油气集输课程设计 ——分离器设计计算(两相及旋风式)

油气集输课程设计 ——分离器设计计算(两相及旋风式)
油气集输课程设计 ——分离器设计计算(两相及旋风式)

重庆科技学院

《油气集输工程》

课程设计报告

学院:石油与天然气工程学院专业班级:

学生姓名:学号:

设计地点(单位)重庆科技学院石油科技大楼

设计题目:某低温集气站的工艺设计

——分离器设计计算(两相及旋风式)完成日期: 年月日

指导教师评语:

成绩(五级记分制):

指导教师(签字):

摘要

天然气是清洁、高效、方便的能源。天然气按在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。只有游离态的天然气经聚集形成天然气藏,才可开发利用。它的使用在发展世界经济和提高环境质量中起着重要作用。因此,天然气在国民经济中占据重要地位。天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。对于和原油储藏在同一层位的天然气,会伴随原油一起开采出来。天然气分别通过开采、处理、集输、配气等工艺输送到用户,每一环节都是不可或缺的一部分。天然气是从气井采出时均含有液体(水和液烃)和固体物质。这将对集输管线和设备产生了极大的磨蚀危害,且可能堵塞管道和仪表管线及设备等,因而影响集输系统的运行。气田集输的目的就是收集天然气和用机械方法尽可能除去天然气中所罕有的液体和固体物质。本文主要讲述天然气的集输工艺中的低温集输工艺中的分离器的工艺计算。

本次课程设计我们组的课程任务是——某低温集气站的工艺设计。每一组中又分为了若干个小组,我所在小组的任务是——低温集气站分离器计算。在设计之前要查低温两相分离器设计的相应规范,以及注意事项,通过给的数据资料,确定在设计过程中需要使用公式,查询图表。然后计算出天然气、液烃的密度,天然气的温度、压缩因子、粘度、阻力系数、颗粒沉降速度,卧式、立式两相分离器的直径,进出管口直径,以及高度和长度。把设计的结果与同组的其他设备连接起来,组成一个完整的工艺流程。关键字:低温立式分离器压缩因子

目录

摘要 (1)

1.设计说明书 (4)

1.1 概述 (4)

1.1.1 设计任务 (4)

1.1.2 设计内容及要求 (4)

1.1.3 设计依据以及遵循的主要规范和标准 (4)

1.2 工艺设计说明 (4)

1.2.1 工艺方法选择 (4)

1.2.2 课题总工艺流程简介 (5)

2.计算说明书 (5)

2.1 设计的基本参数 (5)

2.2 需要计算的参数 (5)

3.立式两相分离器的工艺设计 (6)

3.1 天然气的相对分子质量 (6)

3.2 天然气的相对密度 (6)

3.3 压缩因子的计算 (6)

3.4 天然气流量的计算 (9)

3.5液滴沉降速度 (10)

3.5.1天然气密度的计算 (10)

3.5.2临界温度、压力的计算 (11)

3.5.3天然气粘度的计算 (11)

3.5.4 天然气沉降速度的计算 (13)

3.6 立式两相分离器的计算 (14)

3.6.1 立式两相分离器直径的计算 (14)

3.6.2 立式两相分离器高度的计算 (15)

3.6.3 立式两相分离器进出口直径的计算 (15)

3.7 管径确定 (16)

3.8 壁厚的确定 (16)

3.9 丝网捕雾器 (17)

3.10 设备选型 (17)

4.旋风分离器的工艺设计 (18)

4.1.1根据进、出口速度检验K值及最后结果 (19)

4.2 压力降的计算 (21)

结论 (23)

参考文献 (24)

1 设计说明书

遵循设计任务的要求,完成某低温集气站的工艺设计——分离器计算(两相及旋风)。在设计之前要检查低温两相分离器设计的相应规范,以及注意事项,通过给的数据资料,确定在设计过程中需要使用的公式,查询图表。然后计算出天然气、液烃的密度、天然气的温度、压缩因子、粘度、阻力系数、颗粒沉降速度、进出管口直径、高度、长度以及卧式、立式分离器的直径。

1.1概述

通过查有关资料和相关规范,通过设计任务书上的数据以及要求,计算出低温集气站两相分离器的工艺参数。

1.1.1设计任务

某低温集气站的工艺设计——分离器计算(两相)

1.1.2设计内容及要求

①根据提供的资料进行某低温集气站的工艺设计——分离器计算(两相);

②编写设计报告和课程设计总结;

③报告格式需符合学校课程设计撰写格式要求。

1.1.3设计依据以及遵循的主要规范和标准

①《油气集输设计规范》(GB 50350-2005)

②《油气分离器规范》(SY/T 0515-1997)

③《油气分离器设计制造规范》(QHS 3006-2003)

1.2工艺设计说明

根据课程设计老师布置的要求,查资料和规范,计算出相应的参数。在设计的过程中,应该按照实际计算的公式或图表分别求出对应状态下的数值,合理利用相应的规范,设计出符合课程需求的工艺。

1.2.1工艺方法选择

气田集输工艺流程分为单井集输流程和多井集输流程。按天然气分离的温度条件,又可分为常温分离工艺流程和低温分离工艺流程。本次课程设计的任务是低温集气站的

工艺设计。低温集气站分离器的设计,通过节流降压的方法,是天然气中的含水量降低,从而达到脱水的目的。

1.2.2课题总工艺流程简介

多口气井节流降温分离多次节流凝液回收外输

2 计算说明书

2.1设计的基本参数

设计的基本参数见表2.1

表2.1井口的产量、进站压力及温度

出站压力:6MPa;天然气露点:<-5 ℃

进站气体组成(%):C1-85.33 C2-2.2 C3-2.0 C4-1.7 C5-1.23 C6-0.9 H2S-6.3

CO2=0.78

凝析油含量:20g/m3;S=0.78

2.2需要计算的参数

天然气的相对分子质量、压缩因子、天然气节流后的比拟压力及温度、天然气的总流量、液体的沉降速度、分离器内直径、分离器气体出入口管径。

3 立式两相分离器的工艺设计

3.1天然气的相对分子质量

人们把0℃、101325Pa 时体积为22.4dm 3

天然气所具有的质量认为是天然气的相对分子质量。天然气的相对分子质量是一种人们假想的相对分子质量。

其计算方法为:

i i M y ΣM

= (3.1)

式中: M ——天然气的相对分子质量; y i ——组分i 的摩尔分数; M i ——组分i 的相对分子质量。

根据有进站气体组成(%):C 1-85.33 C 2-2.2 C 3-1.7 C 4-1.56 C 5-1.23 C 6-0.9 H 2S-6.3 CO 2=0.78

用上述(3.1)公式可计算出天然气的相对分子质量为:

M=16×0.8533+30×0.022+44×0.017+58×0.0156+72×0.0123+86×0.009+34×0.063+44×0.0078=20.115

3.2天然气的相对密度

天然气相对密度是在相同压力和温度下天然气的密度与空气密度之比,这是一个无量纲。天然气的相对密度用符号S 表示。且一般情况下计算,得到干燥空气的分子量约为28.97,则有:

6960=97

28115

20===...M M ρρS 空天空天

3.3压缩因子的计算

在某压力P 和某温度T 时n 摩尔气体的实际体积除以在相同压力P 和温度T 时n 摩尔气体的理想(计算)体积之商,即为该气体的压缩因子。压缩因子主要有两种计算方法:计算法、查图法。本文用的是查图法计算出天然气的压缩因子。

天然气的相对密度S=0.696<0.7,所以对于凝析气田气,通过查数据公式中的公式:

S

..T S .p 21152+1106=248.0-7784=pc pc (3.2)

所以根据上述(3.2)公式可得:

K

....T MPa

..p 038212=6960×21152+1106=6054=696.0×248.0-7784=pc pc

因为气体组分中含较多硫化氢和二氧化碳,需对拟临界压力、温度进行修正,则根据校正系数:

()()045061903-15+-120=....B B A A ε (3.3)

式中: A ——H 2S 和CO 2气体的总摩尔分数; B ——H 2S 气体的摩尔分数。

根据上述(3.3)公式可以通过带入已知数值计算得到:

()()102.13=063.0-063.0+0708

.0-07080×120=0.45.06

.1903..ε

再代入校正公式:

()3

pc pc 3pc pc pc pc -=-1+=

εT 'T εB B T '

T p 'p (3.4)

将已知的校正系数代入上述(3.4)公式中,可以得到'p pc 和'T pc 为校正后的压力、温度,分别为:

()K .'T MPa

....'p 936.198=102.13-038212=305.4=102.13×063.0-1×630+038212936

198×6054=

pc pc

根据节流阀4、5号节流之后的压力和温度P= 6MPa ,T=(12.67+273.15)K=285.82K 可以得到其比拟压力、比拟温度。

天然气的压力、温度、密度与其拟临界压力、拟临界温度和拟临界密度之比分别称为天然气的拟对比压力、拟对比温度、拟对比密度。

天然气的拟对比压力:

pc

pr =

p p

p (3.5)

所以由上述(3.5)公式可计算出天然气的拟对比压力为: 391=305

46

=pr ..p

天然气的拟对比温度:

pc

pr =

T T

T (3.6)

所以由上述(3.6)公式可计算出天然气的拟对比温度为:

4371=936

19882

285=

pr ...T

整理后查得下图3.3天然气压缩因子版图可得压缩因子:

图3.3 天然气压缩因子图版

通过拟对比温度和拟对比压力的数据,根据下图中的图1压缩因子可查得天然气压缩因子为Z=0.792。

3.4天然气流量的计算

在标准状态下6、7号井的流量分别是 Q g6=14×104 m 3/d Q g7=19×104 m 3/d 天然气在标准状态下的流量与实际流量的转换公式为:

293

×

1013250×86400=

TZ P .Q Q g (3.7)

所以由上述(3.7)公式可计算出6、7号井天然气的实际流量分别为: 6号井:

d

/m ....Q 3460210=293

792

0×82285×61013250×8640010×14=

7号井:

d

/m ....Q 3470290=293

7920×82285×61013250×8640010×19=

3.5液滴沉降速度

3.5.1天然气密度的计算

根据天然气密度计算的公式:

ZT

.PM

ρg 3148= (3.8)

式中 P ——节流后的压力; M ——天然气的分子质量; Z ——压缩因子; T ——节流后的温度。

可以根据上述(3.8)公式算出在P=6MPa ,T=(12.67+273.15)K=285.82K 条件下天然气密度:

31364=82

285×7920×3148115

20×6000=

m /kg .....ρg

3.5.2临界温度、压力的计算

根据下图3.5可查到天然气在不同压力温度下的粘度。气体的相对密度是0.696,从图2天然气的假临界特性中查得临界温度是217K ,临界压力是4600KPa ,计算求得临界参数。

图3.5.2 天然气的假临界特性

P=6MPa ,T=268.15K 条件下:

3

1=6

46=321=21782

285=

..P ..T r r

3.6.3天然气粘度的计算

根据已知条件,6、7号井节流后温度为12.67℃可以根据下图3.5.3查得粘度数据。 从图3.5.3分子量、相对密度与粘度的关系中查得在101.325KPa 和12.67℃条件下经过H 2S 和CO 2含量的校正气体粘度0.0098mPa ·S 。

图3.5.3在101.325kPa(a)压力下气体的分子量、相对密度与粘度的关系

利用所算出来的对比压力和对比温度可以在下图3.5.4对比温度与粘度的关系中查得粘度比,然后在密度与粘度关系图中查出的数字相乘,就可得到流体的运动粘度。

图3.5.4 对比温度与粘度的关系

其中上图3.5.4中: g μ——在操作温度和操作压力下的粘度,mPa·S l μ——在101.325kPa (绝)和操作温度下,mPa·S 从上图3.5.4中查得:31=.μμl g

S Pa .S mPa ...μg ?10×2741=?012740=00980×31=5

粘度的计算公式为:

2

32

3-4=g g

g l l μρ)ρρ(gd )(Re f (3.9)

已知颗粒直径取um d l 100=、凝析油的密度为3780=m /kg ρl 、天然气的密度为

31364=m /kg .ρg 有上述(3.9)公式可以算出天然气的运动粘度为:

3695=10×2741×31364×1364-780×10×89×4=2

5-12

-2

)

.(.).(.)(Re f

3.6.4天然气沉降速度的计算

已知上述计算出运动粘度为3695,可以根据下图3.5.4液滴在气体中的阻力系数计算列线图可以查得其阻力系数。

图3.5.4 液滴在气体中的阻力系数计算列线图

查上图3.5.4可得阻力系数81=.C D ,所以颗粒沉降速度为:

D

g g l l C ρg

)ρρ(d ω-34=

2 (3.10)

式中 l d ——颗粒直径; l ρ——液体的密度; g ρ——气体的密度; D C ——阻力系数。

有上述(3.10)公式可以得到液滴的沉降速度为:

s /m ....).(C ρg )ρρ(d ωD g g l l 10=8

1×1364×38

9×1364-780×10×4=3-4=6

3.5立式两相分离器的计算

3.6.1立式两相分离器直径的计算

由前面的液体颗粒沉降速度公式可求得在给定条件下的液滴沉降速度W ,在垂直上升的气流中,为了不是颗粒被气流携带出分离器,并考虑到分离器横截面积的利用情况,一般取气流计算速度:

ηωV = (3.11)

其中系数80750=.~.η

设在给定压力P 和温度T 的条件下,欲被分离的气体流量为Q ,令其流经的横截面积为:

2

04

=

D πF (

3.12)

式中 D ——分离器的直径 流量的计算公式:

Q V F =0 (3.13)

所以由上述(3.11)、(3.12)、(3.13)公式可以推导出计算出分离器的直径公式为:

ηωπ

Q

πv Q D 4=

4=

(3.14)

已知d /m .Q 36021

0=、d /m .Q 370290=,代入上述(3.14)式可得:

m .....D 590=1

0×80×143021

0×4=

6

m .....D 680=1

0×80×143029

0×4=

7

3.6.2立式两相分离器高度的计算

分离器高度H 的计算公式为:

m ,D )~(H 43= (3.15)

将6、7号井的直径数据带到上述(3.15)得到:

m

..H m

..H 042=680×3=771=590×3=76

3.5.3立式两相分离器进出口直径的计算

取进口速度V 1=15m/s ,V 2=10m/s 。分离器进出路口直径D 1、D 2的计算公式为:

2

2117850=

7850=

V .Q D V .Q

D (3.16)

式中V1、V2——分别为气体的进口和出口速度,m/s

所以将6、7号井的流量分别代入上述(3-16)公式的进出口直径公式可分别计算

出管径为: 6号井:

m

...V .Q D m

...V .Q D 0520=10

×7850021

0=7850=0420=15

×7850021

0=7850=

2616出进

7号井:

m

...V .Q D m

...V .Q D 0600=10

×7850029

0=7850=0500=15

×7850029

0=7850=

2717出进

3.7管径确定

根据资料查得管道直径公式为: V πQ

D 4=

(3.17)

将Q6、Q7的流量带入上述(3.17)公式,计算得:

V πQ D 6

64=

,m ...D 040=15×143021

0×4=6

V

πQ D 7

74=, m ...D 050=15

×143029

0×4=

7

3.8壁厚的确定:

按照我国《输气管道工程设计施工规范》(GB50251-1994),可查得输气管道管段管壁厚度计算公式为:

C Ft

φS ζPD

δ+2=

(3.18)

根据上述(3.18)公式可分别计算出6、7号井口的分离器壁厚为:

mm ....δ821=80+1×1×50×235×204

0×6000=6

mm ....δ082=80+1

×1×50×235×205

0×6000=

7

3.9丝网捕雾器

根据《油气集输设计规范》(GB50350-2005),卧式两相分离器内通过丝网捕雾器的设计速度,一般取丝网最大允许速度的75%,查得气体通过丝网最大允许速度计算公式为:

g

g l SB

max ρρρK V -= (3.19)

式中: m a x V ——气体通过丝网最大允许速度,m/s ;

SB K ——桑得斯-布朗(Souders-Brown )系数,SB K 可取0.107m/s 。 根据已知量带入上述(3.19)公式,计算可得气体通过丝网最大允许速度为:

36m/s 0=13

6413

64-780×

1070=....V max

0.027m/s =750×360=..V

捕雾器的面积应为S=q/υ,其中q 为操作条件下气体的流量,则捕雾气的面积为:

2

6780=027

00210=

m

...S 27071=02700290=m ...S

3.10设备选型

按照SY/T 0515-2007《油气分离器规范》可对分离器进行选型,本设计选择立式分离器的公称直径、筒体高度、公称容积等。

通过下表3.9来表示出6、7号井的分离器的选型。

表3.9 两相分离器计算结果及选型结果

4旋风分离器的工艺设计

为了分离气流中的颗粒,仅仅依靠重力是不合理的,因为这就要使重力分离器的尺寸(直径)做的很大,多消耗钢材,增加基建投资。因此在生产实践中还利用惯性力,就是使气流方向改变,产生离心力来增大分离效果。主要利用离心力来分离气流中的颗粒的分离器称旋风式分离器。

4.1气液旋风分离器尺寸计算

由于旋风分离器的流动状态较为复杂,在目前旋风分离器所使用的公式中,主要设计参数均是实验数据,故其计算公式可简化为:

K )P TZQ (

.D .n 5

0510×393= (4.1)

4

=P ΔC ρK D

g (4.2)

式中: ΔP ——分离器压力损失,Pa ; T ——温度,℃; Z ——压缩因子;

n Q ——气体流量,m 3/s (p=0.101325MPa ,t=20℃); P ——压力,Pa

由于此处阻力系数C D 为实验数据,故K 值的取值范围一般为1~1.345,在设计计算中,可取K=1.266(K=1)进行计算。

在验算时,需使进口管线的天然气流速在15~25m/s ,出口管线的天然气流速在5~15m/s 的范围内。分离器筒体的平均流速为2.45~4.43m/s 。 天然气工况下流量为:

P T Z Q Q n

g 9

10×4= (4.3)

天然气流速为:

27850=

D .Q V g

g (4.4)

根据上述公式(4.3)、(4.4)联合可以得到一下计算公式:

2

9-10×

0965=PD TZQ .V n

g (4.5)

油气集输课程设计--某分子筛吸附脱水工艺设计

《油气集输工程》 课程设计报告 设计题目:_某分子筛吸附脱水工艺设计——工艺流程及平面布置设计 完成日期:2012-6-19 指导教师评语:_______________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 本设计中原料气压力为3MPa,温度40℃,设计规模为15万方/天,要求脱水到1ppm 以下。根据同组同学分离器设计、吸附塔设计、再生气换热器设计以及管道设计设计并绘制双塔吸附脱水工艺流程图。其中分离器采用立式重力型分离器,吸附塔采用4A型分子筛,换热器使用套管式塔设备。依据工艺流程设计,考虑天然气走向及当地风向,参考《GB50350-2005 油气集输设计规范》以及当地地势等相关条件,设计出符合《石油与天然气防火规范》、《建筑设计防火规范》、《工业企业噪声控制规范》等有关规定的平面布置图。 关键词:分子筛吸附塔平面布置工艺流程

目录 1 绪论 (3) 2 参数设计 (4) 2.1 天然气基础资料 (4) 2.2 天然气基础物性资料 (4) 2.3 设计范围 (4) 2.4 设计依据 (5) 3工艺流程设计 (6) 3.1设计要求 (6) 3.2 设计步骤 (6) 4 选址及平面布置 (8) 4.1 选址要求 (8) 4.2 平面设计.................................................................................................................................... - 11 - 结论............................................................................................................................................... - 12 - 参考文献 ........................................................................................................................................ - 13 -

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

集输管网课程设计报告书

东北石油大学课程设计 课程 题目 院系 专业班级 学生 学生学号 指导教师 2013年3月15日

目录 一、课程设计的基本任务 (2) (一)设计的目的意义 (2) (二)设计任务 (2) 二、油气集输管网的设计方法 (4) (一)油气集输管网的常见流程 (4) (二)单管流程油气集输管网的设计步骤 (6) 三、油气混输管线的工艺计算公式 (7) (一)热力计算公式 (7) (二)水力计算公式 (8) (三)混输管线中有关油气物性参数的计算 (10) 四、PIPEPHASE软件 (13) (一)PIPEPHASE软件介绍 (13) (二)PIPEPHASE软件计算过程 (15) 五、设计结果及分析 (23) (一)选择的基本参数 (23) (二)设计所得参数 (24) (三)结果分析 (36) 结束语 (37)

一、课程设计的基本任务 (一)设计的目的意义 油气集输系统是将油田油井生产的油气产物加以收集、处理直至输送到用户的全过程的主体体现。油气集输流程是油气集输处理系统的中心环节,是油、气在油田部流向的总说明。油气集输流程可分为集油、脱水、稳定和储运四个工艺段,其中集油部分是将分井计量后的油气水混合物汇集送到油气水分离站场,该部分是油田地面生产的投资大户与耗能大户,选择合理的集油工艺流程可为整个油气集输处理系统的节能、低耗和高效益打下坚实的基础。 油气集输集油管网一般包括井口至计量站及计量站至转油站的管线。其工艺设计应解决下列问题:确定输油能力、输送工艺、敷设方式、管线埋深、初步设计与施工图设计。其中确定输油能力是最重要的环节,是指根据要求的输油量及其他已知条件,确定管径。管线的管径直接影响管线的建造费用和经营成本。一般加大管径可使介质输送压力降低而减少动力消耗,对于热输管线来说可增大散热,但从总效应来看,虽使运营费用降低了,但管材消耗增多,建造费用高。因此,合理选择管径,使管线具有经济、合理的输油能力,具有重要的现实意义。 本次课程设计的目的是,通过油气集输集油管网的工艺设计,了解油气集输管线的作用及分类,管线设计的一般问题;掌握油气集输管线工艺设计的方法、热力计算及水力计算;熟悉油气集输管网工艺设计的过程;熟悉油井产量、油品物性、运行参数、管线保温方式等已知条件的确定;利用PIPEPHASE软件,计算出管网设计得出的各段集输管线的管径,并对温降与压降的主要影响因素进行分析。 (二)设计任务 1.基础数据 (1)物性参数 ρ 油=865.4 kg/m3;ρ 气 =0.86 kg/m3; ρ 水 =1000 kg/m3。 (2)单井参数(见附表)

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

输气管道课程设计

输气管道课程设计 姓名:李轩昂 班级:油储1541 学号:201521054114 指导教师:任世杰

目录 前言------------------------------------------------------------------------------------------------- 4第一章设计概述---------------------------------------------------------------------------------- 5 1.1设计原则--------------------------------------------------------------------------------- 5 1.2 管道设计依据和规范----------------------------------------------------------------- 5 1.3长输气管道设计原始资料------------------------------------------------------------ 6 1.3.1天然气管道的设计输量 ------------------------------------------------------- 6 1.3.2气源特性 ------------------------------------------------------------------------- 6 1.3.3气源处理 ------------------------------------------------------------------------- 6 1.3.4管道设计参数 ------------------------------------------------------------------- 7 1.3.5基本经济参数 ------------------------------------------------------------------- 7第2章管道工艺计算---------------------------------------------------------------------------- 9 2.1天然气物性参数计算------------------------------------------------------------------ 9 2.1.1天然气的平均分子质量、平均密度和相对密度------------------------- 9 2.1.2天然气压缩因子的计算 ------------------------------------------------------- 9 2.1.3天然气粘度计算 -------------------------------------------------------------- 10 2.1.4定压摩尔比热 ----------------------------------------------------------------- 10 2.2输气管道水力计算------------------------------------------------------------------- 11 2.2.1雷诺数的计算 ----------------------------------------------------------------- 11 2.2.2管道内压力的推算 ----------------------------------------------------------- 12 2.2.3管道壁厚推算 ----------------------------------------------------------------- 12 2.3输气管道热力计算------------------------------------------------------------------- 12 2.3.1总传热系数 -------------------------------------------------------------------- 12 2.3.2天然气的平均地温 ----------------------------------------------------------- 13 2.3.3考虑气体的节流效应时输气管沿管长任意点的温度计算----------- 13 2.4管道工艺计算结果------------------------------------------------------------------- 14 2.4.1首站到分输站1 --------------------------------------------------------------- 14 2.4.2分输站1到分输站2 --------------------------------------------------------- 14 2.4.3分输点2到末点 -------------------------------------------------------------- 15

旋风分离器设计计算的研究.

文章编号:1OO8-7524C 2OO3D O8-OO21-O3 IMS P 旋风分离器设计计算的研究 蔡安江 C 西安建筑科技大学机电工程学院, 陕西西安 摘要:在理论研究和设计实践的基础上, 提出了旋风分离器的设计计算方法O 关键词:旋风分离器9压力损失9分级粒径9计算中图分类号:TD 922+-5 文献标识码:A 71OO55D O 引言 旋风分离器在工业上的应用已有百余年历 离器性能的关键指标压力损失AP 作为设计其筒体直径D O 的基础, 用表征旋风分离器使用性能的关键指标分级粒径dc 作为其筒体直径D O 的修正依据, 来高效~准确~低成本地完成旋风分离器的设计工作O 1 压力损失AP 的计算方法 压力损失AP 是设计旋风分离器时需考虑的关键因素, 对低压操作的旋风分离器尤其重要O 旋风分离器压力损失的计算式多是用实验数据关联成的经验公式, 实用范围较窄O 由于产生压力损失的因素很多, 要详尽计算旋风分离器各部分的压力损失, 我们认为没有必要O 通常, 压力损失的表达式用进口速度头N H 表示较为方便O 进口速度头N H 的数值对任何旋风分离器将是常数O 目前, 使用的旋风分离器为减少压

力损失和入口气流对筒体内气流的撞击~干扰以及其内旋转气流的涡流, 进口形式大多从切向进口直入式改为18O ~36O 的蜗壳式, 但现有文献上的压力损失计算式均只适用于切向进口, 不具有通用性, 因此, 在参考大量实验数据的基础上, 我们提出了压力损失计算的修正公式, 即考虑入口阻力系数, 使其能适用于各种入口型式下的压力损失计算O 修正的压力损失计算式是: 史O 由于它具有价格低廉~结构简单~无相对运动部件~操作方便~性能稳定~压力损耗小~分离效率高~维护方便~占地面积小, 且可满足不同生产特殊要求的特点, 至今仍被广泛应用于化工~矿山~机械~食品~纺织~建材等各种工业部门, 成为最常用的一种分离~除尘装置O 旋风分离器的分离是一种极为复杂的三维~二相湍流运动, 涉及许多现代流体力学中尚未解决的难题, 理论研究还很不完善O 各种旋风分离器的设计工作不得不依赖于经验设计和大量的工业试验, 因此, 进行提高旋风分离器设计计算精度~提高设计效率, 降低设计成本的研究工作就显得十分重要O 科学合理地设计旋风分离器的关键是在设计过程中充分考虑其所分离颗粒的特性~流场参数和运行参数等因素O 一般旋风分离器常规设计的关键是确定旋风分离器的筒体直径D O , 只要准确设计计算出筒体直径D O , 就可以依据设计手册完成其它结构参数的标准化设计O 鉴于此, 我们在理论研究和设计实践的基础上, 提出了分级用旋风分离器筒体直径D O 的计算方法O 即用表征旋风分 收稿日期:2OO3-O3-O3 -21- AP = CjPV j 7N H 2

油气集输课程设计

重庆科技学院 《油气集输工程》 课程设计报告 学院:__石油与天然气工程学院_ 专业班级:油气储运工程09-3 学生姓名:刘畅学号: 2009441727____ 设计地点(单位)_ 石油与安全科技大楼K706____设计题目:_某分子筛吸附脱水工艺设计——工艺流程及平面布置设计 完成日期:2012-6-19 指导教师评语:_______________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 本设计中原料气压力为3MPa,温度40℃,设计规模为15万方/天,要求脱水到1ppm 以下。根据同组同学分离器设计、吸附塔设计、再生气换热器设计以及管道设计设计并绘制双塔吸附脱水工艺流程图。其中分离器采用立式重力型分离器,吸附塔采用4A型分子筛,换热器使用套管式塔设备。依据工艺流程设计,考虑天然气走向及当地风向,参考《GB50350-2005 油气集输设计规范》以及当地地势等相关条件,设计出符合《石油与天然气防火规范》、《建筑设计防火规范》、《工业企业噪声控制规范》等有关规定的平面布置图。 关键词:分子筛吸附塔平面布置工艺流程

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

油气集输课程设计工艺流程与平面布置

重庆科技学院 课程设计报告 院(系):_石油与天然气工程学院专业班级:油储07 学生姓名: xxxx 学号: 2007440xxx 设计地点(单位)___ 人文社科大楼G304_____ _ __ 设计题目:_ 广安2#低温集气站工艺设计 ——工艺流程与平面布置 完成日期:2010 年 7 月 1 日 指导教师评语: _______________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 通过广安2#低温集气站的基础资料以及数据,分析得到该集气站的天然气中含有凝析油和硫,因而需要对其进行脱硫和凝析油的稳定处理。除此之外,还需要有天然气的分离设备抑制剂注入器以及计量装置由此得到该低温集气站相应的工艺流程。画出该集气站的工艺流程图,根据相关的要求和根据画出平面布置图。并对流程图以及其平面布置图做出设计说明和阐述。分析各类设备的选型和选择理由,以及平面布置图的安全规范说明。 关键词:工艺流程平面布置分离计量抑制剂节流阀

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器计算结果

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布

油气集输

教学内容 一、课程在本专业的定位与课程目标 我校油气储运专业是国家重点学科,四川省特色专业。具有本科、硕士、博士学位授予权。 从1998年以来,我校油气储运专业在全国绝大多数省市均按重点批次招生;历年来,本专业毕业生供不应求,就业率均在98%以上。 本课程是我校油气储运工程专业的四大主干专业课之一,在全国同类专业的人才培养计划中也属于主干专业课程。 在国家“西部大开发”的战略布署下,随着西气东输工程的顺利实施,跨国油气管道紧锣密鼓的建设,“陕京输气复线工程、川气出川、海气登陆”等一系列重大工程的规划、建设,全国天然气主干线的联网,开创了我国天然气工业的新局面,迫切需要大批思想素质高、知识面宽、适应能力强、具有开拓创新能力的高素质技术人才。 依据本专业面向21世纪高级专业技术人才培养和整体课程体系改革的要求,课程建设必须体现:以提高学生综合业务素质为出发点,拓宽专业面,加强专业基础理论,紧跟科学发展新技术,体现储运大工程的思想,注重创新思维,突出储运规划、设计、施工、管理、科技开发规律、通用性技术的学习,强调现代设计理论和方法的应用,加强计算机辅助工艺设计的学习,强化提高创新设计能力的训练。按照科学性、创新性、实践性、层次性的标准,构建能力型综合素质教育的新体系,将油气集输理论与工程应用、工程优化设计、计算机应用技术等多学科有机地融入整个课程体系和教学内容之中,体现当今《油气集输》教育的发展趋势和先进水平。 课程的系统目标是面向高等教育新形势、拓宽基础和视野、培养能力和素质、促进教育现代化,具体目标是使学生掌握油气集输的基本理论、方法、系统工程的思维方法,培养学生综合运用所学知识去发现问题、分析问题和解决问题的能力。 二、知识模块顺序及对应的学时 知识模块按体现教改教研最新成果和能力型素质教育课程新体系而展开。该体系由基础知识模块、实践环节模块组成,各知识模块及其对应学时为: 一、基础知识模块 1、绪论(1学时)

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

蜗壳式旋风分离器的原理与设计

蜗壳式旋风分离器的原理与设计 l0余热锅炉2007.4 蜗壳式旋风分离器的原理与设计 杭州锅炉集团股份有限公司王天春徐亦芳 1前言 循环流化床锅炉的分离机构是循环流化床锅炉的关键部件之一,其主要作用是 将大量高温,高浓度固体物料从气流中分离出来,送回燃烧室,以维持燃烧室一定 的颗粒浓度,保持良好的流态化状态,保证燃料和脱硫剂在多次循环,反复燃烧和 反应后使锅炉达到理想的燃烧效率和脱硫效率.因此, 循环流化床锅炉分离机构的性能,将直接影响整个循环流化床锅炉的总体设计,系统布置及锅炉运行性能.根 据旋风分离器的入口结构类型可以分为:圆形或圆管形入口,矩形入口,"蜗壳式" 入口和轴向叶片入口结构.本文重点分析在循环流化床锅炉中常用的"蜗壳式"入 口结构. 2蜗壳式旋风分离器的工作原理 蜗壳式旋风分离器是一种利用离心力把固体颗粒从含尘气体中分离出来的静 止机械设备.入口含尘颗粒气体沿顶部切向进入蜗壳式分离器后,在离心力的作用下,在分离器的边壁沿轴向作贴壁旋转向下运动,这时气体中的大于切割直径的颗粒被分离出来, 从旋风分离器下部的排灰口排出.在分离器 锥体段,迫使净化后的气流缓慢进入分离器内部区域,在锥体中心沿轴向逆流 向上运动,由分离器顶部的排气管排出.通常将分离器的流型分为"双旋蜗",即轴 向向下外旋涡和轴向向上运动的内旋涡.这种分离器具有结构简单,无运动部件, 分离效率高和压降适中等优点,常作为燃煤发电中循环流化床锅炉气固分离部件. 图l蜗壳式旋风分离器示意图

蜗壳式旋风分离器的几何尺寸皆被视为分离器的内部尺寸,指与气流接触面的 尺寸.包括以下九个(见图1): a)旋风分离器本体直径(指分离器简体截面的直径),D; b)旋风分离器蜗壳偏心距离,; c)旋风分离器总高(从分离器顶板到排灰口),H; d)升气管直径,D; e)升气管插入深度(从分离器空间顶板算起),s; 余热锅炉2007.4 f)入口截面的高度和宽度,分别为a和 b; g)锥体段高度,H; h)排灰口直径,Dd; 2.1旋风分离器中的气体流动 图2为一种标准的切流式筒锥形逆流旋风分离器的示意图,图中显示了其内部 的流 态状况.气体切向进入分离器后在分离器内部空间产生旋流运动.在旋流的外 部(外旋升气管 涡),气体向下运动,并在中心处向上运动 (内旋涡).旋风分离器外部区域气体 的向下运动是至关重要的.因为,依靠气体的向下运动,把所分离到器壁的颗粒带 到旋风分离器底部.与此同时,气体还存在一个由外旋涡到内旋涡的径向流动,这 个径向流动在升气管下面的分离器沿高度方向的分布并不均匀. 轴向速度 切向速度 / 图2切向旋风分离器及其内部流态示意图图2的右侧给出了气流的轴向速度 和切向速度沿径向位置的分布图.轴向速度图表明气体在外部区域沿轴向向下运

旋风分离器的工艺计算

旋风分离器的工艺计算

目录 一.前言 (3) 1.1应用范围及特点 (3) 1.2分离原理 (3) 1.3分离方法 (4) 1.4性能指标 (4) 二.旋风分离器的工艺计算 (4) 2.1旋风分离器直径的计算 (5) 2.2由已知求出的直径做验算 (5) 2.2.1计算气体流速 (5) 2.2.2计算旋风分离器的压力损失 (5) 2.2.3旋风分离器的工作范围 (6) 2.3进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 3.1分离性能 (6) 3.1.1临界粒径d pc (7) 3.1.2分离效率 (8) 3.2旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 7.1工作原理 (11) 7.2基本计算公式 (12) 7.3算例 (13) 八.影响旋风分离器效率的因素 (15) 8.1气体进口速度 (15) 8.2气液密度差 (15) 8.3旋转半径 (15) 参考文献 (15)

旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 1.1应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风分离器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 1.2分离原理 旋风分离器的分离原理有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。

相关文档
最新文档