,分别计算小轿车、小型车、大型车三种停车情况。 关键词:车辆停放角度;层次分析;最优方案。 正文 1、问题重述 1.1自20世纪90年代以来, 我国经济呈现出持续高速发展态势, 家用小汽车更以惊人的发展速度进入普通居民家庭。但人们在享受汽车所带来的便利和快捷的同时, 又必须面对由此所引发的一系列问题, 其中停车问题就是越来越突出的问题之一。 停车场泊车位规划是指在有限的空间区域内,设计车位布局,尽可能多地发挥空间效率与时间效率。停车泊位设计考虑的因素较多,如平均车位占面积,车辆出入泊位难易程度,停车场内部道路畅通程度等等。请设计一个完整的指标体系对停车场效度进入评价。现有如图1所示的停车场,请你设计该停车场的泊车位设计方案;如果图1中的停车场宽度和长度分别为未知量,s t米,请你重新设

停车场规划数学建模

医院停车场规划问题 摘要 本题是个优化设计问题,通过合理设计停车场的停车方式和通道大小使得停车场在有限的区域下能停放的下更多的车辆,为医院患者解决停车难的问题。 针对于问题1,由于该医院挂号是从7:30开始,但8:00之后医生才开始门诊,每个患者平均门诊时间为1小时30分钟。所以在7:30-8:00之间来的患者要到9:30才能离开医院,而在8:00之后来的患者只需门诊1小时30分钟就可离开医院。于是,可通过用Excel表对表1数据进行处理和分析,以每五分钟为单位,统计此时停车场停放的车辆数。因此,根据统计结果可知在周二9:30这个时刻医院的车辆数最多为229辆。所以,医院至少需要有229个车位才能够使得每一位患者的车到停车场就有车位停车。 对于问题2, 对于问题3,根据问题1结果可知医院至少要有229个车位才能使患者车到就有车位停车,而由问题2的结果可知,新建的停车场最多只有162个停车位,远远不能满足实际需要。所以问题可转化为从政府部门、医院以及患者的角度提出一些可行性的建议来解决这个问题。政府部门可以从建设新的停车场,开设便利的公交路线等方法来解决这一问题;医院可以通过合理利用医院内部的土地,为医护人员的上班提供便利等方法老解决这一问题;患者可以有意识的不占用停车位,按规定停车,尽可能的乘坐公交车或出租车来医院就诊。 关键词:

一、问题重述 问题背景: 随着现代技术的发展,人民生活条件的不断改善,小轿车的普及率越来越高. 患者自己开车到医院看病的情况也越来越普遍. 然而, 福州市的医院普遍存在停车位不足, 患者停车难的问题. 某医院原有若干个停车位, 零散分布于院内建筑楼房四周以及道路两侧. 现医院经重新规划整合,拆除部分旧楼,在门诊大楼旁整出一个长方形地块(见附录一),准备建公用停车场,用于患者停放小轿车. 该医院8:00开始门诊, 挂号从7:30开始, 每个患者平均门诊时间1小时30分钟(包括候诊、问诊、缴费和取药). 表1(见附录二)是某一周每天从7:30-11:30每5分钟统计的到达车辆数据。11:30-12:00以及下午,门诊患者相对较少,故未做统计. 问题提出: 问题1:假设患者取完药就开车离开,医院至少要有多少个车位能够使得患者车到就有车位停车? 问题2:根据图1的地块,设计停车场车位分布图. 设小轿车长度不超过5.2米,宽度不超过2.0米,因此,每个停车位的长度为5.6米,宽度为2.6米,车位标志线0.1米(不含在车位长、宽之内). 小轿车的转弯最小外半径和内半径分别为6.0米和4.0米,这里转弯最小外、内半径分别是指汽车转向时转向中心到汽车外侧、内侧车轮轨迹的最小距离,为了安全起见,停车场内通道的设计宽度应比理论宽度多至少0.2米,这样在小车转弯时,内侧只需按内半径考虑,不用担心小车转向内侧是否会与相邻车位车辆刮擦问题. 停车场设计入口一个,设置在东面,设计出口两个,设计在南面,请问该小轿车停车场最多能设计多少停车位? 问题3:按照目前的状况,新建的停车场是否能够满足患者停车需要?如果不能满足停车需要,请向政府部门或医院提出一些建议解决这一问题。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模案例_停车场的优化设计

案例16 停车场的优化设计 随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模10种常用算法

数学建模10种常用算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行

编程的话,那一些数值分析中常用的算法比如方程组 求解、矩阵运算、函数积分等算法就需要额外编写库 函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关, 即使与图形无关,论文中也应该要不乏图片的,这些 图形如何展示以及如何处理就是需要解决的问题,通 常使用Matlab进行处 参数估计 C.F. 20世纪60年代,随着电子计算机的 。参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。在一定条件下,后面三个方法都与极大似然法相同。最基本的方法是最小二乘法和极大似然法. 基本介绍 参数估计(parameter 尽可能接近的参数 误差 平方和  θ,使已知数据Y 最大,这里P(Y│θ)是数据Y P(Y│θ)。在实践中这是困难的,一般可假设P(Y│θ

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

停车场数学建模

数学建模一周论文论文题目:停车场的设计问题 姓名:唐磊 专业:自动化 班级:093121 学号:08312217 指导教师:乐励华 2012年11月9日

目录 1、摘要 (3) 2、问题的提出 (4) 3、模型假设和符号说明 (5) 3.1模型假设 (5) 3.2符号说明 (5) 4、问题分析 (6) 5、模型建立 (12) 5.1停车场泊位规划模型 (12) 5.1.1单辆车停车位最佳角度 (12) 5.1.2整体车位规划 (15) 6、模型的求解 (15) 7、结果的分析检验 (19) 8、建模心得体会 (21)

1、摘要 “停车难”的影响不仅仅局限于停车本身,还引发了一系列城市管理问题。“停车难”不仅加重了交通的拥堵,而且还带来了安全隐患问题。因此,解决停车与场地的问题已经成为城市发展的难题,已经迫在眉睫。对于如何设计好一个面积为100*200平方英尺的停车场,即设计在场地划线的方案问题已经是当今城市土地合理利用的一个重要方面。解决好了这样一个问题,就是给城市管理和城市建设带来了很大的作用。容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。现在,有以下几个问题,问题一:对车子的一些车身结构和专业知识的了解。只有对汽车的知识有所了解还有一些数据的查询,就可以更好地更准确地建立停车的数学模型。当然,不同的车子的结构和参数是不一样的,我们通过假设将车子的大小长度都是固定不变的,这样才能够将问题更加具体直观。问题二:车子排放,因为停车的地方是以面积为100*200平方英尺大小地方,要合理安排车子的停放方向和过道宽窄度才能安全合理的将每辆车停好。问题三:停车场划线的数学方法和建立数学模型。通过问题一和问题二两个问题的讨论,将停车场划线设计跟数学建模联系一起,并通过数学模型解决现实中的实际问题。通过问题的确立,有些实际问题的变数很大,在建立数学模型之前,我们必须将现实问题模型化,即将现实中的问题具体化,统一化,数学化,那就需要对实际问题进行假设。我们是根据自己的思路和想法通过跟实际联系建立的这个数学模型,这个模型可能算不上是最优化的设计,但是我们通过这次设计学到了用数学模型解决一些问题的方法。也可以说我们是有收获的。 关键词:停车设计最优化数学模型

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

关于停车场数学建模问题

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学院(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 日期: 2013 年 11 月 2 日 评阅编号(教师评阅时填写):

汽车车库库存的优化方案 摘要 本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。 针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。 针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。最后,我们对这两种模型进行了比较,最终选择交叉排列模型为最佳模型。 针对问题三,我们通过问题二的模型进行了分析,由于条件三的改变,使得模型得到简化。由于车子的前轮可以90度转动,即小车的转弯半径可以忽略不计。再结合消防通道的设计,明确了车从车库开出的具体方向,设计了最优化的调运方案,使得调运方案费时最短。 最后就对本文模型建立的不足之处进行剖析,并阐明了实际建设的停车场与理论设计的停车场的不同之处,需要具体问题具体分析。 关键词:倾斜泊车模型交叉排列模型车库利用率安全性

数学建模应该掌握的十大算法(汇编)

数学建模竞赛中应当掌握的十类算法 排名如下: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 8.1 遗传算法的概念 是建立在自然选择和自然遗传学机理基础上的迭代自适应概率性搜索算法,在1975年由Holland教授提出。 生物的进化是一个奇妙的优化过程,它通过选择淘汰,突然变异,基因遗传等规律产生适应环境变化的优良物种。遗传算法是根据生物进化思想而启发得出的一种全局优化算法。 遗传算法的概念最早是由Bagley J.D在1967年提出的;而开始遗传算法的理论和方法的系统性研究的是1975年,这一开创性工作是由Michigan大学的 J.H.Holland所实行。当时,其主要目的是说明自然和人工系统的自适应过程。

数学建模遗传算法与优化问题【精品毕业设计】(完整版)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

数学建模赛题 露天停车场停车位的优化设计

B题露天停车场停车位的优化设计 随着社会经济的快速发展,家用小轿车数量进入快速增长期,随之而来的城市停车问题日益突出,逐渐成为我国各城市普遍面临问题之一。停车场受场地条件限制,仅能提供有限的停车位,在确保车辆自由进出的情况下,如何综合考虑各方面因素设计停车场的停车位,使之能够获得较大的停车能力是一个值得研究的课题。 驾驶者在停车时需要足够的空间,如果通道过宽,驾驶者可以从容停车,此时停车场能容纳的停车位数量将减少,如果通道过窄,不易于驾驶者停车。因此,可将停车位设计成一定的角度,这里的角度是指停车位与停车通道的夹角。停车位的排列方式有平行式、斜列式、垂直式等。 现以家用小轿车为例,假设家用小轿车的转弯半径为5.5米,当垂直停放时需要长度为5.5米,宽度为2.5米的位置(其中包括停车位标志线)。请利用所学知识,完成以下问题: 1.图1给出长79米,宽26.5米的停车场,在规定车辆出入口方向的情况下,请对该停车场进行设计。建立合理的数学模型,使得停车位数量最多,给出该停车场设计方案及平面示意图,提供可运行的源程序。 2.某大型商场周边场地平面示意图如图2所示,大型商场停车场的设计需要考虑消防等因素。在限定出入口设计位置的情况下,请对该停车场(含出入口)进行设计。建立合理的数学模型,使得停车位数量尽可能多,给出该大型商场的停车场设计方案及平面示意图,提供可运行的源程序。 3.假设不限定某大型商场停车场出入口设计位置,请对图3所示的大型商场停车场(含出入口)进行设计。建立合理的数学模型,使得停车位数量尽可能多,给出该大型商场的停车场设计方案及平面示意图,提供可运行的源程序。

停车场设计数学建模

停车场设计数学建模文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

数学建模一周论文 论文题目:停车场的设计问题 队长1:包子龙学号:电话: 队员2:刘欣学号: 队员3:曹志军学号: 专业:土地资源管理 班级: 指导教师:张文 2012年 6 月 9日 1、摘要 “停车难”的影响不仅仅局限于停车本身,还引发了一系列城市管理问题。“停车难”不仅加重了交通的拥堵,而且还带来了安全隐患问题。因此,解决停车与场地的问题已经成为城市发展的难题,已经迫在眉睫。对于如何设计好一个面积为100*200平方英尺的停车场,即设计在场地划线的方案问题已经是当今城市土地合理利用的一个重要方面。解决好了这样一个问题,就是给城市管理和城市建设带来了很大的作用。容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到

位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。现在,有以下几个问题,问题一:对车子的一些车身结构和专业知识的了解。只有对汽车的知识有所了解还有一些数据的查询,就可以更好地更准确地建立停车的数学模型。当然,不同的车子的结构和参数是不一样的,我们通过假设将车子的大小长度都是固定不变的,这样才能够将问题更加具体直观。问题二:车子排放,因为停车的地方是以面积为 100*200平方英尺大小地方,要合理安排车子的停放方向和过道宽窄度才能安全合理的将每辆车停好。问题三:停车场划线的数学方法和建立数学模型。通过问题一和问题二两个问题的讨论,将停车场划线设计跟数学建模联系一起,并通过数学模型解决现实中的实际问题。通过问题的确立,有些实际问题的变数很大,在建立数学模型之前,我们必须将现实问题模型化,即将现实中的问题具体化,统一化,数学化,那就需要对实际问题进行假设。我们是根据自己的思路和想法通过跟实际联系建立的这个数学模型,这个模型可能算不上是最优化的设计,但是我们通过这次设计学到了用数学模型解决一些问题的方法。也可以说我们是有收获的。 关键词:停车设计最优化数学模型 2、问题的提出 背景 “停车难”的影响不仅仅局限于停车本身,还引发了一系列城市管理问题。“停车难”不仅加重了交通的拥堵,而且还带来了安全隐患问题。因此,解决停车与场地的问题已经成为城市发展的难题,已经迫在眉睫。由于生活质量和收入水平的不断提高,越来越多的城市居民成为了“有车族”。在最近几年我国城市机动车的增长速度平均在15%左右,一个新的私家车消费高潮很快就要来到,而与此同时,城市的交通基础设施建设却相对落后,其中停车场地的缺乏和停车管理的不科学使得城市停车难的问题尤为突出,

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

相关文档
最新文档