探究安培力的影响因素参考资料

探究安培力的影响因素参考资料
探究安培力的影响因素参考资料

师:[设疑]前面学习了电场和磁场,电和磁之间是否存在着某种内在联系?

[flash演示]奥斯特实验

[提问]

小磁针的偏转说明了什么?

[分析与讨论]

小磁针在磁场中受磁场力的作用才会发生偏转,实验结果说明,不仅磁铁能产生磁场,电流也能产生磁场。通电导线通过周围产生的磁场对磁体有力的作用(电流→磁场→磁体)。那根据牛顿第三定律可知,磁体通过周围的磁场对通电导线也应该有力的作用(磁体→磁场→电流?)。下面我们就用一个迷你小实验来探究一下磁场对通电导线是否也有力的作用呢?

2、学生回答:不仅磁铁能产生磁场,电流也能产生磁场。

[板书]

一、探究磁场对电流的作用

1、安培力

[迷你实验]

第一种第二种第三种第四种

[分析与讨论]

实验中观察到什么现象?可以得到什么实验结果?

[总结]

当通电导线附近有磁体时,通电导线会受到力的作用。物理学上把磁场对电流的作用力称为安培力。

2、方向的判断——

[提出问题]

从前面的实验中发现,当通电导线的电流方向改变或磁体的磁极位置交换时,通电导线的受力方向也会发生改变。说明安培力的方向与电流方向和磁场方向有关。怎样具体确定安培力的方向?

[过渡]

安培力是个矢量,之前我们已经研究了它的方向,那么它的大小到底会与哪些因素有哪些?

3、大小的探究——控制变量法

[提出问题]

请同学们在上述实验的基础上提出猜想,安培力的大小可能与哪些因素有关?

[猜想与假设]

引导学生在上述实验的基础上提出猜想,安培力可能与通电导线的长度

(通电导线在磁场中的长度)、电压(电流)以及磁场(磁感应强度)等因素有关。(导线材料?横截面积?)

[总结]

基于有些因素前任已经排出了其可能性,今天我们就研究一下安培力与电流大小I、磁场中导线长度L及磁感应强度B的关系。

(引导学生进行讨论交流设计实验)

[研究方法]

从上面的分析可知,影响安培力的因素很多,如果将它们混在一起考虑,无法知道每个因素是怎样影响安培力的。因此,实验中通常只让某个因素(变量)变化,不让其他因素变化(控制变量),这样便知道这个因素是如何影响安培力的了。这就是物理学中一种重要的思想方法——控制变量法。(类似于探究牛顿第二定律a与F、m的关系)

[设计实验]

(1)研究F与I的关系:

控制B、L不变

如何改变I?通过调整滑动变阻器的滑片位置改变电流的大小(一种短路,一种较大电阻)如何通过现象判断F与I的关系?观察通电导线摆动后悬线与竖直方向的夹角(安培力越大,摆动角度越大)

[实验方案]

①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。(蹄形磁铁中间的磁场可以近似认为是匀强磁场)

②在磁感应强度和通电导线在磁场中的长度不变的情况下,合上开关,移动滑片位置改变电流的大小,探究电流的大小对安培力的影响。观察其现象。

[由学生分析现象]

当增大流过通电导线的电流时,通电导线摆动后悬线与竖直方向的夹角变大。(由力的平衡条件可得,F越大,夹角越大)→(定性研究得出)I越大,F越大;I越小,F越小→(经物理学家的进一步定量研究得出)F与I成正比。

(2)研究F与L的关系:

控制B、I不变(使滑动变阻器处于被短路状态)

如何改变L?通过并列放置2块磁感应强度磁铁改变磁场中导体的长度。

如何放置2块磁铁?(注意:磁铁的并列放置,N与N同向;如果N与S 同向,则2个磁场相互抵消)

如何通过现象判断F与L的关系?观察通电导线摆动后悬线与竖直方向的夹角

[实验方案]

①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。

②在磁感应强度与电流的大小情况下,改变通电导线在磁场中的长度,合上开关,探究通电导线在磁场中的长度对安培力的影响。观察其现象。

[由学生分析现象]

当增大通电导线在磁场中的长度时,通电导线摆动后悬线与竖直方向的夹角变大。→(定性研究得出)L越长,F越大;L越短,F越小→(经定量研究得出)F与L成正比。

(3)研究F与B的关系:

控制I、L不变(由于时间关系进行演示,使滑动变阻器处于被短路状态)

如何改变B?通过换用1块宽度一样磁性更强的磁铁,改变磁场的磁感应强度。(用两块小的蹄型磁铁的等效宽度和磁性强的磁铁宽度一样)

如何通过现象判断F与B的关系?观察通电导线摆动后悬线与竖直方向的夹角

[实验方案]

①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。

②在电流和通电导线在磁场中的长度不变的情况下不变的情况下,通过换用磁感应强

度不同的磁铁,改变磁场的磁感应强度的大小,探究磁感应强度的大小对安培力的影响。观察其现象。

[教师分析现象]

当增大磁感应强度时,通电导线摆动后悬线与竖直方向的夹角变大。→(定性研究得出)B越大,F越大;B越小,F越小→(进一步定量研究得出)F 与B成正比。

经进一步研究表明:在匀强磁场中,当通电直导线与磁场方向垂直时,通电导线所受的安培力最大,等于磁感应强度B、电流I和导线长度L的乘积,即F=BIL

强调:

①公式的适用条件——匀强磁场且B与I垂直。

②各物理量单位:F-N,B-T,I-A,L-m(强调L指磁场中通电导线的长度)

③公式应用的推广:在非匀强磁场中,上述公式可近似用于很短的一段通电导线。因为当导线很短时,可近似认为各点的磁感应强度相等。书P111

[课后思考]

设疑:当电流方向与磁场方向有一个夹角θ时,安培力大小如何计算?

讨论:将磁感应强度分解为两个分量(教材中图6-6):与电流方向平行的分量B1对电流没有作用力,因此电流所受的作用力F完全由与电流方向垂直的分量B2决定,即

F= B2IL=BsinθIL

上式包含了两种特例:当通电导线的方向和磁场方向平行(θ=0°或θ=180°)时,安培力等于零;当通电导线的方向和磁场方向垂直(θ=90°)时,安培力最大,F=ILB。

【板书设计】

一、探究磁场对电流的作用

1、安培力:磁场对电流的作用力

2、方向的判断——左手定则

3、大小的探究——控制变量法

(B与I垂直)

1)适用条件:匀强磁场且B与I垂直

2)单位:F-N,B-T,I-A,L-m(L指磁场中通电导线的长度)

3)公式推广:非匀强磁场中,可近似用于很短的一段通电导线

探究安培力的影响因素参考资料

师:[设疑]前面学习了电场和磁场,电和磁之间是否存在着某种内在联系? [flash演示]奥斯特实验 [提问] 小磁针的偏转说明了什么? [分析与讨论] 小磁针在磁场中受磁场力的作用才会发生偏转,实验结果说明,不仅磁铁能产生磁场,电流也能产生磁场。通电导线通过周围产生的磁场对磁体有力的作用(电流→磁场→磁体)。那根据牛顿第三定律可知,磁体通过周围的磁场对通电导线也应该有力的作用(磁体→磁场→电流?)。下面我们就用一个迷你小实验来探究一下磁场对通电导线是否也有力的作用呢? 2、学生回答:不仅磁铁能产生磁场,电流也能产生磁场。 [板书] 一、探究磁场对电流的作用 1、安培力 [迷你实验] 第一种第二种第三种第四种 [分析与讨论] 实验中观察到什么现象?可以得到什么实验结果? [总结] 当通电导线附近有磁体时,通电导线会受到力的作用。物理学上把磁场对电流的作用力称为安培力。 2、方向的判断—— [提出问题] 从前面的实验中发现,当通电导线的电流方向改变或磁体的磁极位置交换时,通电导线的受力方向也会发生改变。说明安培力的方向与电流方向和磁场方向有关。怎样具体确定安培力的方向? [过渡] 安培力是个矢量,之前我们已经研究了它的方向,那么它的大小到底会与哪些因素有哪些? 3、大小的探究——控制变量法 [提出问题] 请同学们在上述实验的基础上提出猜想,安培力的大小可能与哪些因素有关? [猜想与假设] 引导学生在上述实验的基础上提出猜想,安培力可能与通电导线的长度

(通电导线在磁场中的长度)、电压(电流)以及磁场(磁感应强度)等因素有关。(导线材料?横截面积?) [总结] 基于有些因素前任已经排出了其可能性,今天我们就研究一下安培力与电流大小I、磁场中导线长度L及磁感应强度B的关系。 (引导学生进行讨论交流设计实验) [研究方法] 从上面的分析可知,影响安培力的因素很多,如果将它们混在一起考虑,无法知道每个因素是怎样影响安培力的。因此,实验中通常只让某个因素(变量)变化,不让其他因素变化(控制变量),这样便知道这个因素是如何影响安培力的了。这就是物理学中一种重要的思想方法——控制变量法。(类似于探究牛顿第二定律a与F、m的关系) [设计实验] (1)研究F与I的关系: 控制B、L不变 如何改变I?通过调整滑动变阻器的滑片位置改变电流的大小(一种短路,一种较大电阻)如何通过现象判断F与I的关系?观察通电导线摆动后悬线与竖直方向的夹角(安培力越大,摆动角度越大) [实验方案] ①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。(蹄形磁铁中间的磁场可以近似认为是匀强磁场) ②在磁感应强度和通电导线在磁场中的长度不变的情况下,合上开关,移动滑片位置改变电流的大小,探究电流的大小对安培力的影响。观察其现象。 [由学生分析现象] 当增大流过通电导线的电流时,通电导线摆动后悬线与竖直方向的夹角变大。(由力的平衡条件可得,F越大,夹角越大)→(定性研究得出)I越大,F越大;I越小,F越小→(经物理学家的进一步定量研究得出)F与I成正比。 (2)研究F与L的关系: 控制B、I不变(使滑动变阻器处于被短路状态) 如何改变L?通过并列放置2块磁感应强度磁铁改变磁场中导体的长度。

高中物理练习:探究安培力

5.4 探究安培力 [学科素养与目标要求] 物理观念:1.知道安培力的概念,掌握安培力的公式.2.知道左手定则的内容. 科学思维:1.会用左手定则判定安培力的方向.2.会用安培力的公式F=ILBsinθ进行有关计算. 科学探究:能设计方案、选择器材进行实验,探究安培力F与I、L、B的定量关系,体会控制变量法在实验中的应用. 一、安培力的方向 利用如图1所示的实验装置进行实验. 图1 (1)上下交换磁极的位置以改变磁场方向,导线受力的方向是否改变? (2)改变导线中电流的方向,导线受力的方向是否改变? 仔细分析实验结果,说明安培力的方向与磁场方向、电流方向有怎样的关系? 答案(1)导线受力的方向改变 (2)导线受力的方向改变 安培力的方向与磁场方向、电流方向的关系满足左手定则 [要点总结] 1.左手定则:伸开左手,使大拇指跟其余四个手指垂直,且都跟手掌在同一个平面内,让磁感线穿入手心,使四指指向电流方向,则大拇指所指的方向就是安培力的方向,如图2所示. 图2 2.判断电流的磁场方向用安培定则(右手螺旋定则),确定通电导体在磁场中的受力方向用左手定则.

3.安培力方向的特点 安培力的方向既垂直于电流方向,也垂直于磁场方向,即安培力的方向垂直于电流I和磁场B所决定的平面. (1)当电流方向与磁场方向垂直时,安培力方向、磁场方向、电流方向两两垂直,应用左手定则时,磁感线垂直穿过掌心. (2)当电流方向与磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向.应用左手定则时,磁感线斜着穿入掌心. [延伸思考] 电流周围可以产生磁场,磁场又会对放在其中的电流产生力的作用,如果有两条相互平行的、距离很近的通电直导线,它们之间会不会有力的作用?若有力的作用,那么同向电流之间的作用力如何?反向电流之间的作用力如何? 答案有力的作用,同向电流相互吸引,反向电流相互排斥. 例1 画出图3中各磁场对通电导线的安培力的方向(与纸面垂直的力只需用文字说明). 图3 答案如图所示 解析无论B、I是否垂直,安培力总是垂直于B与I决定的平面,且满足左手定则. 学科素养例1用左手定则来判断安培力的方向,这是从物理学视角对客观事物的内在规律及相互关系进行分析,是对基于经验事实建构的理想模型的应用过程,体现了“科学思维”的学科素养.

探究安培力教案

《探究磁场对通电导线的作用——安培力》教案 龙台中学:杨世洲 一、教学目标: 1.知识与技能 (1)知道磁场中垂直于磁场方向的通电直导线所受安培力的大小跟电流的大小、导线在磁场中的长度和磁场的强弱等因素有关。 (2)理解磁场的基本性质——磁场对电流有力的作用,掌握用左手定则判断安培力的方向。2.过程与方法 (1)通过用实验探究影响安培力大小的因素,学习用“控制变量法”研究问题的方法。 (2)经历探究安培力方向与哪些因素有关的过程,体会科学探究的一般方法。 (3)通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想象能力。 3.情感、态度与价值观 (1)本节课通过引导学生对安培力进行探究,培养学生的观察能力、分析能力和与他人合作精神。(2)认识安培力的应用给我们的生活带来的影响。 二、教学重点: (1)定性地了解决定磁场对电流的作用力大小的有关因素及关系。 (2)掌握左手定则。 三、教学难点: 在探究影响安培力大小的因素中对学生的引导和对左手定则涉及的空间关系的理解是本节课教学的难点。 四、教学用具: 蹄形磁铁、方形线圈、自制安培力方向演示仪、电流表、滑动变阻器、电源、多媒体电脑等。 五、教学过程: (一)、问题引入 学生观看节目《劈空拳》(设置悬念,激发兴趣和求知欲)。 情景1:学生对着悬挂的通电线圈隔空打过去,线圈不动。(学生好奇) 情景2:老师对着悬挂的通电线圈隔空打过去,线圈运动。(学生迷惑) 问题:老师隔空打线圈为什么线圈会运动?(学生思考、回答) 解密:老师手中有强磁铁,它产生的磁场对通电导体产生力,使线圈运动。磁场对通电导体的作用力称为安培力,本节课我们一起来探究安培力。 (二)、新课教学 提问:我们通常从哪些方面去研究一个力? (引导学生思考从力的大小、方向等要素去探究安培力)

探究安培力实验的设计

探究安培力实验的设计 探究安培力是高中物理教学中的一个重要实验。课程标准要求学生通过实验认识安培力,学会判断安培力的方向并计算匀强磁场中安培力的大小。现有的有关安培力的演示器材,其演示效果并不理想,很难让学生对安培力的定量关系(F=BIL)有一个深刻的认识。为此,笔者设计了两套实验器材,用于探究安培力的大小以及方向的规律。 一、背景 现在中学阶段用来演示安培力的器材主要是J2447型安培力演示器。它主要用来演示通电直导线在磁场中的受力情况,以便让学生掌握安培力的产生原理,以及安培力与电流方向、磁场方向三者之间的关系。 安培力演示器是演示安培力的主要实验器材,但实际演示效果并不理想。例如:滚动的导线和导轨经常会接触不良,导致演示实验失败;仪器的可视范围较小,不利于做演示实验。此外,演示通电导线与磁场方向平行和垂直两种不同情况的受力时,还要把两条通电导轨重新拆装。而且如果学生想了解影响安培力大小的三个因素,J2447型安培力演示器无法演示。 为了能让学生在实验中更好地理解安培力以及相关的影响因素,笔者设计和制作了用于安培力教学的两套实验器材:安培力演示仪、探究安培力实验仪。 二、实验器材的制作 1.安培力演示仪 制作底座及导轨 首先,选取60 cm×20 cm 的木板作为底座,对其表面进行打磨、上油漆,并用4个不锈钢支架将其支撑起来。然后,裁剪2条60 cm×2 cm 的紫铜条,用锤子将其弄平整后再用砂纸打磨表面,将表面的氧化物去掉。紧接着再对铜条进行打孔,把它们安装在底板上,并保持铜条间的距离为10 cm。最后,把导线连接到铜条上,并用焊锡固定。 制作匀强磁场 磁场由2块15 cm×10 cm的磁铁相对放置组成。具体操作过程如下:先在铝合金管上分别挖4个10 cm×2 cm的方孔,接着将2块磁铁套在其中。然后利用不锈钢条制作一个U型支架,最后再将套上铝合金管的2块磁铁安装在支架上。 装置示意图如图1所示。 图1

教学设计-探究安培力

第三节探究安培力 【教材分析】 学生在初中已经对磁场有了初步的认识,并且初步了解了通电导体在磁场中受力的情况,但是对于如何用左手定则判断安培力的方向及安培力的大小与哪些因素有关还有一定的疑问。本教材安排了两个实验探究活动,分别探究安培力的方向和大小。定量探究影响安培力大小的因素是本节课的重点,教材采用控制变量法,既可以让学生动手操作,培养学生的探究能力和独立思考的能力,又可以帮助学生理解安培力大小的计算公式。同时,本节课的内容也为后面洛仑兹力的学习打下了基础。 【学情分析】 通过初中的学习,学生已经对安培力有了初步的认识,同时通过前面第二节内容的学习,学生进一步了解了磁场对通电导线的作用,并具有了一定的探究能力和探究意识,同时也具备了在实验中总结规律的能力,为本节课的实验探究奠定了基础。但是对于左手定则所涉及的空间关系的理解还存在一定的疑问。 【教学目标】 1.知识与技能 (1)理解左手定则,并学会用左手定则判断安培力的方向。 (2)知道安培力的大小与哪些因素有关,能够得出安培力的计算公式。 (3)学会利用安培力去分析和计算实际问题。

2.过程与方法 (1)通过对左手定则的学习,理解磁场方向、电流方向和安培力方向三者之间的关系,从而培养学生空间想象能力。 (2)通过实验探究影响安培力大小的因素,培养学生用“控制变量法”研究问题的方法。 (3)通过实验探究,培养学生动手操作能力和总结归纳能力。 3.情感、态度和价值观 (1)通过对安培力的探究,激发学生探究的兴趣,培养学生探究问题、处理数据、总结归纳的能力,让学生养成良好的科学态度。 (2)通过对本节课的学习,让学生知道安培力是实际应用中很重要的一种力,广泛用于电动机、电流表、发电机等多种设备,进一步激发学生探究的兴趣和好奇心。 【教学重点】 掌握左手定则,并学会用左手定则确定安培力的方向;学会计算安培力的大小。 【教学难点】 对左手定则所涉及的空间关系的理解及左手定则的应用。 【教学过程设计】

第三节 探究安培力说课稿

第三节探究安培力说课稿 一、说教材: 本节教材通过探究安培力的方向和大小的规律,给出了左手定则和磁感应强度的定义。磁场对电流的安培力宏观表现了磁场力的性质,而磁感应强度则描述了磁场力的性质,是磁学的基本概念。学好安培力和磁感应强度,既是前面认识磁场的深化,也为下来学习洛伦兹力和直流电动机打下了基础。至于磁通量,主要为下一章做好知识准备。 根据如上分析,可确定出本节教学的目标: 知识与技能: 1、通过实验认识安培力。知道什么是安培力。会计算匀强磁场中安培力的大小。 2、会判断安培力的方向,知道并能应用左手定则。 3、理解磁感应强度的定义,知道感应强度的单位。会用磁感应强度的定义式进行有关计算。 4、知道用磁感线的疏密程度可以现象地表示磁感应强度的大小。知道什么叫匀强磁场,知道匀强磁场的磁感线是分布均匀的平行直线。 5、知道磁通量的定义,能计算简单情况下的磁通量。 过程与方法: 1、经历安培力方向的探究过程,认识科学探究活动在物理学研究中的重要意义。 2、观察探究安培力大小的演示实验,了解物理学的研究方法。 3、了解磁感应强度定义的思路,重温比值定义法。 情感态度与价值观: 1、通过对安培力规律的探究活动,培养学生尊重事实,实事求是的科学态度。 重点、难点分析: 重点是理解磁感应强度的概念,理解磁场对电流的作用力大小的决定因素,掌握电流与磁场垂直时安培力的大小计算公式。 左手定则既是重点也是难点.磁场方向、电流方向和安培力方向三者之间的空间关系也是一个难点. 二、说教法、学法 通过学生自行实验探究得出安培力方向与电流方向和磁场方向有关,对左手定则的理解可借助墙角(或桌角)帮助学生建立三维坐标空间,再结合练习法使学生掌握左手定则的使用。 教师可通过演示实验法直观教学决定安培力大小的因素,通过启发讲解,帮助学生归纳总结关系式.在上一节的基础上,启发学生回忆电场强度的定义,对比说明引入磁感应强度的定义的思路是通过磁场对电流的作用力的研究得出的。 三、说程序 1、新课引入:介绍安培在研究磁场对电流作用方面的贡献,激起学生学习安培的研究方法和研究成果的兴趣。 2、探究安培力的方向:首先提出问题:安培力的方向如何呢?通过实验探究可知,通电导线在磁场中受到的安培力方向跟导线中的电流方向、磁场方向都有关系.人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律——左手定则. 左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向. 应该提醒学生注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁

相关文档
最新文档