城市技术 气体传感器 技术手册

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与应用重点

第一章测量技术基础 检测系统的基本概念 检测系统(测试系统 /测量系统 1、定义:确定被测对象的属性和量值为目的的全部操作 2、被测对象:宇宙万物(固液气体、动物、植物、天体…… 3、被测信息:物理量(光、电、力、热、磁、声、… 化学量(PH 、成份… 生物量(酶、葡萄糖、… 4检测技术是实验科学的一部分, 主要研究各种物理量的测量原理和信号分析处理方法。 检测技术是信息技术的重要组成部分, 它所研究的内容是信息的提取与处理的理论、方法和技术。 5信息与信号 信息是指客观世界物质运动的内容。 如:天气较冷、某处地震、刀具发生了磨损、李四病了。 信号是指信息的表现形式。 如:刀具磨损,切削力会加大;李四病了,可能会发烧;等等。 6检测技术是进行各种科学实验研究和生产过程参数测量必不可少的手段, 起着人的感官的作用。

简单的检测系统可以只有一个模块, 如玻璃管温度计。它直接将被测温度变化转化为液面示值。没有电量转换和分析电路,很简单,但精度低,无法实现测量自动化。 为提高测量精度和自动化程度, 以便于和其它环节一起构成自动化装置, 通常先将被测物理量转换为电量,再对电信号进行处理和输出。 B ……在电工、电子等课程中讲授,大多数不属于本课程的范围。 检测系统的组成 一般说来,检测系统由传感器、中间变换装置和显示记录装置三部分组成。 传感器将被测物理量 (如噪声 , 温度检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经 A/D变换后用软件进行信号分析,显示记录装置则将测量结果显示出来,提供给观察者或其它自动控制装置。 第二章传感器概述 传感器的组成和分类 一、传感器定义 传感器是一种以一定的精确度把被测量转成与之有确定关系的, 便于应用的某种物理量的测量装置。 传感器名称:变送器、变换器、探测器、敏感元件、换能器、一次仪表、探头等 二、传感器的组成 三、传感器的分类 按被测参数分类:温度、压力、位移、速度等

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

气体传感器介绍

气体传感器介绍 1气体传感器简介 1、稳定性 2、灵敏度 3、选择性 4、抗腐蚀性 2气体传感器分类 1气体传感器简介 气体传感器是电子鼻系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体浓度转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、作干燥或制冷处理、样品抽吸、甚至对样品进行化学处理以便化学传感器进行更快速的测量。 采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体天然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体浓度的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是它将气体样本直接引入传感器而无需物理和化学变换。 样品吸入式探头通常用于采样位置接近处理仪器或排气管道的情况,这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计。但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某 SiH以及大多数生物溶剂,气体和汽化物样品量可能会因种目标气体和汽化物如 4 为它们的吸附作用甚至凝结在采样管壁上而减少。 在任何情况下,探头及其内部气体传感器都必须能够检测某给定值以上的气体浓度,并发出报警信号;或者说,当气体浓度低于给定值时,探头不允许发出警报。经常误警会使人对传感器的可靠性产生怀疑,而忽略正确发出的警报,最终可能造成严重的后果。 在介绍气体传感器之前,有必要先对气体传感器的一些特性作一介绍:

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入, 同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应 根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

半导体传感器应用电路设计

东北石油大学 课程设计 2012年6 月25

任务书 课程传感器课程设计 题目半导体传感器应用电路设计 专业测控技术与仪器姓名学号 主要内容: 利用温度传感器和热电偶设计制作一个温度测量系统。参考利用半导体温度传感器AD590和单片机技术设计制作一个显示室温的数字温度计的设计提示与分析。进一步了解有关温度传感器的工作原理,制定设计方案,确定温度传感器的型号等参数,掌握温度的检测方法。 基本要求: 1、详细了解所选用的温度传感器的工作原理,工作特性等 2、设计合理的信号调理电路,并列出制作该装置的元器件。 主要参考资料: [1]刘爱华,满宝元.传感器原理与应用技术[M].北京:人民邮电出版社,2006.45-48. [2]王雪文,张志勇.传感器原理及应用[M].北京:航空大学出版社,2004.27-34. [3]张福学.现代实用传感器电路[M].北京:中国计量出版社,1997.16-24. [4]缪家鼎,徐文娟,牟同升.光电技术[M].杭州:浙江大学出版社,1987.22-27. 完成期限2012.6.25—2012.6.29 指导教师 专业负责人 2012年6 月25 日

摘要 传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。利用半导体温度传感器AD590 设计制作一个温度测量系统,AD590是一种集成温度传感器,其实质是一种半导体集成电路。集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。 关键词:关键词传感器;半导体;温度传感器;AD590

氧传感器技术手册

氧传感器使用说明书 (第一版) 适用零件号:25327985 25359908

1.概述 氧传感器是现代发动机管理系统中必不可少的重要零部件。它是一种利用电化学工作原理发展出来的电器元件。 氧传感器在现代发动机管理系统的配置机构中被用于探测汽车发动机所排出的燃烧废气中氧的含量,借以判定发动机实时燃油供给空气燃料混合比的实际状态,并通过自身产生的电器反应信号反馈给发动机电子控制模块(ECM),以作为系统燃油管理系统的闭环燃油修正补偿控制的重要依据,使燃油管理子系统能够更加精确地控制调整发动机各种工作状态下的空气燃料混合比;并在绝大多数工况下使系统保持在理想空燃比工作状态,以便获得更加优良的汽车排放控制特性和燃油经济性。 氧传感器的输出信号为0 ~ 1V的交变电压信号。传感器可根据发动机所排燃烧气中氧的含量高低自动感应和探测并向发动机电子控制模块输出这一高低变化的电压信号。 现代发动机管理系统采用的氧传感器有两种主要类型:非加热型氧传感器和加热型氧传感器。 装配在发动机排气歧管上的氧传感器,由于可以利用发动机所排出燃烧废气的余热进行快速加热,故可使用价格低廉的非加热型氧传感器;当氧传感器的安装位置受到整车布置限制,氧传感器距离发动机排气歧管出口较远时,由于不能利用发动机燃烧废气对于传感器迅速加热,此时必然需要采用加热式氧传感器。 加热式氧传感器的内部设计有热敏电加热元件,可利用系统供电电压强制使氧传感器加速预热,促使其快速起燃,及早实现系统的闭环燃油管理控制。

2. 工作原理 德尔福公司生产的氧传感器是采用氧化锆元件作为传感器的基础元件。氧化锆元件是一种通体充满无数微孔的陶瓷基础元件外面镀有氧化锆涂层,该涂层外测暴露于发动机燃烧废气之中;涂层的内侧透过含微孔的陶瓷元件与大气相通。集中在氧化锆内外两侧电极之间氧含量的差别形成的微分电压信号。 当氧化锆元件被电流加热或被流经传感器的发动机燃烧废气加热所激活,空气经过通体充满无数微孔的陶瓷基础元件进入氧化锆元件的内电极,而燃烧废气流经氧化锆的外电极。氧离子将从氧化锆内电极向外电极移动,传感器的内外电极之间构成了一个简单的原电池,发动机燃烧废气中氧含量的变化不同在两个电极之间产生不同的输出电压信号。氧传感器将根据发动机燃烧废气中氧离子浓度的高低变化来改变这一输出电压信号的高低。 氧传感器通常的工作表现为在当发动机的工作时空燃比变稀时,排气中氧含量的浓度将会升高,此时,氧传感器的输出电压信号接近 0V;当空燃比变浓时,排气中氧含量的浓度降低,传感器的输出电压将接近 1V。 发动机电子控制模块(ECM)根据这一输入电压信号,配合系统控制逻辑及控制策略,通过响应的传感器和执行器,就可以调整系统输出控制指令,使发动机工作在和保持理想的空燃比燃油供给状态。 氧传感器核心元件允许的最低工作温度为300摄氏度;最高温度一般不超过850摄氏度。具体情况参照实际产品图纸规定的实际数值为准。 氧传感器是闭环燃油管理控制子系统的关键元件。正是由于有了该传感器才使得发动机的空燃比的闭环燃油控制成为可能,从而使系统实现为达到最佳三元催化转换器转化效率所需的理想空燃比的控制目标,实现最佳发动机燃烧控制目的。 3. 结构特征 德尔福公司生产的现代发动机管理系统配套用氧传感器的主要特点为: ?零部件统一设计,全球采购系统可保障全球产品性能的一致性 ?传感器具备防水功能 ?无需空气渗透过滤装置 ?通用化接口结构设计,简便易于替代竞争对手产品 ?大批量生产,大批量产品应用考核,可靠性能优良 ?超强低温适应性能

气体传感器及其在火灾探测中的应用

气体传感器及其在火灾探测中的应用 摘要:阐述了几种气体火灾探测器的工作原理、性能特点及其应用, 介绍了几种新型复合气体火灾探测器,探讨了气体火灾探测器的发展前景和趋势。 关键词:火灾探测器;气体火灾探测器;气体传感器。 一、气体火灾探测器概述 气体是火灾的早期特征之一, 研究气体探测器对于防治火灾有重意义。传统的火灾探测器中感温探测器,感烟探刷器,感火焰探测器其原理是基于火灾中温度变化或者利用火灾烟雾,火焰的电学,光学等物理特性来进行火灾识别。这种识别模式很难可靠地发现早期火灾,如感烟探测器不能探测到酒精火焰,感温探测器不易探测到阴燃火源。在现代高大空间建筑中,当存在遮挡和环境干扰的时候,常规的感烟、感温探测器由于火灾燃烧产物在空间传播受空间高度和面积的影响,很难对火灾发生快速响应。近年来,由于气体传感技术有了长足的进步,气体传感器相传统火灾探剧器结合形成多元参数复合探剧技术以及开发研究新型火灾气体传感器已成为火灾探测领域的新动向。目前, 用于检测火灾的气体主要有CO、CO2、NOX、甲烷、H2、H2O、胺( - NH2) 等。对于不同的气体和不同的应用场合, 所用的气体检测方法也不尽相同。可用作探测可燃性气体或可燃物燃烧生成气体传感器已有很多, 应用最广泛的主要有半导体气体传感器、红外吸收气体传感器、电化学传感器以及正在发展的智能气体传感器等。 二、气体传感器 2.1、半导体气体传感器 半导体气体传感器主要是以氧化物半导体作为基本材料, 使气体吸附于该半导体表面, 利用由此产生的电导率的变化而制作的器件。按检测不同气体特征量的方式, 半导体气体传感器大体分为电阻式和非电阻式两种, 见表1。电阻式半导体气体传感器用氧化锡、氧化锌等金属氧化物材料作为敏感元件, 利用其阻值的变化来检测气体的体积分数; 非电阻式半导体气体传感器采用氧化银、金属栅的场效应管、金属/ 半导体结型二极管等作为敏感元件, 利用它们与气体接触后的整流特性, 以及晶体管作用的变化进行表面单位的直接测定。自从1962 年半导体金属氧化物陶瓷气体传感器问世以来, 半导体气体传感器已经成为当今世界上产量最大、最具有实用价值的传感器之一。 表1 半导体气体传感器的分类 2.2、红外吸收式气体传感器

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

新型气体热导传感器及其应用设计重点

2007芷第7期 仪表技术与传感器 Insmtment Technique and Sensor 2007 No.7 新型气体热导传感器及其应用设计 ‘ 刘殿素,吴言荪,欧勇 (重庆大学电气工程学院,重庆400044 摘要:气体热导传感器是利用被测组分和参考气的热导系数不同而响应的浓度型传感器。文中介绍了一种新型气体 热导传感器TCS208F的特点、结构及指标,由于其输出是微弱信号,所以设计出其信号调理电路。传感器检测到的微弱信号由测量电桥调理输出,通过集成芯片AM402中的仪表放大器进行差分放大,由于远距离传输的需要,再将电压信号送入U/I变换器转换成0。20mA的工业标准电流信号,最后再把电流信号转换为电压信号送入单片机。 关键词:热导传感器;TCS208F;AM402;信号调理 中图分类号:TP212文献标识码:B 文章编号:1002—1841(200707—0005—02 Applicable Design of New Type Thermal Conductivity Sensor for Gases LIU Dian-su,WU Yan-SLID,OU Yong (College of Electrical EnoneeriIlg,Chongqing University,Chongqing 400044,China Abstract:Thermal conductivity sensor for gases is concentration sensoy that measure the thermal conductivity coefficient of the 8ain-fled gas different fwm the reference

传感器在智能家居中的应用

智能家居中的传感器应用

智能家居中的传感器应用 一、智能家居概述 智能家居就是通过综合采用先进的计算机、通信和控制技术(3C),建立一个由家庭安全防护系统、网络服务系统和家庭自动化系统组成的家庭综合服务与管理集成系统,从而实现全面的安全防护、便利的通讯网络以及舒适的居住环境的家庭住宅。智能家居是IT技术(特别是计算机技术),网络技术、控制技术向传统家电产业渗透发展的必然结果。 相信很多人对一些美国科幻电影中的镜头印象深刻:主人公回到家中,随着门锁被开启,家中的安防系统自动解除警戒,廊灯缓缓点亮,空调、通风系统自动启动,动听的背景交响乐轻轻奏起。主人公坐在家中沙发上,手拿一个外观精美的遥控器,就能控制家中所有的电器。晚上,主人公上床休息,在他躺下的一刻,所有的窗帘都自动关闭,入睡前,床头边的面板上,晚安的灯光按钮亮起,所有需要关闭的灯光和电器设备自动关闭,同时安防系统自动开启处于警戒状态。主人公外出的时候,只要按一个键就可以关闭家中所有的灯和电器。 在科技高速发展的今天,这已经不仅仅是只能在科幻电影中看到的情景了。随着智能家居逐渐走进我们的生活,这样的场景也许不久就会在您身边变成现实。 现代科技进入家居的带来的变化令人啧啧称奇,给人们的家居生活带来了极大的便利。上文所描绘的这些场景,都是是智能家居将要带给您的“神奇”体验,而这一切,不过是智能家居控制系统能为您做的事情中的一小部分。 智能化志在必行是发展的趋势,因为这个世界显然是为懒人设计的。智能家居的概念并不是一个新东西,其实早在10年前,智能家居的概念就从国外引入到国内,从最初的梦想到真正进入我们今天的生活,智能家居在随着科技的发展,经历了一个既热闹又艰难的发展过程的同时,也完成了在中国的跨越式发展。 那么到底什么是智能家居呢?智能家居并没有一个精确地定义,我们大家通常所说的智能家居就是以住宅为平台,兼备建筑、网络通信、信息家电、设备自动化,集系统、结构、服务、管理为一体的高效、舒适、安全、便利、环保的居住环境。智能家居系统可以为您提供家电控制、照明控制、窗帘控制、电话远程控制、室内外遥控、防盗报警、以及可编程定时控制等多种功能和手段,使您的生活更加舒适、便利和安全。 与普通家居相比,智能家居不仅具有传统的居住功能,提供舒适安全、高品位且宜人的家庭生活空间,还由原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交流畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。 由于每个家庭成员的职业、经历、喜好、教育程度、家庭背景千差万别,智能家居不仅是产品的设计安装和功能实现,更重要的是个人风格的体现。同时,智能家居高度的智能化和舒适化正是为了达到家居生活中的高度人性化,使用户个人感官在智能家居系统中得到淋漓尽致的舒展。在这样的趋势下,让智能家居中的人性化应用,成为智能家居得以发展普及的重心。

光照强度传感器及其变送电路设计(范文)复习过程

光照强度传感器及其变送电路设计(范文)

重庆工业职业技术学院 毕业设计 课题名称:单片机流水灯设计 专业班级: 09电子301 学生姓名:魏玉玺 指导教师:王雪萍 二零一二年四月

光照强度传感器及其变送电路设计 【摘要】光照强度传感器是现代工业和日常生活中经常出现的一种基于光强变化的 检测器件,它可以检测出其接收到的光强的变化,主要使用各种光电元件来将光信 号转换成电信号,再经信号取样电路、放大电路和模数转换电路处理,获取表示光 照度的数字信号,再交由微处理器或DSP处理。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。本设计利用传感器设计的基本方法,设计 制作一个可以感知外界光照度变化的传感器,以实现对光照度信号的测量。 【关键词】:光照强度;传感器;变送电路 目录

第一章绪论 (4) 1.1引言 (4) 1.2传感器的概述 (4) 第二章系统设计 (5) 2.1光电传感器及敏感元件 (5) 2.1.1光敏电阻器……………………………………………………………………....... 5 2.1.2光敏二极管.............................................................. . (5) 2.1.3光敏晶体管 (6) 2.2光电传感器概述 (6) 2.3光电传感器工作原理 (6) 2.4光照传感器的设计 (8) 2.4.1设计方案一 (8) 2.4.2设计方案二 (9) 2.5方案比较 (10) 第三章变送电路硬件设计 (10) 3.1变送电路简介................................................................................ (10) 3.2热电阻二线制变送器的设计 (12) 3.2.1信号采集电路 (13) 3.2.2一级放大电路和线性化调整电路 (13) 3.2.3调零、电源平衡及二级放大电路……………………………………… 13 3.2.4调满电路和V/I转换电路…………………………………………………… 14 3.3 热电偶二线制变送器电路设计 (14) 3.3.1信号采集和一级放大电路 (14) 3.3.2 线性化调整电路和二级放大电路 (15)

传感器设计

泡沫液位传感器课程设计 摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白,本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示,一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析。 关键词:泡沫;液位检测;传感器;两相流; Abstract:The foam is a special phase com pared w ith liqu id and gas.It ha s m any dif f erent cha r acters in m ech anics,therm oties,photology and soon,For different methods to generate fo amsand its special mechanism,even today there have not created a perfect theory system to deal with foam mediums.Foam level meas urement is also nearly to be all unreachable field by now.A kind of foam level sensor based on thermoties theory has be endeveloped,Introduces its structure 、principle 、analyses error and dynam icresponse of sensor. Key Words : Foam ;Level Detecting ;Sensor;8051Single chip microcomputer;

电化学气体传感器模组说明.doc

系列智能传感器是专门针对气体探测器生产企业推出的新型智能传感器,主要为解决气体探测种类繁多、各品种传感器互不兼容、生产标定复杂、核心器件更换限制等问题。采用我司生产的智能型气体传感器则只需开发一款产品,即可快速响应客户对不同气体种类探测的需求,且生产过程简化,无需重新标定,大幅度降低企业的研发成本、生产成本,产品品质也立即提升到国际一流水准。 该传感器操作方便、测量准确、工作可靠,适用于工业现场或实验室测量等不同的要求。传感器具有电压和串口同时输出特点,方便客户调试及使用。 ■本安电路设计,可带电热拔插操作; ■专业精选、原装进口,兼容红外、电化学、催化、半导体等多种传感器; ■自带温度补偿,出厂精准标定,使用时无需再标定; ■电压和串口同时输出特点,方便客户调试及使用; ■最简化的外围电路,生产简单、操作方便。 传感器安装尺寸 图 接线示意图 传感器外部尺寸图 电化学气体传感器模组说明概述 产品特点 技术参数

2)工作电流:≤50mA (催化≤100mA); 1)工作电压:DC5V±1%(4-20mA输出的是DC 24V); 3)测量气体:有毒、可燃气体、挥发性有机物气体;4)安装方式:7脚拔插式; 5)测量范围:0-10000可选(以检测气体而定);6)检测原理:电化学、红外、催化; 7)测量单位;PPM 、%LEL 、%VOL (以检测气体而定);8)响应时间:<30s; 9)采样精度:±2%FS ;10 )预热时间:30s; 11)重复性:±1%FS;12)长期零漂:≤1%FS /年; 13)工作温度:-20~70 ℃;14)工作湿度:10 ~95%RH(无凝露); 15)存贮温度:-40~70 ℃;15)工作气压:86kPa~106kPa; 17)外壳材质:铝合金;18)输出接口:6PIN; 19)使用寿命:2年以上(以传感器使用寿命为准);20)质保期: 1年; 21)数字信号格式:数据位:8;停止位:1;校验位:无;22)波特率: 9600; 23)输出信号:0.4-2.0VDC( 常规)、0-1.6VDC 、0-4VDC 、0-5VDC电压信号或4-20mA电流信号可选; 24)外型尺寸:Φ33.5*31mm(引脚除外); 引脚定义 序号名称说明 1 GND 地 2 Vout 电压输出 3 Iout 电流输出 4 TX/A 串口发送或485A 5 RX/B 串口接收或485B 6 24V/5V 电源输入 传感器底视图 传感器通讯协议说明 1、异步串行通信参数: 始位:1 数据位:8 停止位:1 校验:无波特率:9600 2、帧格式:(详见下文)

YAV Z2声音传感器(交流电压输出)技术手册YAV5152Z2

YAV-Z2声音传感器(交流输出)技术手册 YAV Z2声音传感器(交流输出) 技术手册V1801 武汉亚为电子科技有限公司 YAV5152Z2

关于 序号版本号编写人编写日期支持对象应用时间特别说明1 1.0齐非2013.11YAV-Z12013.11 1 2.0郑冉2014.01YAV-Z12014.01 1 3.0朱健波2016.08YAV-Z12016.08 1 4.0朱健波2017.08YAV-Z12017.08

目录 0.快速上手 (1) 产品包装内容 (1) 接口定义 (1) 1.产品概述 (1) 技术指标 (2) 硬件特点 (2) 2.传感器的安装及固定 (3) 3.电压对应声压级表(非线性) (4) 4.性能测试 (5) 噪音波形 (5) 安全规范 (5) 环境适应性测试 (6) 5.注意事项及故障排除 (8) 注意事项 (8) ?存储说明 (8) ?出货清单 (8) ?质保及售后 (8) ?特别说明 (8) 故障排除 (8) 6.文档权利及免责声明 (10) 7.联系方式.........................................................................................................................错误!未定义书签。 8.V智能体验 (11)

0.快速上手 本章主要介绍初次使用YAV-Z2噪音传感器需要掌握的知识,以及与使用相关的准备工作,可以帮助用户熟悉YAV-Z2使用流程,快速上手。 产品包装内容 YA V-Z2噪音传感器、包装盒各一个,开发资料(官网下载)。 接口定义 端子定义说明: ●红色为电源正极 ●绿色为电源负极 ●黄色为信号线 1.产品概述 YAV-Z2噪声传感器具有声级计的全部功能,DC12V供电,并克服了传统手持式声级计信号输出复杂、感应不远的缺点,可采集声音波形信号。十分方便的与PLC、PC、DCS等控制设备兼容而组成的精细噪声测量系统,特别适合集成于各种环境、产品监控设备,组成单点或多点噪声监控网络,是各类噪声源的噪声监控、检测、监测、实验的理想选择。

气体传感器——外文翻译

本科生毕业设计 外文资料翻译 题目传感器技术 专业 ************** 班级 ******** 姓名 ******* 指导教师 ************** 所在学院 ************ 附件1.外文资料翻译译文;2.外文原文

多传感器数据融合的多分类器系统 一、引言 在许多应用识别和自动识别的模式中,从不同的传感器监测物理现象提供的免费信息中获得数据是很罕见的。对这类信息的适当组合通常就叫做数据或者信息的融合,而且可以提高分类决策的准确性和信赖度相对于那些基于单个数据源的任何单独的决策。 之前我们已经介绍过Learn++,一种以整体分类为基础的方法,作为一种有效的自动分类算法是能逐步学习的。该算法能够获得额外的数据,在分类系统设计好后就能变成有用的数据了。为了实现增量学习,Learn++生成一个整体的分类器(专家),其中每个分类器都是作为前面的数据库。为了认清数据融合和增量学习之间概念的相似性,我们讨论了数据融合的一些类似的方法:聘用一个正义专家,从提供的数据中训练每个数据,然后战略性的结合他们的输出。我们能发现这些系统的性能在决策应用中是很重要的而且向来是优于那些基于单一的数据源决策的决策在一些基准和真实的数据源世界。 这样一个系统中的应用很多,其中的数据是从相同的应用程序所产生的多种来源(或多个传感器)提供的可能包含补充信息中获得的。例如,在对管道做非破坏性评估时,缺陷信息可从涡流,磁泄漏的图像,超声波扫描,热成像获得,或者几个不同的诊断信息可从不同的医学检测获得,如血液分析心电图,脑电图或者医疗成像设备,如超声波,磁共振或正电子扫描等。直观的,如果来自多个来源的信息可以适当的结合起来,那么分类系统(检测是否有缺陷,或是否可以做出诊断决定)的性能可以得到改善。所以,增量学习和数据融合涉及学习不同的数据集。在增量学习中补充信息必须提取新的数据集,其中可能包含新的分类实例。而在数据融合中补充信息也必须提取新的数据集,其中可能包含代表数据使用不同的特点。 传统的方法一般是根据概率理论(叶贝斯定理,卡尔曼滤波),或登普斯特-谢弗(DS)和它的变化,其中主要用于军事上的应用开发,特别是目标检测和跟踪,如决策理论。以整体分类为基础的方法寻求一个新的和更通用的解决方案提供更广泛的应用。还应当指出的是,在一些应用中如上述的无损检测和医疗诊断等,从不同的来源获得的数据可能已产生不同的物理方式,并因此获得的功能可能是不一样的。虽然在这种情况下使用概率或者决策理论的方法会变得更加的复杂,但异构的功能可以很容易的被安置整体的系统,讨论如下。 一个集成系统结合了集中不同的分类和特定的输出。分类的多样性可以允许使用略有不

相关文档
最新文档