饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响-2018.7
饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响

油脂作为重要的能量物质在饲料中得到广泛应用。然而含有大量不饱和脂肪酸的油脂在饲料储存过程中,尤其在高温、富含金属微量元素环境下,极易氧化产生多种初级和次级氧化产物。当其被动物摄食后,影响正常生理生化功能、生长和繁育,给养殖业带来不应有的损失。因此油脂氧化机理、氧化饲料所造成的营养价值和适口性的变化、以及对动物生产性能的影响研究,对饲料业和养殖业具有重要意义。

1油脂氧化机理

油脂的氧化主要分为酶促氧化、光氧化和自动氧化,产生的氢过氧化物经过裂解、聚合等一系列复杂的反应生成影响产品品质的有害物质,氧气、光照、金属离子等是促使油脂氧化的主要因素。

1.1 酶促氧化(Enzymatic oxidation)

油脂的酶促氧化是由脂氧酶参加的氧化反应。不少植物中含有脂氧酶,脂氧酶是一种单一的多肽链蛋白,它有几种不同的催化特性,其中一种脂氧酶可催化甘三酯的氧化,而另一种只能催化脂肪酸的氧化。在脂氧酶中的活性中心含有一个铁原子,能有选择性地催化多不饱和脂肪酸的氧化反应[1-2]。

1.2 光氧化(photosensitized oxidation)

在光氧化反应中,油脂中光敏剂如叶绿素、卟啉等接受紫外光变为激化态光敏剂,使基态氧3O2生成激发态氧1O2,激发态氧1O2直接与基态的含烯物的双键作用,生成氢过氧化物[1-2]。由于激发态氧1O2能量高,反应活性大,所以光氧化反应速度比自动氧化快1500倍。

1.3 自动氧化(autoxidation)

油脂自动氧化是活化的含烯物被过渡金属等催化剂催化生成含烯游离基,含烯物的游离基与基态氧3O2发生的游离基反应[3]。该反应分为3个阶段:引发—增殖—终止(表1所示)。

表1 油脂自动氧化过程

反应阶段各阶段变化

引发(Initiation)阶段油脂的这一变化阶段是油脂质量最为重要的指标之一。在这一阶段,诱发剂(过渡金属)即使很微量也可诱发不饱和脂肪酸及其甘油酯(RH)启动自动氧化反应,生成含烯游离基(R·)。RH→ R·+H·

增殖(Propagation)阶段在这个过程中,已生成的含烯游离基与氧结合形成过氧游离基(ROO·),过氧游离基夺取别的脂类分子上的氢原子,形成氢过氧化物(ROOH)和新的自由基,依此往复循环,各种游离基不断反应使氢过氧化物(ROOH)不断积累。增殖反应一旦开始,发展速度非常快。

R·+O2→ROO·

ROO·+RH →ROOH+R·

终止(Termination)阶段当自由基不断聚集到一定的浓度,则相互碰撞的频率大大增加,两个游离基能有效碰撞生成一个双聚物。当引发阶段产生的自由基耗尽时,自动氧化反应自行终止。

R·+R·→ R-R

RO·+RO·→ ROOR

ROO·+ROO·→ ROOR+O2

R·+RO·→ ROR

R·+ROO·→ ROOR

2 油脂氧化产物

油脂氧化产物多而复杂,可达220多种,其中主要是氢过氧化物等级产物和由初级产物分解、聚合出来的次级产物,次级产物含量甚至高达46.7%[4]。氧化最终形成小分子挥发性物质,如醛、酮、酸、醇等刺激性气味,这些小分子化合物可进一步发生聚合反应,生成二聚体或多聚物。许多研究证明初级氧化产物、次级氧化产物是有毒有害物质。油脂氧化还会促使色素、香味物质和维生素等的氧化,导致油脂完全酸败。氧化后的油脂由于营养成分损失和消化率下降,故营养价值降低。油质氧化还可使蛋白质和酶(如核糖核酸酶、胰蛋白酶、胃蛋白酶)失活[5]。

3饲料中油脂氧化的危害

以上已提及油脂氧化会引起脂肪变质、变味,氧化产物主要为醛、酮、醋、酸和大分子聚合物等,这些产物有些产生异味,有些本身有毒性。目前,对脂肪氧

化酸败的危害大致可归纳如下几点:

3.1 氧化油脂的营养价值降低(如表2所示)

表2 氧化油脂的营养价值变化

成分变化营养价值发生的变化及危害

脂肪酸组成发生变化主要表现在不饱和脂肪酸相对比例减少即植物中亚油酸(18:2ω-6)和亚麻酸(18:3ω-3),动物油,特别是鱼油中,ω-3系列脂肪酸显著下降。伴随这一系列变化,氧化油脂的消化率下降。许多研究表明,氧化的油脂及形成聚合物妨碍脂类的消化吸收,消化率降低。同时,氧化油脂中生育酚明显减少,加热温度过高或氧化程度严重时每克油中的仅为10-6克,甚至低于检出限[6]。

蛋白质与次级氧化产物发生交联反应,降低蛋白质的消化吸收油脂氧化物可与蛋白质分子中许多活性氨基酸残基起反应,尤其是含硫氨基酸,可导致蛋白质聚合,溶解度或酶活性降低。油脂氧化过程中,蛋白质中的蛋氨酸残基被氧化为蛋氨酸亚砜或半胱氨基酸可被氧化成半胱磺酸,油脂氧化产物丙二醛可与蛋白质发生交联[7]。

产生不良味道,影响动物的适口性和采食量,甚至拒食油脂在氧化过程中,分解产生的小分子丙二醛、戊醛、酮、低聚物等,其中醛类是刺激性味道主要来源[5]。酸败是指油脂从产生油漆味等酸败味道到对口、鼻产生强烈刺激的变化过程,动物对此味道和有害生理作用的反馈记忆深刻[8]。

破坏饲料中的维生素饲料中维生素被破坏的原因有两类:一是无机微量元素直接的氧化和催化氧化,二是无机微量元素催化油脂氧化产生的自由基的氧化。尤其是油脂氧化产生的氧化物都是强氧化剂,对脂溶性维生素V A、VD3、及多种水溶性的维生素都有破坏作用。维生素破坏则导致生长缓慢、繁殖机能下降、外观不良、抗应激能力差和下痢。

3.2影响机体脂代谢和器官脂肪酸组成

氧化油脂的摄入会影响循环中脂质组分的含量和比例。大量研究表明氧化油脂会造成人和动物循环中甘油三酯和胆固醇含量降低。对其机理的研究表明,导致这个现象的原因是氧化油脂可以强力激活过氧化物酶体增殖,激活受体

α(PPARα),进而增加其靶基因的表达,而PPARα的靶基因包括了多种参与脂肪酸β-氧化过程的酶类,因此降低了循环中的甘油三酯含量[9];此外,氧化油脂可以抑制固醇调节元件结合蛋白2(SREBP-2)的活化,从而减少了甘油三酯和胆固醇的生物合成[10]。氧化油脂会影响机体某些器官的脂肪酸组成。Ammouche 等研究表明,饲喂氧化葵花油可以改变大鼠肝脏和大脑脂肪酸的组成,甚至会出现仅存在于氧化油脂中的反式脂肪酸[11]。Kode研究表明,乙醇或加热氧化的葵花油会导致大鼠肝脏磷脂脂肪酸组成发生剧烈变化,膜流动性变强[12]。

3.3增加脂蛋白氧化程度,诱发相关疾病

氧化油脂会导致循环中含脂颗粒的氧化程度。对人类志愿者的研究表明,正常人在食用了含有氧化油脂的食物后,氧化脂肪会随着乳糜微粒进入血液循环,进而成为机体氧化脂肪池中的一部分[13]。Suomela等使用三种不同过氧化值(PV值)的葵花籽油饲喂仔猪,发现血清乳糜微粒和脂蛋白中甘油三酯的氧化程度随着日粮脂肪PV值的升高而增加[14]。这些研究证实,日粮(食物)中的氧化油脂成分可以和其他脂肪一样被吸收,成为机体氧化脂肪的一个重要来源。

3.4 扰乱机体氧化还原状态

动物体对于外源性氧化物侵害有一套主动防御体系,其中主要包括:抗坏血酸、α-生育酚、谷胱甘肽过氧化物酶、谷胱甘肽还原酶、超氧化物歧化酶、过氧化氢酶等具有消除活性氧作用的化学物和酶类。尽管这套体系包括了普通化学反应以及链式生化反应,形成了复杂的抗氧化网络,但是当外界氧化刺激过强时,这些酶类和抗氧化物质将无法满足清除自由基的要求,最终造成氧化物沉积,以及酶活和表达量的异常变化。有研究表明,大鼠在饲喂了氧化葵花油之后,肝脏微粒体中谷胱甘肽过氧化物酶活性随时间延长(21d~90d) 而增加,当有维生素E存在时,其活性增加更为显著,谷胱甘肽还原酶也呈现相同规律,而过氧化氢酶则相反,当维生素E不足时,其活性升高更加显著;此外,这些酶类的活性在大脑中甚至也有一定增加,这说明,氧化油脂的破坏性有可能足以突破血脑屏障,对大脑造成影响[11]。

3.5降低动物生产性能

氧化油脂对动物脂代谢体系和抗氧化体系均有不同程度的干扰,这些负面影响最终会表现在生理状况上。已有大量研究表明,饲喂氧化的植物油,会导致动物的采食量下降,生长受阻如下表所示[15]。

表3 氧化油脂对动物生产性能的影响

项目过氧化油脂对畜禽生产性能的影响

分别给猪饲喂含过氧化脂质和含同种未过氧化脂质的等能饲料发现饲喂含过氧化脂质的猪生长速度平均下降11.4%,采食量下降8.8%。研究还显示,当饲喂过氧化脂质时,猪血清中维生素E降低,血清TBARS(硫代巴比妥酸反应物质)含量升高,说明饲喂过氧化脂质对猪体氧化代谢状态有负面影响

以玉米-豆粕为基础配制日粮,分别在各处理日粮中添加3%的新鲜鱼油或氧化鱼油可诱导断奶仔猪氧化应激,降低断奶仔猪生产性能和养分利用率。当氧化鱼油POV约为1065.74 meqO2/kg时, 氧化应激效应最明显,使试猪ADG降低8.16 %,粗蛋白质表观消化率和表观利用率下降21.91 %和30.55%,干物质和粗脂肪表观消化率分别降低13.05 %和35.18 %

饲喂猪(重复数n=16)、鸡 (重复数n=26)含过氧化脂质的饲料与饲喂正常脂质的猪鸡相比,饲喂了过氧化脂质的猪鸡血清维生素E含量53.7±26.3%(范围为15.2%~105.8%,n= 18),TBARS为119.7%±23.3% (范围为

97.0%~174.8%,n=12),说明饲料过氧化脂质改变了代谢氧化态,且会降低猪鸡抗氧化能力,对肠道屏障功能也有负面影响

注:TBARS:硫代巴比妥酸反应物质,POV:氢过氧化物,ADG:平均日增重

3.6影响乳营养和繁殖性能

研究表明,日粮氧化油脂虽然没有改变大鼠乳腺中脂肪合成酶的活性,但乳中甘油三酯含量显著下降[16],Ringseis的另一项研究表明,氧化油脂是通过抑制大鼠乳腺中脂蛋白酯酶和脂肪酸转运蛋白的基因表达来降低乳汁中甘油三酯含量[17]。而用共轭亚油酸进行的类似

研究也得出相似结果:乳汁中甘油三酯的降低导致了幼鼠体弱,死亡率明显升高。氧化油脂导致母鼠乳汁中甘油三酯含量的下降,必然也会造成幼鼠的弱化[18]。这些研究表明,氧化油脂不仅危害采食者的健康,更有可能影响下一代的体质。

3.7影响动物产品品质

氧化油脂对动物产品品质的影响研究较少。近些年,这方面的研究开始出现。研究显示,肉仔鸡饲喂了不同氧化程度的氧化葵花籽油,其中中度和高度氧化组肌肉颜色发暗,且含有大量反式脂肪酸异构体,而其中的双反式共轭亚油酸含量则可成为氧化程度与肉质变化程度关系的特征性指标[18]。这种现象很可能也和氧化油脂破坏膜结构的作用有关。

综上所述,饲料油脂虽是提高动物生产性能的良方,但是氧化油脂对动物造成的负面影响不可忽视。在生产实际中应随时注意饲用油脂的品质,采用向油脂中添加抗氧化剂、改善存储条件(有条件的充氮保存)等方式提高油脂的抗氧化性,同时要保持容器清洁,贮存环境凉爽避光,并通过定期检测存油的氧化程度来正确判断合适的购油量。通过这些手段虽可以大幅度降低存油酸败的风险,但成本略高。因此近年来粉末油脂得到大力发展,与传统油脂相比,粉末油脂具有诸多优点。首先,由于碳水化合物、蛋白质等壁材将油脂包裹、固化,油脂的氧化、劣变速率显著降低[19]。同时,某些特殊芯材油脂的不

良味道可以被掩盖或是通过添加香精香料使产品形成新的风味。其次,粉末油脂改变了传统油脂的存在形式,产品呈粉末状态。易与各种原料均匀混合,操作性好;便于储藏、运输、使用,拓宽应用范围;能够均匀分散到水中,改变了传统油脂的分散性[20-21]。最后,产品以微胶囊形式存在,大大提高产品的生物消化率、吸收率以及生物价。

参考文献:

[1] 徐芳, 卢立新. 油脂氧化机理及含油脂食品抗氧化包装研究进展[J].包装工

程, 2008, 29(6):23-26.

[2] 穆同娜, 张惠, 景全荣. 油脂的氧化机理及天然抗氧化物的简介[J].食品科学,

2004, 25(z1):241-244.

[3] 熊丙祥. 饲料中油脂的氧化及香料的抗氧化作用[J]. 饲料世界,

2001(10):11-12.

[4] 舒绪刚, 滕冰. 饲料中油脂氧化危害及其对策分析[C]// 2007山东饲料科学技

术交流大会. 2007.

[5] Yuan S B, Chen D W, Zhang K Y, et al. Effects of Oxidative Stress on Growth

Performance, Nutrient Digestibilities and Activities of Antioxidative Enzymes of Weanling Pigs.[J]. Asian-australasian journal of animal sciences, 2007, 20(10):1600-1605.

[6] 任泽林, 霍启光, 孙艳玲. 油脂氧化对动物生产性能的影响[J]. 中国饲料,

2000(17):19-21.

[7] 李宗军, 姚军虎, 杨小军,等. 氧化油脂造成畜禽氧化应激的途径及缓解措施

[J]. 饲料工业, 2013(14):55-58.

[8] 朱加虹. 浅谈油脂酸败及其过氧化值测定[J]. 食品工业, 2001(3):44-46.

[9] Yue H Y, Wang J, Qi X L, et al. Effects of dietary oxidized oil on laying

performance, lipid metabolism, and apolipoprotein gene expression in laying hens.[J]. Poultry Science, 2011, 90(8):1728-1736.

[10] K?nig B, Koch A, Spielmann J, et al. Activation of PPARalpha lowers

synthesis and concentration of cholesterol by reduction of nuclear SREBP-2.[J]. Biochemical Pharmacology, 2007, 73(4):574-585.

[11] Ammouche A, Rouaki F, Bitam A, et al. Effect of Ingestion of Thermally

Oxidized Sunflower Oil on the Fatty Acid Composition and Antioxidant Enzymes of Rat Liver and Brain in Development[J]. Annals of Nutrition & Metabolism, 2002, 46(6):268-275.

[12] Kode A, Wojtovich A P, Mcclure D, et al. Resveratrol restores oxidant and

cigarette smoke extract mediated depletion of glutathione levels by activation of Nrf2: Effect on reactive oxygen species generation[C]// Meeting Society-For-Free-Radical-Biology-And-Medicine. 2005:S35-S35.

[13] Stapr?ns I, Rapp J H, Pan X M, et al. Oxidized lipids in the diet are a source

of oxidized lipid in chylomicrons of human serum[J]. Arteriosclerosis & Thrombosis A Journal of Vascular Biology, 1994, 14(12):1900-1905.

[14] Suomela J P, Ahotupa M, Sj?vall O, et al. Diet and lipoprotein oxidation:

Analysis of oxidized triacylglycerols in pig lipoproteins[J]. Lipids, 2004, 39(7):639-647.

[15] Skufca P, Brandsch C F, Eder K. Effects of a dietary thermally oxidized fat

on thyroid morphology and mRNA concentrations of thyroidal iodide transporter and thyroid peroxidase in rats[J]. Annals of Nutrition & Metabolism, 2003, 47(5):207-213.

[16] Weisse K, Brandsch C, Hirche F, et al. Lupin protein isolate and

cysteine-supplemented casein reduce calcification of atherosclerotic lesions in apoE-deficient mice.[J]. British Journal of Nutrition, 2010, 103(2):180-188.

[17] Ringseis R, Muschick A K. Dietary oxidized fat prevents ethanol-induced

triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver.[J]. Journal of Nutrition, 2007, 137(1):77-83.

[18] Isong E U, Essien E U, Umoh I B, et al. Effects of ingested thermoxidised

palm oil on lipid distribution in rat[J]. Nutrition Research, 1996, 16(5):773-780.

[19]熊华, 郑为完. 粉末油脂的特点与在食品工业中的应用[J].食品科学, 2002,

23(5):154-157.

[20] Daniel M, Shakti D, Kushwaha S. Techniques of Food

Microencapsulation[J]. 2015, 2(3):666-669.

[21] I?iguez F S, García F, Calvo P, et al. Optimization of broccoli

microencapsulation process by complex coacervation using Response Surface Methodology[J].Innovative Food Science & Emerging Technologies, 2016, 34:243-249.

食用动物油脂生产许可审查细则

食用动物油脂生产许可证审查细则(2006版) 一、发证产品范围及申证单元 实施食品生产许可证管理的食用动物油脂是指由动物脂肪组织提炼出的固态或半固态脂类,经过加工制成的食用动物油脂。包括食用猪油、食用牛油、食用羊油等。其申证单元为1个,即食用动物油脂。 在生产许可证上应注明获证产品名称及申证单元,即食用动物油脂(猪油、牛油、羊油等)。食用动物油脂生产许可证的有效期为3年,其产品类别编号为0203。 二、基本生产流程及关键控制环节 (一)基本生产流程。 1. 原料预处理: 原料→修整→粗切→洗涤→绞碎 2. 熔炼制取工艺流程: 加料→熔炼→盐析→排油→澄清或压滤、离心去杂→盐析→净油 3. 油脂精炼工艺流程:净油→加温→脱胶→脱酸→静置→洗涤→干燥→脱色→脱臭→压滤→精油速冷→成品包装 (二)关键控制环节。脱酸,脱臭。 (三)容易出现的质量安全问题。1. 酸值(酸价)超标; 2. 过氧化值超标。 三、必备的生产资源 (一)生产场所。 原料库、成品库应有冷藏设施,其他要求同食用植物油生产许可证审查细则。 (二)必备的生产设备。 1. 熔炼制取设备(需要熔炼时)

(1)绞碎设备;(2)熔炼设备(熔炼锅、夹层锅、真空夹层锅);(3)其他必要的辅助设备。 2. 油脂精炼设备(需要精炼时) (1)过滤设备;(2)脱胶设备(炼油锅,离心机);(3)碱炼设备(炼油锅,离心机);(4)脱色设备(脱色塔);(5)脱臭设备(脱臭器);(7)包装设备;(8)其他必要的辅助设备。 所列生产设备应根据生产工艺设计的需要进行配置。 四、产品相关标准 GB 10146-2005《食用动物油脂卫生标准》;GB/T 8937-1998《食用猪油》;备案有效的企业标准。 五、原辅材料的有关要求 符合食用卫生要求的动物体的板油、肥膘、内脏脂肪和含有脂肪的组织及器官。 六、必备的出厂检验设备 (一)分析天平(0.1mg);(二)电炉(可调温式)。 七、检验项目 食用动物油脂产品的发证检验、监督检验、出厂检验分别按照下列表格中所列出的相应检验项目进行。出厂检验项目中注有“*”标记的,企业应当每年检验2次。 食用动物油脂质量检验项目表

饲料用油脂的品质判断

饲料用油脂的品质判断 1.品质注意事项 A.油脂含有高量热能,故对饲料效率的改善效果显著,但劣质油脂的使用,不仅影响生长,中毒死亡的病例时有耳闻,列举如下事例供参考,并应避免。 a)棉籽油:因含有环丙烯脂肪酸及棉酚,会造成孵化率降低、海绵卵及变色卵等异常现象。b)油脂不皂化物中的硬脂(Stearin)与某些农药会结合成贫血因子。 c)某饲料厂曾因仔猪饲料中用了含沥青(柏油)的牛油而发生集体中毒死亡的病例。 d)台湾家禽饲料曾因使用掺有劣质鱼油的进口牛油,造成家禽屠体烹调产生严重异味,致成鸡无人食之。 B.油脂的氧化:油脂在室温下,受氧气的影响而起氧化作用,这种现象称为自动氧化作用,氧气和不饱和脂肪酸的双链发生化合作用,初期产生过氧化物(Peroxide),然后再分解为醛类及酮类,因而产生不快味道和气味(臭油垢味)。氧化后的脂肪品质变差,甚至有中毒的可能,其主要影响有: a)脱毛; b)增重差; c)酶不活化; d)破坏维生素及色素; e)蛋白质与氨基酸不溶化; f)消化率及饲料效率降低; g)下痢; h)拒食。油脂氧化程度随油脂不饱和度、抗氧化剂的种类及其他因素等均影响,如光线、水分、加温及金属离子等均会加速氧化的进行。 C.下述不良脂肪来源应小心用之,并预防污染。 含有蜡的油:鲸油、米糠蜡。 有毒的油:蓖麻油、桐油、菜籽油、棉籽油、高酸油、未中和皂脚。 产生恶臭的油:蚕蛹油、变质鱼油。 2.品质管理项目及其意义 ①总脂肪酸(Total fatty acid):此系包括游离脂肪酸及与甘油结合的脂肪酸总量。动物性或植物性油脂其量通常为92~94%。油脂能量大部分系由脂肪酸供应,因此总脂肪酸量为能量值的指标。 ②游离脂肪酸(Free fatty acid):脂肪分解后会产生游离脂肪酸,故其量可做为鲜度判断的根据,完全饲料所用油脂一般约在15~35%。在营养上而言,游离脂肪酸对动物无害,但太高的游离脂肪酸(50%以上)表示油脂原料不好,对金属机械、器具有腐蚀性,而且会降低适口性。 ③水分(Moisture):油脂中含有水分,不但引起加工装置的腐蚀,同时易使油脂起水解作用产生游离脂肪酸,加速脂肪的酸败,并降低脂肪的能量含量。 ④不溶物或杂质(Insoluble,Inpurities):包括纤维质、毛、皮、骨、金属、砂土……等细小颗粒无法溶解于石油醚的物质。这些物质没有能量价值,而且会阻塞筛网和管口,或在贮存桶造成沉积。其量应限制在0.5以下。 ⑤不可皂化物(Unsaponifiable matter):包括固醇类、碳氢化合物、色素、脂肪醇、维生素……等不与碱发生皂化反应的物质,大部分成分仍有饲用价值,对动物无不良影响,但其中蜡、焦油等则无营养价值,甚至有些问题成分,如水肿因子。 ⑥酸价(Acid Value):酸价虽测定容易,但通常不能单纯以此评价品质,须配合其他方法

实验动物的营养需要特点与饲养标准

实验动物的营养需要特点与饲养标准 动物为了维持生命及生长、繁殖等,需要各种营养物质。由于动物的不同,生长、妊娠、泌乳等生理状态的不同,以及温度、湿度等气候条件,耐受实验刺激、感染等外部条件的不同,动物对营养物质的需要都会有所差异。因此,研究动物所需要的各种营养物质种类,研究不同种类的动物在不同生理条件、不同环境条件及不同生产水平下各种营养素的需要量,研究不同营养素之间相互的作用等,是为不同种类的动物制定营养素的供给水平,制定动物配合饲料的重要依据。 一、动物所需营养素的种类及影响营养需要量的因素 实验动物和其他动物一样所需的营养物质根据化学组成的不同共有约50种,就其主要功能可大略分为以下三大类:a.作为能量来源:脂肪、碳水化合物、蛋白质;b.作为身体构成成分:蛋白质、矿物质;c.调节身体功能:维生素、矿物质。 各种实验动物对以上所提到的营养素的需要量是不同的,除受到遗传因素影响而有存在的明显的种间差异外,还因性别、年龄、生理状况而不同。 1.动物维持的营养需要:维持是指健康动物体重不发生变化,不进行生产,体内各种营养物质处于平衡状态。维持需要量是指动物处于维持状态下对能量、蛋白质等营养素的需要。从生理角度来讲,维持状态的动物体内的养分处于合成代谢与分解代谢速度相等的“平衡”状态。维持需要就是用来满足这个动态平衡的需要,动物只有在维持需要得到满足之后,多余的营养物质才能用于生产。 2.动物生长的营养需要:生长是指动物通过机体的同化作用进行物质积累、细胞数量增多和组织器官体积增大,从而使动物的整体体积及重量增加的过程。从生物化学角度看,生长是体内物质的合成代谢超过分解代谢的结果。从解剖学和组织学角度来看,即使同一动物由于在不同生长阶段由于不同组织和器官的生长不同,在不同的生长时期对营养的需要也不同。 3.动物繁殖的营养需要:动物的繁殖过程包括两性动物的性成熟、性机能的形成与维持,受精过程、妊娠及哺育后代等许多环节,要求在不同的繁殖过程提供适宜的营养物质。

饲料中添加油脂的应用效果

饲料中添加油脂的应用效果 利用油脂饲喂家禽的方法,在我国已有数千年历史,在这种技术与现代动物营养理论相结合,将大大提高畜禽的生产性能并明显提高经济效益。与一些畜牧发达国家相比,我国饲料产品的能量水平往往偏低。过去饲养的绝大多数是地方品种或其杂交品种,还基本适应;如今饲养的大部分是现代品种,如果不能相应的提高能量水平,满足畜禽的营养需要,往往达不到应有的生产性能。为了达到理想的能量水平,有必要研究与推广添加油脂的实用技术。 一.油脂简述融点在38℃以上的油脂称为牛脂或兽脂,如猪脂、羊脂等;融点在38℃以下的称为油脂或脂肪油,如花生油、豆油等。油脂广泛存在于动植物界,它们是动植物新陈代谢的产物,是贮藏的营养物质。 1.动物油脂 (1)动物性油脂的来源动物性油脂不论来源如何都是由不同化学结构和不同物理特性的各种脂肪酸组成。动物性油脂的原料多来源于肉类加工厂的副产品,如肉块上修削下来的脂肪部分、内脏及不可食的屠体部分。此外,皮革厂修削下来和脂肪也是重要来源之一。 (2)规格和特点国际上动物性油脂的主要规格是为制造肥皂而制定的。根据游离脂肪酸、水分和不溶物及不皂化物(纯度)、颜色等再一步分级(表1)。 美国大型饲料公司使用的动物性油脂采取以下规格(表2),这些项目与动物营养关系密切。

表1 饲料用油脂的特点 品质等级融点游离脂肪酸水分、不溶物、脂肪酸颜色 ℃(%)不皂物(%)(处理前)最高档41.5 4 1 7 精选41.0 5 1 9 优质40.5 6 1 13或11B 专用40.5 10 1 19或11C 一号40.5 15 2 33 二号40.5 20 2 37 三号40.0 35 2 无色 37 4 1 11 白A 37 8 1 15 白B 36 10 2 19或11C 黄色36 15 2 37 普通37.5 20 2 39 褐色38 50 2 无色 表2 饲用油脂的参孝规格 色度(FAC)19——39 油离脂肪酸(FFA)10%——25% 稳定性(AOM)20AOM 水分、不溶物、不皂化物(MIU)2%以下 融点(Titer)36℃以上 BHT,BHA 150g/t (3)游离脂肪酸游离脂肪酸是中性脂肪的水解产物,油脂在被动吸收和利用之前,首先变成脂肪酸,因此,游离脂肪酸在动物性油脂中出现对动物无害。即使脂肪酸含量达到30%,对猪、鸡也没有不良影响,只达到50%以上时才会使消化率降低。但是,油脂富含油离脂肪酸是不理想的,它表示来源不明和质量不佳,因此,以不超过15%为好。 (4)纯度水分、不溶物以及不皂化物均属杂质,要求杂质不超过2%,杂质越多,能量越低,品质越杂。 水分过多易引起酸败,水分过多会甘油三脂水解,导致油离脂肪酸增加。含水量从容不迫1%增加到场3%,会使氧化率提高两倍。油脂中的水分还会使抗氧化剂效果降低。如果油脂中没有水分,就可发在常温下保持良好,不会酸败。 不溶物多,表明油脂不纯,不能作为饲料应用。不能皂化的物质是动物不能利用的,并会使家禽粪便粘稠。脂肪水解时,如有碱存在,则脂肪酸皂化成肥皂后,脂肪酸皂化时所需的碱量叫作“皂化价”。不饱和的脂肪酸也能与碱化合,饱和的和度越大,所能化合的碘越多,所以脂肪酸饱合程度可由其所化合的碘的多少来测定。每100克脂及或脂肪酸所能吸收碘的克数,叫做“碘价”。

动物营养与饲料学复习资料

营养与饲料学复习资料 名词解释: 1、饲料:正常情况下,凡能被动物采食、消化吸收、无毒无害、且能提供营养物质的所有物质均可称为饲料. 2、养分:食物中的能够被有机体用以维持生命或生产产品的一切化学物质,即通常所称的营养物质或营养素、养分。凡能提供养分的物质叫食物或饲料。 3、粗蛋白质是指饲料中含氮化合物的总称。 4、粗纤维包括纤维素、半纤维素、木质素及角质等成分。 5、中性洗涤纤维:指饲料通过中性洗涤剂浸泡后所提出的纤维。 6、必需氨基酸(EAA):动物体内不能合成或合成数量与速度不能满足需要,必须由饲料供给的氨基酸。 < 7、非必需氨基酸: 8、限制性氨基酸:不同生理状态的动物对饲料中的EAA有其特定的要求,各种EAA之间要求有一定的比例关系,饲料中某一中氨基酸的缺乏会影响其它氨基酸的利用,称这一缺乏的氨基酸为限制性氨基酸。通常将饲料中最缺少的氨基酸称为第一限制性氨基酸,其次缺少的第二限制性氨基酸。 9、蛋白质的互补效应:由于各种饲料所含EAA种类、含量、限制的程度不同, 多种饲料混合可起到AA取长补短的作用。互补作用也可能发生在不同时间饲喂的多种饲料中,但随间隔时间增长,互补作用减弱。 10、氨基酸拮抗作用:由于某种氨基酸含量过高而引起另一种或几种氨基酸需要量提高,这就称为氨基酸拮抗作用。 11、氨基酸中毒:由于饲粮中某种氨基酸含量过高而引起动物生产性能下降,添加其他氨基酸可部分缓解中毒症,但不能完全消除。在必需氨基酸中,蛋氨酸最容易发生。 12、氨基酸平衡:若某种饲粮的EAA的相互比例与动物的需要相比最接近。 13、理想蛋白:氨基酸间平衡最佳、利用效率最高的蛋白质。 14、瘤胃降解蛋白:进入瘤胃的且能被降解的蛋白质。 、 15、瘤胃未降解蛋白: 16、非淀粉多糖(NSP):指饲料中除淀粉以外的碳水化合物,包括纤维素、半纤维素、果胶、抗性淀粉等。 17、脂肪的额外能量效应:饲粮添加一定水平的油脂替代等能值的碳水化合物和蛋白质,能提高饲粮代谢能,使消化过程中能量消耗减少,热增耗降低,使饲粮的净能增加的效应称为脂肪的额外能量效应或脂肪的增效作用。 18、必需脂肪酸:凡是体内不能合成,必须由饲料供给,或在体内通过特定的前体物形成,对机体健康和正常生理机能有重要保护作用的脂肪酸称为必需脂肪酸 19、消化能:饲料可消化养分所含的能量,即动物摄入饲料的总能与粪能之差。 20、代谢能:即食入的饲料消化能减去尿能(UE)及消化道气体的能量(Eg)后,剩余的能量,也就是饲料中能为动物体所吸收和利用的营养物质所含的能量。 ME = DE - (UE+ Eg) = GE - FE - UE – Eg 21、真代谢能:真代谢能(TME)= 总能-(粪能-代谢粪能)-(尿能-内源尿能)-气能,即TME = GE-(FE-FmE)-(UE-UeE)-Eg TME=AME+FmE+UeE "

常见植物油脂

常见植物油脂种类 花生油:油颜色淡黄,细闻有花生味,油沫微呈白色。 菜籽油:稍带绿色,口尝香中带点辣味,油沫发黄。 大豆油:油色深黄,豆腥味较大,口尝有涩味,油沫发白。 棉籽油:油色暗黄,口尝没有味,油沫发黄。 香油:棕红色,闻、尝都有浓浓的香味。 葵花籽油:色泽清亮透明,芳香可口。 氢化起酥油从英文“短(shorten)”一词转化而来,其意思是用这种油脂加工饼干等,可使制品十分酥脆,因而把具有这种性质的油脂叫做“起酥油”。它是指经精炼的动植物油脂、氢化油或上述油脂的混合物,经急冷、捏合而成的固态油脂,或不经急冷、捏合而成的固态或流动态的油脂产品。起酥油具有可塑性和乳化性等加工性能,一般不宜直接食用,而是用于加工糕点、面包或煎炸食品,所以必须具有良好的加工性能。起酥油的性状不同,生产工艺也各异。 棕榈油:在世界上被广泛用于烹饪和食品制造业。它被当作食油、松脆脂油和人造奶油来使用。象其它食用油一样,棕榈油容易被消化、吸收、以及促进健康。棕榈油是脂肪里的一种重要成分,属性温和,是制造食品的好材料。从棕蓝油的组合成分看来,它的高固体性质甘油含量让食品避免氢化而保持平稳,并有效的抗拒氧化,它也适合炎热的气候成为糕点和面包厂产品的良好佐料。由于棕榈油具有的几种特性,它深受食品制造业所喜爱。 油菜籽油:就是我们俗称的菜油,又叫香菜油,是以十字花科植物芸苔(即油菜)的种子榨制所得的透明或半透明状的液体。菜籽油色泽金黄或棕黄,有一定的刺激气味,民间叫作“青气味”。这种气体是其中含有一定量的芥子甙所致,但特优品种的油菜籽则不含这种物质。 玉米油:玉米油富含维生素E,热稳定性好。 橄榄油:含有丰富的不饱和脂肪酸及维生素E,可被皮肤吸收,滋润营养肤质,使皮肤光泽细腻而富有弹性,促进血液循环和肌肤新陈代谢,有助于减肥,减少皱纹,延缓衰老。 常见植物油脂营养 豆油 豆油是利用大豆种子经过溶剂浸出而获得,是世界上产量最多的油脂。未经提炼的大豆毛油不宜直接食用,目前最普遍的是精炼大豆油。其主要脂肪酸组成是:亚油酸,油酸,棕榈酸,亚麻酸等。 菜籽油 菜籽油取自油菜籽,其脂肪酸的组成受气候、品种等影响响较大。传统菜籽油的芥酸含量较高,一般为20%-60%,此外还有芥子苷。曾引起营养学领域的极大争议。有研究发现,用占膳食能量5%的菜籽油(含芥酸45%)的食物喂养幼鼠,发现其心肌出现脂肪沉积和纤维组织形成。目前已经培育出不含芥酸或低芥酸的菜籽品种。 花生油

年产3000吨饲料级动物油脂提取项目可行性研究报告

年产3000吨饲料级动物油脂提取项目 可行性研究报告

目录 第一章总论 (1) 第二章项目的背景及建设的意义 (7) 第三章市场需求预测与建设规模 (10) 第四章建厂条件与厂址 (13) 第五章工程技术方案 (17) 第六章环境保护 (26) 第七章节约能源 (28) 第八章消防与劳动安全 (29) 第九章项目管理及实施进度 (32) 第十章投资估算 (36) 第十一章财务评价 (37)

第一章总论 1.1项目名称及项目单位 1.1.1项目名称 年产3000吨饲料级动物油脂提取项目 1.1.2项目建设单位 XXXXXX动物油脂有限公司 1.2项目建设的依据与范围 1.2.1项目建设的依据 (1)根据《轻工业建设项目可行性研究报告编制深度及规定》。 (2)XXX省省建设农业强省、畜牧大省的发展战略。 (3)XXX市政府畜牧业发展规划。 (4)项目单位提供的基础资料。 1.2.2研究工作的范围 (1)产品销售及市场分析 (2)建设规模及产品方案 (3)产品生产及其它配套工程 (4)土建工程及经济分析 1.3推荐方案与研究结论 1.3.1项目推荐方案 项目产品开发方案是依据目前养殖业的发展现状,结合饲养动物的种类和地

域的资源条件,重点生产饲料级动物油脂系列产品的开发。 1.3.2建设规模与产品方案 (1)建设规模 建设年产3000吨饲料级动物油脂 (2)产品方案 根据产品市场的预测分析和企业目前的经济现状,项目确定如下产品方案: (3)生产方法 外购动物皮下脂肪,用电切割成小块,无需清洗,然后进入熬炼工序,熬炼采用全封闭式炼油锅,控制温度100℃,熬炼4h,炼制油流入地下沉淀池,得到粗制油,然后泵入粗制品桶中。此时清捞沉淀池油渣,油渣经过压挤,油流入沉淀池,渣压成饼,外售。夏季,由于温度适宜,粗制品油桶内粗制油呈现流动状态,将桶内油泵入半成品贮缶,沉降油泥,成品进入成品贮缶,油泥进入油泥贮池,外售。冬季、春季、秋季,盛装粗制品油桶内流已成固态,因此将盛装粗制品油的油桶放入暖库,用导热油炉对暖库加温,使粗制品油成流动状态,泵入半成品贮缶,沉淀油泥,成品进入成品贮缶,油泥进入油泥贮池。 1.4产品市场预测分析 饲料产业目前是我国的新兴产业,该产业发展基于我国畜牧业的飞速发展,

饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响 油脂作为重要的能量物质在饲料中得到广泛应用。然而含有大量不饱和脂肪酸的油脂在饲料储存过程中,尤其在高温、富含金属微量元素环境下,极易氧化产生多种初级和次级氧化产物。当其被动物摄食后,影响正常生理生化功能、生长和繁育,给养殖业带来不应有的损失。因此油脂氧化机理、氧化饲料所造成的营养价值和适口性的变化、以及对动物生产性能的影响研究,对饲料业和养殖业具有重要意义。 1油脂氧化机理 油脂的氧化主要分为酶促氧化、光氧化和自动氧化,产生的氢过氧化物经过裂解、聚合等一系列复杂的反应生成影响产品品质的有害物质,氧气、光照、金属离子等是促使油脂氧化的主要因素。 1.1 酶促氧化(Enzymatic oxidation) 油脂的酶促氧化是由脂氧酶参加的氧化反应。不少植物中含有脂氧酶,脂氧酶是一种单一的多肽链蛋白,它有几种不同的催化特性,其中一种脂氧酶可催化甘三酯的氧化,而另一种只能催化脂肪酸的氧化。在脂氧酶中的活性中心含有一个铁原子,能有选择性地催化多不饱和脂肪酸的氧化反应[1-2]。 1.2 光氧化(photosensitized oxidation) 在光氧化反应中,油脂中光敏剂如叶绿素、卟啉等接受紫外光变为激化态光敏剂,使基态氧3O2生成激发态氧1O2,激发态氧1O2直接与基态的含烯物的双键作用,生成氢过氧化物[1-2]。由于激发态氧1O2能量高,反应活性大,所以光氧化反应速度比自动氧化快1500倍。 1.3 自动氧化(autoxidation) 油脂自动氧化是活化的含烯物被过渡金属等催化剂催化生成含烯游离基,含烯物的游离基与基态氧3O2发生的游离基反应[3]。该反应分为3个阶段:引发—增殖—终止(表1所示)。 表1 油脂自动氧化过程 反应阶段各阶段变化

食用动物油的营养价值

食用动物油的营养价值 随着食用油的种类越来越多,人们反而不知道吃哪种食用油好了。人体健康需要很多元素的摄入,食用油就是必备的食物之一。作为日常必需的食物,食用油的摄入需要与其他的食材一起做料理,这样才能最大程度的吸收营养。所以,了解食用动物油的营养价值,就不会有食用动物油的选择困难症。 动物油就是动物脂肪,动物油以猪油为代表,含饱和脂肪酸和胆固醇较多。另外,动物油中的胆固醇还是人体组织细胞的重要成分,是合成胆汁和某些激素的重要原料。 动物油的油脂与一般植物油相比,有不可替代的特殊香味,可以增进人们的食欲。特别与萝卜、粉丝及豆制品相配时,可以获得用其他调料难以达到的美味;动物油中含有多种脂肪酸,饱和脂肪酸和不饱和脂肪酸的含量相当,几乎平分秋色,具有一定的营养,并且能提供极高的热量。奶油在人体的消化吸收率较高,可达95%以上,是维生素A和维生素D含量很高的调料,所含的脂肪比例小于黄油,较适于缺乏维生素A的人和少年儿童。

有几个特点:1、动物油主要含饱和脂肪酸,饱和脂肪酸的熔点都较高;而植物油主要含不饱和脂肪酸,不饱和脂肪酸的熔点都较低。植物油在常温下是液态的,动物油一般呈固态。故一般认为熔点高的饱和脂肪酸,容易凝固、沉淀在血管壁上,导致动脉硬化;熔点低的不饱和脂肪酸,不容易凝固、沉淀在血管壁上。 2、动物油和植物油是脂溶性维生素的主要来源。动物油里主要含维生素A和维生素D,这两种维生素和人体生长发育有密切关系。植物油里主要含维生素E和维生素K,这两种维生素和血液、生殖系统的功能密切相关。 3、动物油中含有较多的胆固醇,它在人体内有重要的生理功能,但是如果中老年人血液中的胆固醇过高,容易得动脉硬化、高血压等疾病。植物油中不含胆固醇,而含豆固醇、谷固醇等植物固醇。植物固醇不但不被人体吸收,而且还能阻止人体吸收胆固醇。

《动物营养与饲料》课程教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

课程教学设计 (一)教学设计依据 《动物营养与饲料》教学设计的基本依据是本课的课程定位与课程任务。 (二)教学设计的理念与思路 课程设计的理念和思路 课程理念根据高职高专高素质技能型专门人才培养目标和岗位需求,以职业能力培养为重点,结合本地区域特点,紧紧链接有关生产实践部门,依据工作过程设计典型工作任务,构建产学研一体化的人才培养模式,充分体现本课程的职业性、实践性和开放性。 1校企合作、工学结合 《动物营养与饲料》课程是我系骨干教师和企业精英共同打造的一门优质课程。课程设计方案与建设内容是由骨干教师和饲料养殖的精英才干共同制定的。企业精英和我系骨干教师全程参与,共同制定教学大纲和授课计划,理论与实践相结合,专业老师注重知识理论讲授,企业人员负责实践技能培训,共同完成授课任务与学生管理。学生在学中做,在做中学,理论实践有机结合,在实践中强化知识,知识理论指导实践。对于营养分析到饲料分析化验室去做,对于代饲养实验到养殖场去做。让学生亲身感受工作情景,工作氛围从而培养学生的理论素养和实践技能,为以后走入工作岗位打下基础。 2改革创新内容体系、内容安排实用、必需、够用,突出实践技能 该变传统的内容体系,传统的内容体系重理论知识轻专业技能.。在课程的难度和广度方面,遵循“实用为先、够用为度”的原则,体现了高职教育特色。课改后压缩理论知识,知识选用以够用、适度、必需为原则,简化理论传输,强调专业技能有针对性的选取实用性强、生产必需的动物营养技术。 。对营养学的一般原理要在技能培养中得到巩固和强化..对饲养试验、营养分析实验在教师的指导下要让学生亲自动手去做,以掌握饲养员和化验员岗位必需技能。 3强化实践教学环节,提高学生生产实践能力。 本课程实践教学设计的主导思想是突出实践操作、灵活运用、创新能力的培养。针对不同的实训内容采用不同的实训手段 4 任务驱动项目导向 在实践教学中,把实验实训转化成任务项目,任务驱动项目导向,每一个项目师生共同参与,采取提出项目、解析项目、完成项目的方式,教学的过程就是

实验动物证试题库--环境与营养

环境与营养考试题 1、一种会引起动物心跳、呼吸次数及血压增加,血糖值出现明显不同,白细胞数、免疫机能变化,大鼠出现高血压,心脏肥大的环境因素是A。 A 噪音 B 温度 C 湿度 D 光照 2、一种会引起动物的姿式、摄食量、饮水量、母性行为、心跳。呼吸、新陈代谢等出现相应改变的环境因素是B。 A 噪音 B 温度 C 湿度 D 光照 3、一种对动物的散热率有显著影响的环境因素是C。 A 噪音 B 温度 C 湿度 D 光照 4、能控制垂体中促性腺激素和肾上腺皮质激素的分泌的环境因素是D。 A 噪音 B 温度 C 湿度 D 光照 5、与体热的发散有关的环境因素是A。 A 风速 B 氨浓度 C 饲养密度 D 粉尘 6、一种引起呼吸器官粘膜异常,发生流泪、咳嗽、粘膜发炎,肺水肿和肺炎且是动物室中臭气物质主要来源的环境因素是B。 A 风速 B 氨浓度 C 饲养密度 D 粉尘 7、一种引起动物群体增重慢、饲料报酬低,肠内异常菌丛增加,并导致传染病的发生率增加、动物寿命缩短的环境因素是C。 A 风速 B 氨浓度 C 饲养密度 D 粉尘 8、能形成气溶胶,不仅刺激动物机体产生不良反应,也是各种病原微生物的载体,人类变态反应的变应元的环境因素是D。 A 风速 B 氨浓度 C 饲养密度 D 粉尘

9、光照对动物的生殖影响很大,其关键在于每日光照的D。 A 光通量 B 波长 C 强度 D 明暗周期 10、动物饲养室中的空气含有大量的粉尘,它们悬浮在空气中,这种浮游的粉尘微粒与空气的组合称之为B。它能引起人的变态反应和导致疾病的传播。 A 气流 B 气溶胶 C 乱流 D 层流 11、光照对动物的生殖影响很大,其关键在于每日光照的D。 A 光通量 B 波长 C 强度 D 明暗周期 12、动物实验可用R=(A+B+C)*D+E公式表示,其中R表示在动物实验中实验动物的总反应而D表示C。 A 动物种间的共同反应 B 动物的品种品系特有反应 C 环境因素 D 实验误差 13、屏障环境饲育室应安装低效、中效、高效三级过滤器,三级过滤器的位置分别是B。 A 低效在机房,中、高效位于饲养室 B 低、中效在机房,高效位于饲养室 C 中、高效在机房,低效位于饲养室 D 高效在机房,低、中效位于饲养室 14、根据我国国家技术监督局发布的实验动物环境设施监测标准,屏障环境空气洁净度指标是C。 A 100级 B 1000级 C 1万级 D 10万级 15、一种可置于开放式实验动物饲育室,配有空气过滤装置和送风设备,空气净化等级达到10000级,适合于清洁级大、小鼠作实验的饲养设备,称之为C。 A 平板式鼠架 B 悬挂式鼠架 C 独立通风换气笼具IVC D 隔离器 16、一种可置于开放式实验动物饲育室,配有空气过滤装置和送风设备,空气净化等级达到100级,器内外完全隔断,适合于无菌级动物繁殖的设备,称之为D。 A 平板式鼠架 B 悬挂式鼠架 C 洁净层流架 D 隔离器

饲料油脂氧化及其对动物的影响-2018.7

饲料油脂氧化及其对动物的影响 油脂作为重要的能量物质在饲料中得到广泛应用。然而含有大量不饱和脂肪酸的油脂在饲料储存过程中, 尤其在高温、富含金属微量元素环境下, 极易氧化产生多种初级和次级氧化产物。当其被动物摄食后, 影响正常生理生化功能、生长和繁育, 给养殖业带来不应有的损失。因此油脂氧化机理、氧化饲料所造成的营养价值和适口性的变化、以及对动物生产性能的影响研究, 对饲料业和养殖业具有重要意义。 1 油脂氧化机理 油脂的氧化主要分为酶促氧化、光氧化和自动氧化,产生的氢过氧化物经过裂解、聚合等一系列复杂的反应生成影响产品品质的有害物质,氧气、光照、金属离子等是促使油脂氧化的主要因素。 1.1 酶促氧化 ( Enzymatic oxidation) 油脂的酶促氧化是由脂氧酶参加的氧化反应。不少植物中含有脂氧酶,脂氧酶是一种单一的多肽链蛋白,它有几种不同的催化特性,其中一种脂氧酶可催化甘三酯的氧化,而另一种只能催化脂肪酸的氧化。在脂氧酶中的活性中心含有一个铁原子,能有选择性地催化多不饱和脂肪酸的氧化反应[1-2]。 1.2 光氧化 (photosensitized oxidation) 在光氧化反应中,油脂中光敏剂如叶绿素、卟啉等接受紫外光变为激化态光敏剂,使基态氧3O2 生成激发态氧1O2,激发态氧1O2 直接与基态的含烯物的双键作用,生成氢过氧化物[1-2]。由于激发态氧1O2 能量高,反应活性大,所以光氧化反应速度比自动氧化快1500 倍。 1.3 自动氧化 ( autoxidation) 油脂自动氧化是活化的含烯物被过渡金属等催化剂催化生成含烯游离基,含烯物的游离基与基态氧3O2发生的游离基反应[3]。该反应分为 3 个阶段:引发—增殖—终止(表 1 所示)。 表1 油脂自动氧化过程

CCGF102.3-2010食用动物油脂

CCGF 102 CCGF 102.3—2010 食用动物油脂 2011—02—10发布 2011—03—01实施国家质量监督检验检疫总局 食用动物油脂产品质量监督抽查实施规范

1 范围 本规范适用于食用动物油脂食品产品质量国家监督抽查,针对特殊情况的专项国家监督抽查、县级以上地方质量技术监督部门组织的地方监督抽查可参照执行。监督抽查产品范围包括食用猪油、食用牛油、食用羊油及其他食用动物油脂产品等。本规范内容包括产品分类、术语和定义、企业规模划分、检验依据、抽样、检验要求、判定原则及异议处理复检及附则。 注:针对特殊情况的专项国家监督抽查是指应急工作需要而进行的或者由于某种特殊情 况(或原因)仅需要对部分项目进行抽样检验的专项监督抽查。 2 产品分类 2.1 产品分类及代码 产品分类及代码见表 1 。 表1 产品分类及代码 产品分类一级分类二级分类三级分类 分类代码 1 102 102.3 分类名称食品食用油、脂及制品食用动物油脂 2.2 产品种类 食用动物油脂包括食用猪油、食用牛油、食用羊油等单一品种动物油脂产品及多品种混 合动物油脂产品。 3 术语和定义 下列术语和定义适用于本规范。 食用动物油脂:指由动物脂肪组织提炼出的固态或半固态或液态脂类,经过加工制成的食用动物油脂。包括单一品种动物油脂和多品种混合动物油脂产品。 4 企业规模划分 根据食用动物油脂产品行业的实际情况,生产企业规模以食用动物油脂产品年销售额为 标准划分为大、中、小型企业。见表2。 表2 企业规模划分 企业规模大型企业中型企业小型企业

销售额/万元≥5000 ≥1000且<5000 <1000 5 检验依据 下列引用的文件,其最新版本或修改单均适用于本规范。 GB 2760 食品添加剂使用卫生标准 GB/T 5009.11 食品中总砷及无机砷的测定 GB 5009.12 食品安全国家标准食品中铅的测定 GB/T 5009.30 食品中叔丁基羟基茴香醚(BHA)与2,6—二叔丁基对甲酚(BHT) 的测定 GB/T 5009.32 油脂中没食子酸丙酯(PG)的测定 GB/T 5009.37 食用植物油卫生标准的分析方法 GB/T 5009.181 猪油中丙二醛的测定 GB/T 5530 动植物油脂酸值和酸度测定 GB/T 5538 动植物油脂过氧化值测定 GB 10146 食用动物油脂卫生标准 GB/T 21927 食品中叔丁基对苯二酚的测定高效液相色谱法 GB/T 23373 食品中抗氧化剂丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)与 特丁基对苯二酚(TBHQ)的测定 相关的法律法规、部门规章和规范 经备案现行有效的企业标准及产品明示质量要求 6 抽样 6.1抽样型号或规格 预包装产品或称量销售产品。优先抽取小包装产品(净含量≤5L(kg))。 6.2抽样方法、基数及数量 6.2.1在企业成品仓库内或者市场上随机抽取有产品质量检验合格证明或者以其他形式表 明合格的产品,所抽取产品应形态正常,并且其保质期应能满足检验工作的进行。 6.2.2在企业成品仓库抽样时,同一批次的食用动物油脂抽样基数应不少于10个包装,且总量不少于20kg。抽样人员应从同一批次样品堆的4个不同部位随机抽取4个或4个以上的独立包装,分别取出样品。抽样数量为 1.5kg,小包装产品(净含量≤5L(kg))不少于3

动物营养试题及答案

《动物营养学》 一、名词 1、必需脂肪酸:凡是动物体内不能合成,必需由饲粮供给,或者通过体内特定先体物形成,对机体正常机能和健康具有保护作用的脂肪酸称为~。 蛋白质的周转代谢:机体蛋白质是一个动态平衡体系,在合成机体组织新的蛋白质的同时,老组织的蛋白质也在kj不断更新,被更新的组织蛋白降解为氨基酸,而又重新用于合成组织蛋白质的过程称为~。 3、美拉德反应:还原性糖与蛋io白质之间发生的缩合反应,产生动物自身分泌的消化酶不能降解的氨基-糖复合物,影响氨基酸的吸收利用,降低饲料营养价值。这一反应称为~。 4、瘤胃的氮素循环:瘤胃液中ioi多余的氨会被瘤胃壁吸收,经血液运输到肝脏,并在肝中转变成尿素,生成的尿素一部分可经唾液和血液返回瘤胃,这种氨和尿素的生成和不断循环,称为瘤胃中的氮素循环。 5、饲养标准:根据大量饲opij养实验结果和生产实践的经验总结,对各种特定动物所需要的各种营养物质的定额作出规定,这种系统的营养定额及有关资料称为~ 二、填空题(20×1`) 1、营养物质的利用先经过o消化才能吸收,不同消化器官消化方式不同,有些器官存在几种消化方式,口腔的消化包括物理消化,化学消化;小肠的消化属化学消化;马结肠的消化属微生物消化。

2、饲料中含有很多抗营养因子影响动物对营养的利用,花生中主要的抗营养因子为抗胰蛋白酶,棉粕中的主要抗营养因子为棉 酚。 3、支链氨基酸在母猪中的营养具有非常重要的作用,支链氨基酸包括亮氨酸,异亮氨酸,缬氨酸3种; 4、酮病是指高产奶牛碳水化合物摄入不足时,导致脂肪氧化产生过多酮体过多引起的疾病,酮体包括:丙酮,β-羟丁酸,乙酰乙酸,3种物质。 5、与造血有关的微量lk元素包括铁,铜,钴。 6、饲料添加剂中有很多pp;非营养性添加剂具有促进动物饲料利用,提高动物生产性能的功能,请列举5类具有促生长作用的无食品安全问题的非营养性添加剂,酶制剂,益生素,寡糖,酸化剂,大蒜素; 三、单项选择题(20×1`) 1、维生素A是动物必不io可少的一种维生素,植物体内不含有维生素A,但含有维生素A的先体物(C)。 A. 胆钙化醇 B.生育酚 C. 胡萝卜素 D.甲萘醌 2、使用禾谷类及其它植物性饲料配制家禽饲料时,(A)常为第一限制性氨基酸。 A.蛋氨酸 B.赖氨酸 C.色氨酸 D.苏氨酸

颗粒饲料表面油脂喷涂技术

颗粒饲料表面油脂喷涂技术 在饲料中添加适量的动植物油,不仅可以提高饲料的能量水平,而且改善了颗粒饲料的外观质量。饲料中添加油脂的环节可置于成粒前和成粒后;成粒前的添加量一般不超过生产量的3%,否则将导致制粒后颗粒松散等问题,而且不大适用于膨化饲料的生产工艺,但该设备要求较低;成粒后对颗粒饲料进行表面处理(即油脂喷涂),其最大添加量可达到8%,解决了添加油脂对颗粒饲料坚实度的影响问题,直接提高了生产率,而且更加适用于膨化饲料的生产,但对设备及使用的要求较高。 一.油脂喷涂的基本结构、基本要求及工作原理 1.基本结构(图略)。颗粒饲料油脂喷涂的形式主要有两种:一种是挤出颗粒时进行喷涂,另一种是在颗粒分级后进行喷涂。但两种形式在供油及电控部分的要求是一致的。 油脂喷涂机主要由自控储油罐、粗精过滤器、控制阀、压缩空气、高压蒸汽及控制器等组成。自控储油罐的液位器、温控器、加热部件及搅拌器等主要是用于将油脂尽快地加热到60~80℃,以降低油脂粘度,便于流动及物料吸收。粗精过滤器防止杂质堵塞油路,使各类阀门、计量器及喷嘴等能正常工作。压缩空气或高压蒸汽主要是用来雾化油脂,使油脂能以雾状形式喷洒在物料中,达到均匀喷涂的效果。喷涂控制器是关键的部件,能自动调节和显示油脂流量的大小,并具备累计、缺油报警及流量偏差报警等功能。除上述以外,油路的加热、保温也是不可缺少的,它能尽快地熔解管道的残留油脂及使油脂在系统使用过程中保持恒温。 2. 基本要求 (1)管道中各控制元件应能可靠工作,管路上没有漏油、漏汽等现象。 (2)油路和汽路中应保证一定的工作压力,一般为0.2~0.5Mpa。

(3)管路中一定要装有粗精过滤器,用于过滤杂质、防止堵塞喷头,并装有检测装置,检测喷涂量的准确性和可靠性。 (4)储油罐及喷油部位应装有加热装置,管道应包有保温隔热材料,防止油脂凝固。 (5)应有较高的自动化程度,使油脂喷涂量能根据喷涂机的喂料量变化而变化,从而保证油脂喷涂量的正确性。 (6)油脂喷涂机的喷涂率应能根据用户的需要自行设定。 (7)应保证喷嘴喷出的雾状油脂的宽度范围能均匀覆盖物料流经路线,减小油脂的浪费。 3. 工作原理 当油脂从油池或油桶经粗过滤器进入储油罐后,由蒸汽加热管自动升温至60~80℃,在此过程中管道也加热到预定温度(油罐必须配备搅拌器以便能使油脂整体加热均匀及保证测温的准确性,而且温度可根据油脂的粘度进行调整)。当确定油路畅通后,就可进行油脂喷涂。喷涂时油脂经调速泵、单向阀、精过滤器进入电磁阀,在压缩空气的作用下,呈雾状喷涂在颗粒表面上。喷涂量通过椭圆齿轮流量变送器将脉冲频率送至可编程控制器进行处理,自动调整调速泵的转速、改变流量,使实际喷涂量达到预先设定值。

动物营养学实验指导

动物营养学实验指导(饲料分析与饲料检测技术) 莱阳农学院动物科技学院 2005年7月

动物营养学实验指导第一章饲料样品的采集与制备 第二章饲料物理性状的检测 第三章饲料的显微镜检测 第四章饲料分析的基础知识 实验一饲料水分的测定 实验二饲料粗蛋白的测定 实验三饲料粗脂肪含量的测定 实验四饲料粗灰分测定 实验五饲料钙的测定 实验六饲料总磷的测定 实验七饲料盐分的测定 实验八饲料中粗纤维的测定 实验九能量的测定 实验十豆粕中尿素酶活性的测定

第一章饲料样品的采集与制备 从受检的饲料产品或原料中,按规定抽取一定数量具有代表性的部分,称为样品。样品一般分为原始样品,平均样品和试验样品。 1、原始样品 从一批受检的饲料或原料中最初抽取的样品,称为原始样品,原始样品一般不少于2㎏。 2、平均样品 将原始样品按规定混合,均匀地分出一部分,称为平均样品,平均样品一般不少于1㎏。 3、试验样品 平均样品经过混合分样,根据需要从中抽取一部分,用作试验室分析,称为试样样品。 采集样品的过程叫采样。在某种程度上可以说采样比分析更重要。要求采集的样品具有代表性。 一、采样工具 剪刀、刀、取样铲、组织捣碎机、样本粉碎机(40~60目)、采样器(适用颗粒料)、套管采样器(适用于粉状饲料)、扦样玻璃管、扦样筒(适用于散状液体饲料)。 二、采样 (一)基本方法 采样的基本方法有两种:几何法和四分法 几何法:是指把整个一堆物品看成一种有规则的几何形状(立方体、园柱体、园锥体),取样时首先把这个主体分为若干体积相等的问部分,从棕样部分中取出体积相等的样品,这部分样品称为支样,再把支样混合,即得原始样品。 四分法: (1)散装颗粒或粉状饲料或原料的采样 仓装 按面积分区,按高度分层,每区不超过50平方米,分为5点。 料层>0.75米,取三层,上(10~15㎝)、中、下(20㎝) 料层<0.75米,取二层,上、下

(六)几种食用动物油的营养特点

(六)几种食用动物油的营养特点 教学目的 1.让学生了解日常生活中常见的食用动物油的营养特点。 2.理论知识与实践相结合。 3.培养学生查阅资料,总结知识的综合能力。 教学重点:了解常见食用动物油的营养特点。 教学难点:猪油的营养特点。 教学过程: 一、事先布置任务,组织学生上网查阅有关资料,先行总结几种动物油的营养特点,并在课堂上展示成果。 二、分别对学生的成果给予评价,鼓励为主。 三、教师总结 (一) 1、猪油的基本介绍 猪油,为猪科动物猪的脂肪油,在西方被称为猪脂肪。猪油色泽白或黄白,具有猪油的特殊香味,深受人们欢迎。很多人都认为炒菜若不用猪油菜就不香。猪油的熔点较羊油、牛油为低,一般低于人的体温,容易被人体吸收。它是饮食业使用最普遍的食用油。 2、猪油的功效与作用 猪油味甘、性凉;有补虚、润燥、解毒的作用;可治脏腑枯涩、大便不利、燥咳、皮肤皲裂等症;可药用内服、熬膏或入丸剂。外用作膏油涂敷患部。 3、猪油的营养价值 动物油的油脂与一般植物油相比,有不可替代的特殊香味,可以增进人们的食欲。特别与萝卜、粉丝及豆制品相配时,可以获得用其他调料难以达到的美味。 动物油中含有多种脂肪酸,饱和脂肪酸和不饱和脂肪酸的含量相当,几乎平分秋色,具有一定的营养,并且能提供极高的热量。 4、猪油的热量表(每100 热量(大卡)897 脂肪(克)99.6 碳水化合物(克)0.2 胆固醇(毫克)93 维生素A(微克)27 维生素B1(毫克)0.02 维生素B2(毫克)0.03 维生素E(毫克)5.21 5、猪油的存储 猪油热天易变坏,炼油时可放几粒茴香,盛油时放一片萝卜或几颗黄豆,油中加一点白糖、食盐或豆油,可久存无怪味。猪油熬好后,趁其未凝结时,加进一点白糖或食盐,搅拌后密封,可久存而不变质。 6、猪油的食用方法 猪油不宜用于凉拌和炸食。用它调味的食品要趁热食用,放凉后会有一种油腥气,影响人的食欲。 (二)羊油 1、羊油介绍 羊脂为牛科动物山羊或绵羊的脂肪油。多由熬煮羊的内脏脂肪组织而得。白色或微黄色蜡状固体,相对密度0.943~0.952。熔点42~48℃。碘值38~42。皂化值194-199。主要成分为油酸、硬脂酸和棕榈酸的甘油三酸酯。是从羊的内脏附近和皮下含脂肪的组织,用熬煮法制取。新鲜的酯经精制后可供食用。

饲用油脂

饲用油脂 饲用油脂的使用价值 人们最初在日粮中添加油脂的目的是提供高浓度能量,满足动物快速生长过程对高能量的需求。随着动物营养研究的深入和油脂在饲料中广泛使用,人们发现了油脂更多的使用价值。 1.能值 油脂的能量浓度是碳水化合物和蛋白质的2.25倍,可以很容易用来配制高能日粮。脂肪还能与日粮中的碳水化合物和蛋白质互作,提供超过理论计算的总代谢能和净能,产生超额能量效应。油脂热增耗低,在动物处于炎热环境下,添加油脂可以明显减轻动物热应激发生程度,提高动物生产水平。 2.必需脂肪酸 快速增长动物对必需脂肪酸(亚油酸和a-亚麻酸)的需求大增,常规饲料原料可能不能完全满足,添加适量(2%以上)油脂就足以满足动物 对必需脂肪酸需求。 3.促进脂溶性营养成分的吸收 日粮必须保持一定水平的脂肪,脂溶性色素和维生素才能良好消化吸收,而饲料原料中脂肪含量往往变异很大,添加适量外源脂肪可以减少原料

脂肪变异带来的脂溶性成分消化吸收不稳定,保证脂溶性成分稳定发挥作用。 4.适口性 饲料中添加油脂可以使饲料产生滑润的口腔触觉感觉,同时带有愉悦的油香气,更容易被动物接受和采食,提高动物采食量。 5.饲料稳定性 油脂具有一定的粘性,添加到饲料中可以减少饲料分级,保证使用过程中营养成分在饲料均匀分布,达到最佳的利用价值。油脂还具有疏水性,在水产颗粒饲料中添加油脂能延长饲料在水中的稳定时间,减少营养成分的散失。 6.饲料加工 饲料添加适量(1%以上)油脂可以减少饲料加工和使用过程中粉尘的产生,减少物料损耗,减少对操作人员的健康危害。添加油脂还能降低饲料制粒过程的摩擦阻力,降低能耗,延长设备使用时间。 饲料用油脂的分类 饲用油脂属于真脂,来源于植物种子或者动物体组织。常温下,植物油脂一般为液态,称为油,动物油脂一般为固态,称为脂。无论是单一来

相关文档
最新文档