“根的判别式”的种种应用

“根的判别式”的种种应用
“根的判别式”的种种应用

“根的判别式”的种种应用

学习了一元二次方程的求根公式以后,为了研究问题的方便,我们把一元二

次方程ax2+bx+c=0(a≠0)的求根公式x=

a ac

b b

2

4 2-

±

-

中的b2-4ac称做为根的判别式,用符号“Δ”来表示,即Δ=b2-4ac.至此,我们一般只知道:当Δ>0时,方程有两个不相等的实数根,当Δ=0时,方程有两个相等的实数根,当Δ<0时,方程没有实数根.反之也成立.至此,我们可以不解方程,利用根的判别式来判别根的情况.而事实上,一元二次方程根的判别式还许多其它的应用,为方便同学们的学习,现举例说明.

一、不解方程,判断根的情况

例1已知关于x的一元二次方程x2-mx-2=0.…①

(1)若x=-1是方程①的一个根,求m的值和方程①的另一根;

(2)对于任意实数m,判断方程①的根的情况,并说明理由.

解(1)因为x=-1是方程①的一个根,所以1+m-2=0,解得m=1.

所以原方程为x2-x-2=0,解得x1=-1,x2=2.所以方程的另一根为x=2.

(2)Δ=b2-4ac=m2+8,因为对于任意实数m,m2≥0,所以m2+8>0,

所以对于任意的实数m,方程①有两个不相等的实数根.

说明运用根的判别式时,必须注意化方程为一元二次方程的一般形式,明确a,b,c的值.

二、确定字母系数的范围

例2已知关于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,则k的取值范围是___.

解因为于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,所以满足Δ=22-4×(k+1)×(-1)>0,且k+1≠0,解得k>-2,且k≠-1.

说明利用根的判别式解题时,若原一元二次方程的二次项含有字母系数,则必须保证二次项系数不等于0这一隐含条件的限制.

三、字母系数的值

例3当m为何值时,关于x的一元二次方程x2-4x+m-1

2

=0有两个相等的

实数根?此时这两个实数根是多少?

解 因为关于x 的一元二次方程x 2-4x +m -

12

=0有两个相等的实数根, 所以Δ=(-4)2-4(m -12)=0,即16-4m +2=0,解得m =92

. 当m =92时,方程有两个相等的实数根x 1=x 2=2. 说明 利用方程有等根来解决具体的问题是中考的一个热点,同学们一定要注意体会并熟练地运用.

四、判断三角形的形状

例4 已知关于x 的一元二次方程(a +c )x 2+bx +4

a c -=0有两个相等的实数根,试判断以a ,

b ,

c 为三边长的三角形的形状,并说明理由.

解 因为关于x 的一元二次方程(a +c )x 2+bx +

4a c -=0有两个相等的实数根, 所以Δ=b 2-4×(a +c )×4

a c -=

b 2-a 2+

c 2=0,即b 2+c 2=a 2, 所以以a ,b ,c 为三边长的三角形是直角三角形.

说明 这里运用根的判别式时,无需强调二次项系数问题,这是由于a ,b ,c 为某一三角形三边的长,另外,应注意勾股定理的逆定理的运用.

五、确定整数解

例5 当m 是什么整数时,关于x 的一元二次方程mx 2-4x +4=0与x 2-4mx +4m 2-4m -5=0的根都是整数.

解 因为给定的关于x 的方程是一元二次方程,所以二次项系数不为零,即m ≠0.

又由于方程均有实数根,所以Δ1=(-4)2-4m ×4≥0,解得m ≤1.

Δ2=(-4m )2-4×1×(4m 2-4m -5)≥0,解得m ≥-

54, 所以-54

≤m ≤1,又m 是整数,且m ≠0,所以m =-1或1. 当m =-1时,方程mx 2-4x +4=0变形为x 2-4x +4=0,

解得方程的根为x =-2±,它的根不是整数,故m =-1舍去.

当m =1时,方程mx 2-4x +4=0的两个根为x 1=x 2=2;

方程x 2-4mx +4m 2-4m -5=0根为x 1=5,x 2=-1,均为整数,所以m =1. 说明 本题设虽然比较简单,但求解起来还是比较麻烦,应根据方程整数系

数和整数根的特点,注意分类讨论.

一元二次方程根的判别式专题 - 教师版

一元二次方程根的判别式专题 知识点一:已知系数直接判断方程根的情况 1.不解方程,直接判断下列方程根的情况. (1)2104 x - = (2)23630x x -+= (3)()2458x x x -=-- 【答案】(1)有两个不等实数根;(2)有两个相等实数根;(3)没有实数根 二、结合字母系数判断方程根的情况 2.判别下列关于x 的一元二次方程根的情况. (1)22125104 x mx m -++= (2)22440x mx m -+= 【答案】无实数根 【答案】有两个相等的实数根 (3)211022x mx m -+-= (4)21402 x mx m -+-= 【答案】有两个实数根 【答案】有两个不相等的实数根 三、结合“0a ≠”确定字母的取值范围 3.若关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ) A .1a ≥ B .1a >且5a ≠ C .1a ≥且5a ≠ D .5a ≠ 【答案】C 4.当m 为何值时,关于x 的一元二次方程()()2212110m x m x -+-+=有两个不相等的实数根? 【答案】依题意得( )()2221041410m m m ?-≠??---??>,解得1m <且1m ≠-

四、判别式与隐含条件相结合 5.已知关于x 的一元二次方程()21210k x x ---=有两个不相等的实数根,求k 的最大整数值. 【答案】依题意得:()4410k +->且10k -≠,解得2k <且1k ≠,所以k 的最大整数值为0. 6.已知关于x 的一元二次方程2450kx kx k -+-=有两个相等的实数根,求k 的值. 【答案】依题意得()2016450k k k k ≠???--=??,解得53k =-

中考专题_一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系 【重点、难点、考点】 重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。 ②掌握根与系数的关系及应用 难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。 考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。 【经典范例引路】 例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ) A.m<43 B.m ≤43 C.m>43 且m ≠2 D.m ≥43 且 m ≠2 (2001年山西省中考试题) 【解题技巧点拨】 解 C ①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形 解题原理:对方程ax 2+bx +c =0 (a ≠0) 方程有两实根Δ方程有两相等实根 Δ方程有两不等实根Δ?≥? ?? ?=?>000 Δ<0?方程没有实根 注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。 例2 先阅读下列第(1)题的解答过程

(1)已知αβ是方程x2+2x-7=0的两个实数根。求α2+3β2+4β的值。 解法1 ∵α、β是方程x2+2x-7=0的两实数根 ∴α2+2α-7=0 β2+2β-7=0 且α+β=-2 ∴α2=7-2αβ2=7-2β ∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2 ×(-2)=32 解法2 由求根公式得α=-1+22β=-1-22 ∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22) =9-42+3(9+42-4-82)=32 解法3 由已知得:α+β=-2 αβ=-7 ∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2 +4α=B ∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ① A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ② ①+②得:2A=64 ∴A=32 请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题 (2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。x13+7x22 +3x2-66的值。 解∵x1、x2是方程x2-x-9=0的两根 ∴x1+x2=1 且x12-x1-9=0 x22-x2-9=0 即 x12=x1+9 x22=x2+9 ∴x13+7x22+3x2-66=x1(x1+9)+7(x2+9)+3x2-66 =x12+9x1+10x2-3=x1+9+9x1+10x2-3=10(x1+x2)+ 6=16 【同步达纲练习】 一、填空题

判别式的八种应用

判别式的八种应用 一、求方程(组)的解及解的取值范围 例1若x2+2x+y2-6y+10=0,x,y为实数.求x,y. 解:将方程看成是关于x的一元二次方程,由于x,y为实数. ∴ Δ=22-4(y2-6y+10)=-4(y-3)2≥0. 即(y-3)2≤0,于是y=3,进而得x=-1. 例2已知a,b,c为实数,满足a+b+c=0,abc=8,求c的取值范围.(第一届“希望杯”全国数学竞赛题) 解:∵a+b+c=0,abc=8, 例3已知实数x,y,z满足x=6-y,z2=xy-9,求x,y的值. 证明:∵x+y=6,xy=z2+9则x,y是一元二次方程a2-6a+z2+9=0的两个实数根, 则有Δ=36-4(z2+9)=-4z2≥0,即z2≤0. 因z为实数,∴z=0,从而Δ=0, 故上述关于a的方程有相等实根,即x=y=3. 二、判断三角形形状 例4若三角形的三边a,b,c满足a(a-b)+b(b-c)+c(c-a)=0.试判断三角形形状. 证明:将原式变形为b2-(a+c)b+a2+c3-ac=0,由于a,b,c为实数,关于b的一元二次方程有实根, ∴Δ=(a+c)2-4(a2+c2-ac)≥0. 整理得-3(a-c)2≥0,

即(a-c)2≤0,故a=c, 把a=c代入原式,得b=c,从而有a=b=c, 所以三角形为等边三角形. 三、求某些字母的值. 例5 k为何值时,(x+1)(x+3)(x+5)(x+7)+k是一完全平方式. 解:原式=(x2+8x+7)(x2+8x+7+8)+k =(x2+8x+7)2+8(x2+8x+7)+k 令(x2+8x+7)2+8(x2+8x+7)+k=0,因原式是完全平方式,则其根的判别式, Δ=82-4k=0,即k=16. 例6如果x2-y2+mx+5y-6能分解成两个一次因式的积,试求m的值.解:令x2+mx-(y2-5y+6)=0,则关于x的方程的根的判别式Δ=4y2-20y +m2+24. 欲使原式能分解成两个一次因式乘积,必须“Δ”是一完全平方式, 从而有4y2-20y+m2+24=0的根的判别式 ∴m2=1,即m=±1. 例7a为有理数,问:b为何值时,方程x2-4ax+4x+3a2-2a+4b=0的根是有理数. 解:方程整理为x2+4(1-a)x+(3a2-2a+4b)=0. 它的判别式Δ=4(a2-6a-4b+4),由于4(a2-6a-4b+4)是有理数a的二次三项式. 即4(a2-6a-4b+4)=0的根的判别式 四、证明不等式

九年级数学上册专题一根的判别式的应用同步测试新人教版

九年级数学上册专题一根的判别式的应用同步测试新人教 版 (教材P17习题21.2第13题) 无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出答案并说明理由.解:x2-5x+6-p2=0, Δ=(-5)2-4×1×(6-p2)=25-24+4p2=4p2+1>0, 所以方程(x-3)(x-2)-p2=0总有两个不等的实数根. 【思想方法】一元二次方程根的判别式Δ=b2-4ac可以用来判断根的情况,也可以根据一元二次方程根的情况,确定方程中的未知系数. 一判断一元二次方程根的情况 方程x2+7=8x的根的情况为(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.只有一个实数根 D.方程没有实数根 对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为(C) A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法确定 下列对关于x的一元二次方程x2+2kx+k-1=0的根的情况描述正确的是(A) A.方程有两个不相等的实数根 B.方程有两个相等的实数根 C.方程没有实数根 D.无法确定 已知关于x的一元二次方程x2+(m+3)x+m+1=0.求证:无论m取何值,原方程总有两个不相等的实数根. 证明:Δ=(m+3)2-4(m+1)=(m+1)2+4. ∵无论m取何值时,(m+1)2+4的值恒大于0, ∴原方程总有两个不相等的实数根. 已知关于x的方程x2-(m+2)x+(2m-1)=0. (1)求证:方程恒有两个不相等的实数根; (2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长. 【解析】(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论; (2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是1,3时,由勾股定理得斜边的长度为10;②当该直角三角形的直角边和斜边分别是1,3时,由勾股定理得该直角三角形的另一直角边为22;再根据三角形的周长公式进行计算. 解:(1)∵b2-4ac=[-(m+2)]2-4×1×(2m-1)=m2-4m+8=(m-2)2+4>0, ∴方程恒有两个不相等的实数根; (2)把x=1代入方程x2-(m+2)x+(2m-1)=0中,解得m=2,

专题:一元二次方程根的判别式(含答案)-

一元二次方程根的判别式 姓名 ◆课前预习 1.一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可用b 2-4ac?来判定,?b 2-4ac?叫做________,通常用符号“△”为表示.(1)b 2-4ac>0?方程_________;(2)b 2-4ac=0?方程_________; (3)b 2-4ac<0?方程_________. 2.使用根的判别式之前应先把方程化为一元二次方程的________形式. ◆互动课堂 【例1】不解方程,判别下列方程根的情况: (1)x 2-5x+3=0; (2)x 2;(3)3x 2+2=4x ; (4)mx 2+(m+n )x+n=0(m ≠0,m ≠n ). 【例2】若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围. 【例3】已知关于x 的一元二次方程x 2-(2k+1)x+4(k -12 )=0.(1)求证:无论k 取什么实数 值,这个方程总有实数根;(2)如果等腰△ABC 有一边长a=4,另两条边长b ,c 恰好是这个方程的两个实数根,求△ABC 的周长. 【例4】已知关于x 的方程x -2(m+1)x+m 2=0.(1)当m 取何值时,方程有两个实数根? (2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ◆跟进课堂 1.方程2x 2+3x -4=0的根的判别式△=________. 2.已知关于x 的一元二次方程mx 2-10x+5=0有实数根,则m 的取值范围是______. 3.如果方程x 2-2x -m+3=0有两个相等的实数根,则m 的值为_______,此时方程的根为________. 4.若关于x 的一元二次方程kx 2+2x -1=0没有实数根,则k 的取值范围是______. 5.若关于x 的一元二次方程mx 2-2(3m -1)x+9m -1=0有两个实数根,则实数m?的取值范围是_______. 6.下列一元二次方程中,没有实数根的是( ). A .x 2+2x -1=0 B .x 2 C .x 2 D .-x 2+x+2=0 7.如果方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数是( ).A .-1 B .0 C .1 D .2 8.下列一元二次方程中,有实数根的方程是( ). A .x 2-x+1=0 B .x 2-2x+3=0 C .x 2+x -1=0 D .x 2+4=0 9.如果关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是( ). A .k<1 B .k ≠0 C .k<1且k ≠0 D .k>1 10.关于x 的方程x 2+(3m -1)x+2m 2-m=0的根的情况是( ). A .有两个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆课外作业 1.在下列方程中,有实数根的是( ) (A )x 2+3x+1=0 (B (C )x 2+2x+3=0 (D )1x x -=11 x - 2.关于x 的一元二次方程x 2+kx -1=0的根的情况是 A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数根 C 、有两个相等的实数根 D 、没有实数根 3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a -4=0有一个实数根是x =0.则a 的值为( ). A 、1或-4 B 、1 C 、-4 D 、-1或4 4.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 . 5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.

判别式及根与系数的关系

- 1 - 一元二次方程根的判别式与根与系数的关系练习题2010-8-5 执笔:孙梅 1、 关于x 的0122=++kx x 有两个相等的实数根,则k=_________ 2、若方程0132=--x mx 有两个不相等的实数根,则m 的取值范围是_________ 3、若关于x 的一元二次方程06)4(22=+--x kx x 没有实数根,那么k 的最小整数值是________ 4、关于x 的一元二次方程0132=-+x kx 有实数根,则k 取值范围是_________ 5、若一元二次方程0)12(2=++-k x k kx 的有实数根,求k 取值范围是_________ 6、若a 、b 、c 分别是三角形的三边,则方程02)(2=++++b a cx x b a 的根的情况是( ) A 、没有实数根 B 、可能只有一个实数根 C 、有两个相等的实数根 D 、有两个不相等的实数根 7、若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( ) A 、k >-1 B 、k >-1且k ≠0 C 、k <1 D 、k <1且k ≠0 8、已知x =-3是关于x 的一元二次方程052)1(22=+++-a ax x a 的一个根,则a 的值为 ( ) A 、-4 B 、1 C 、-4或1 D 、4或-1 9、试证明,不论m 为何值,方程0)14(222=---m x m x 总有两个不相等的实数根。 10、如果关于x 的方程0)1(2)1(22=--++x c bx x a 有两个相等的实数根,那么以a 、b 、c 为三边的△ABC 是什么三角形?并说明理由。 11、若关于x 的一元二次方程.0422=++m x x ⑴若x=1是方程的一个根,求方程的另一个根; ⑵若21,x x 是方程的两个不同的实数根,且21,x x 满足022 221212221=-++x x x x x x ,求m 的值. 12、已知关于x 的方程0)1(222=++-m m x . ⑴当m 取什么值时,原方程没有实数根; ⑵给m 选一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和. 13、已知a 、b 是关于x 的方程01)1(22=-++-m x x m 的两个实数根,且31=+b a ,求ab 的值。 14、已知关于x 的一元二次方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21,x x ;⑴求实数m 的取值范围;⑵若,62221=+x x 求m 的值. 15、1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值: (1)2221x x + (2)21x x - (3)2222133x x x -+

第02讲 判别式及其应用

第2讲判别式及其应用 当数学家导出方程式和公式,如同看到 雕像、美丽的风景,听到优美的曲调等等一 样而得到充分的快乐。 —— 柯普宁 知识方法扫描 在一元二次方程ax2+bx+c=0中,△=b2-4ac称为根的判别式。当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。 我们利用判别式主要解决以下两个方面的问题:一是根据方程或题目所给的条件,确定方程根的性质;二是根据给定的方程的条件,确定字母的取值或取值范围。 此外,要注意判别式在以下几个方面的应用: ①在解答关于整系数的一元二次方程方程有整数根一类问题时,要注意它的判别式应该为完全平方数; ②当出现了形如一个平方式与两个代数式的积之差形式的问题时,可以考虑利用这种结构构造一个一元二次方程,再用一元二次方程的理论去解答问题; ③在一些求某个字母(参数)的取值范围的问题中,常可先利用根的定义或根与系数的关系构造二次方程,再用判别式求出其中参数的范围。 经典例题解析 例1(1987年全国初中数学联赛试题)当a、b为何值时,方程x2+2 (1+a)x+ (3a2+4ab+4b2+2)=0有实根? 解因为方程有实数根,所以判别式 △= 4[(1+a)2-(3a2+4ab+4b2+2) = 4( -1+2a-2a2-4ab-4b2) = -4[(1-2a+a2)+(a2+4ab+4b2)] = -4[(1-a)2+(a+2b)2] ≥0 ∵-4[(1-a)2+(a+2b)2] ≤0,∴-4[(1-a)2+(a+2b)2] =0. ∴ 1-a=0, 且a+2b=0; 即a=1,b=. ∴当a=1, b=时,方程有实数根。 例2 (1987年武汉,广州,福州,重庆,西安五市初中数学联赛试题)已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二

“根的判别式”的种种应用

“根的判别式”的种种应用 学习了一元二次方程的求根公式以后,为了研究问题的方便,我们把一元二 次方程ax2+bx+c=0(a≠0)的求根公式x= a ac b b 2 4 2- ± - 中的b2-4ac称做为根的判别式,用符号“Δ”来表示,即Δ=b2-4ac.至此,我们一般只知道:当Δ>0时,方程有两个不相等的实数根,当Δ=0时,方程有两个相等的实数根,当Δ<0时,方程没有实数根.反之也成立.至此,我们可以不解方程,利用根的判别式来判别根的情况.而事实上,一元二次方程根的判别式还许多其它的应用,为方便同学们的学习,现举例说明. 一、不解方程,判断根的情况 例1已知关于x的一元二次方程x2-mx-2=0.…① (1)若x=-1是方程①的一个根,求m的值和方程①的另一根; (2)对于任意实数m,判断方程①的根的情况,并说明理由. 解(1)因为x=-1是方程①的一个根,所以1+m-2=0,解得m=1. 所以原方程为x2-x-2=0,解得x1=-1,x2=2.所以方程的另一根为x=2. (2)Δ=b2-4ac=m2+8,因为对于任意实数m,m2≥0,所以m2+8>0, 所以对于任意的实数m,方程①有两个不相等的实数根. 说明运用根的判别式时,必须注意化方程为一元二次方程的一般形式,明确a,b,c的值. 二、确定字母系数的范围 例2已知关于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,则k的取值范围是___. 解因为于x的一元二次方程(k+1)x2+2x-1=0有两个不相同的实数根,所以满足Δ=22-4×(k+1)×(-1)>0,且k+1≠0,解得k>-2,且k≠-1. 说明利用根的判别式解题时,若原一元二次方程的二次项含有字母系数,则必须保证二次项系数不等于0这一隐含条件的限制. 三、字母系数的值 例3当m为何值时,关于x的一元二次方程x2-4x+m-1 2 =0有两个相等的 实数根?此时这两个实数根是多少?

求根公式及根的判别式

加强班求根公式及根的判别式 在解一元二次方程有关问题时,最好能知道根的特点:如是否有实数根,有几个实数根,根的符号特点等。我们形象地说,判别式是一元二次方程根的“检测器”,在以下几个方面有着广泛的应用: 利用判别式,判定方程实根的个数,根的特点; 运用判别式,建立等式、不等式,求方程中参数的值或参数的取值范围; 通过判别式,证明与方程相关的代数问题; 借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。 例题1 (1)设a,b 是整数,方程02=++b ax x 的一根是324-,则a+b 的值是 (2)满足1)1(22=--+n n n 的整数n 有 个。(全国初中数学竞赛题) 例题2 已知0132=+-a a ,那么=++ --2219294a a a ( ) A 、3; B 、5; C 、35; D 、65 例题3 解关于x 的方程02)1(2=+--a ax x a 例题4 设方程04|12|2=---x x ,求满足该方程的所有根之和。 例题 5 设关于x 的二次方程0)2()2()1(222=+++--a a x a x a ○1及 0)2()2()1(222=+++--b b x b x b ○ 2(其中a,b 皆为正整数,且a ≠b )有一个公共根。求

a b a b b a b a --++的值。 例题6(1)关于x 的方程k x k kx 8)18(22-=++有两个不相等的实数根,则k 的取值范围是 , (2)关于x 的方程0122 23=-+--a ax ax x 只有一个实数根,则a 的取值范围是 例题7 把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入□2x +□x+□=0的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( ) A 、不存在; B 、有一组; C 、有两组; D 、多于两组; 例题8 已知关于x 的方程02)2(2=++-k x k x (1)求证:无论k 取任何实数值,方程总有实数根。 (2)若等腰三角形ABC 的一边长a=1,另两边长b,c 恰好是这个方程的两个根,求三角形ABC 的周长。(湖北省荆门市中考题) 例题9 设方程4||2=+ax x 只有3个不相等的实数根,求a 的取值和相应的3个根。(重庆市竞赛题)

根的判别式练习(答案版)

一元二次方程根的判别式练习题 (一)填空 1.方程x2+2x-1+m=0有两个相等实数根,则m=____. 2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数. 3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根. 5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____. 6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____. 7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是2 8.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有__.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____. 10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____. 11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____. 12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____. 13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___. 14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____. 15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解. 16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p(1+q)x+q3+2q2+q=0____实根. (二)选择 那么α= [ ]. 18.关于x的方程:m(x2+x+1)=x2+x+2有两相等的实数根,则m值为 [ ]. 19.当m>4时,关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数为 [ ]. A.2个; B.1个; C.0个; D.不确定. 20.如果m为有理数,为使方程x2-4(m-1)x+3m2-2m+2k=0的根为有理数,则k的值为 [ ]. 则该方程 [ ]. A.无实数根; B.有相等的两实数根; C.有不等的两实数根; D.不能确定有无实数根. 22.若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ]. A.2; B.0; C.1; D.3. 23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是 [ ]. A.1; B.2; C.-1; D.0. 24.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是 [ ]. A.4; B.-7; C.4或-7; D.所有实数. [ ]. A.两个相等的有理根; B.两个相等的实数根; C.两个不等的有理根; D.两个不等的无理根. 26.方程2x(kx-5)-3x2+9=0有实数根,k的最大整数值是 [ ]. A.-1; B.0; C.1; D.2. 29.若m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为 [ ]. A.4; B.1; C.-2; D.-6. 30.方程x|x|-3|x|+2=0的实数根的个数是 [ ]. A.1; B.2; C.3; D. 4.

一元二次方程根的判别式的综合应用

一元二次方程根的判别式的综合应 用 一、知识要点: 1.一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac。 定理1 ax2+bx+c=0(a0)中,>0方程有两个不等实数根. 定理2 ax2+bx+c=0(a0)中,=0方程有两个相等实数根. 定理3 ax2+bx+c=0(a0)中,<0方程没有实数根. 2、根的判别式逆用(注意:根据课本反过来也成立)得到三个定理。 定理4 ax2+bx+c=0(a0)中,方程有两个不等实数根>0. 定理5 ax2+bx+c=0(a0)中,方程有两个相等实数根=0.

定理6 ax2+bx+c=0(a0)中,方程没有实数根<0. 注意:(1)再次强调:根的判别式是指=b2-4ac。(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。 (3)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac0切勿丢掉等号。(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a0. 二.根的判别式有以下应用: ①不解一元二次方程,判断根的情况。 例1.不解方程,判断下列方程的根的情况: (1)2x2+3x-4=0(2)ax2+bx=0(a0) 解:(1) 2x2+3x-4=0 a=2, b=3, c=-4,

∵=b2-4ac=32-42(-4)=41 方程有两个不相等的实数根。 (2)∵a0,方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零, ∵=(-b)2-4a0=b2, ∵无论b取任何关数,b2均为非负数, 0,故方程有两个实数根。 ②根据方程根的情况,确定待定系数的取值范围。 例2.k的何值时?关于x的一元二次方程x2-4x+k-5=0(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根; 分析:由判别式定理的逆定理可知(1)>0;(2)=0;(3)<0;

判别式和根与系数关系

判别式和根与系数关系专题复习 1.若关于x 的一元二次方程2210x x -+=有实数根,则m 的取值范围是( ) A.1m < B. 1m <且0m ≠ C.m ≤1 D. m ≤1且0m ≠ 2. 一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 3.已知关于x 的一元二次方程2410x x m ++-=.请你为m 选取一个合适的整数,当m =____________时,得到的方程有两个不相等的实数根; 4.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________. 5.若关于x 的方程227(21)04 x k x k +-+- =有两个相等的实数根,求k 的取值范围。 6、已知关于x 的方程2(2)2(1)10m x m x m ---++=,当m 为何非负整数时: (1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根. 7、求证:关于x 的方程2(21)10x k x k +++-=有两个不相等的实数根。

8、 证明:不论a ,b ,c 为任何实数,关于x 的方程0)()(22=+---c ab x b a x 都有实数 根. 9、求证:方程074)1(3222=--+-+m m x m x 对于任何实数m ,永远有两个不相等的实数根;(15分) 10、已知方程222(9)(34)0x k x k k +-+++=有两个相等的实数根,求k 值,并求出方程的根。 11、 已知关于x 的一元二次方程22 23840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围.

九年级数学上册专题突破讲练根的判别式的深化应用试题新版青岛版

根的判别式的深化应用 一、一元二次方程根的判别式 对于一元二次方程ax 2+bx +c =0(a ≠0),它的解的情况由b 2-4ac 的取值决定,我们 通常用“?2-,即ac b 42 -=?。 方程ax 2+bx +c =0(a ≠0)的根的情况 =?b 2-4ac >0 两个不相等的实数根 =?b 2-4ac =0 两个相等的实数根 =?b 2-4ac <0 没有实数根 方法归纳:用b -4ac 可以判断方程根的情况,反过来,若已知方程根的情况,则可确定b 2-4ac 的取值。 二、根的判别式的应用 1. 判断一元二次方程根的情况。 2. 确定一元二次方程中字母系数的取值范围。 3. 确定一元二次方程根的某些特性,如是不是有理根。 方法归纳:(1)计算=?b 2-4ac 时注意a 、b 、c 表示各项系数,包括它们前面的符号; (2)关于根的判别式=?b 2-4ac 的正、负号的判定涉及代数式的恒等变形,一般地,将表 示=?b 2-4ac 的代数式进行配方,利用非负数、非正数的概念,确定=?b 2-4ac 的正、负号。 总结: 1. 会讨论方程的根的情况,包括一元一次方程和一元二次方程。 2. 能利用一元二次方程根的判别式判断方程的根的特性,如:有理根、整数根等。 例题1 关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定 解析:这是含字母系数的一元二次方程,将字母视为数字即可。这里a =1,b =-m ,c =m -2。因为b 2-4ac =(-m )2-4×1×(m -2)=m 2-4m +8=m 2-4m +4+4=(m -2)2+4>0,所以方程有两个不相等的实数根。 答案:A 点拨:判断b 2-4ac 的正、负情况时,通常有两种情形,(1)已知判别式中某些字母的 取值范围,依此确定判别式?的取值范围;(2)一般要将表示b 2-4ac 的代数式进行配方, 利用偶次幂的非负性确定b 2-4ac 的正、负号。 例题2 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们 称这个方程为“凤凰”方程,已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等 的实数根,则下列结论正确的是

公式法解一元二次方程与根的判别式

课题 公式法解一元二次方程与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程2 0(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0)的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样?能不能用已知数a 、b 、c 来表示呢?我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02 ≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式 注:在我们以前学过的一元二次方程中,会碰到有的方程没有解。 因此对上面这个方程要进行讨论

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0 ))(021<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

一元二次方程根的判别式的多种应用

一元二次方程根的判别式的多种应用 一元二次方程根的判别式用来判断一元二次方程根的情况,能帮助我们解一元二次方程,也是以后学习一些知识的基础,在解题中应用很多,举例如下: 一、不解方程,判断一元二次方程根的情况。 例1、判断下列方程根的情况 2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根? 简解:当Δ=[-(2m-1)]2-4(m-4)m≥0时,原方程有两个实数根, ∴4m2-4m+1-4m2+16m≥0,解得m≥- 又∵m-4≠0 ∴m≠4 ∴当m≥- 且m≠4时,原方程有两个实数根。 例3、当m分别取何值时关于x的方程(m-1)x2+(2m-1)x+m-1=0 l 有两个不相等的实数根 l 有两个相等的实数根 l 有两个实数根 l 有一个实数根 l 有实数根 l 无实数根 评析:初中阶段的根的判别式Δ=b2-4ac是相对于一元二次方程而言的,而ax2+bx+c=0当a=0时是一元一次方程不能用判别式,所以例2中一定要考虑二次项系数m-4≠0;例3则一定要做分类讨论。 三、证明方程根的性质。 例4、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。简解:∵Δ=(m2+3)2-4╳0.5(m2+2)=m4+4m2+5=(m2+2)2+1>0 ∴无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 评析:这种应用有两个难点:(1)是容易与(二)中求字母取值混淆,即用Δ≥0求m的取值范围;(2)是用配方法证明二次三项式的特性。 四、判断二次三项式能否在实数范围内因式分解。 例5、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 简解:当Δ=[-2(m+2)]2-4m(m+5)≥0时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。 ∴m≥4且m≠0。 评析:对于系数是有理数的二次三项式ax2+bx+c(a≠0)的因式分解,其方法是先求ax2+bx+c=0(a≠0)的根然后再代入公式,所以,判别式决定了二次三项式能否在实数范围内因式分解,即: Δ<0时不能在实数范围内因式分解; Δ≥0时能在实数范围内因式分解;进而当Δ为完全平方数时能在有理数范围内因式分解; 再进而当Δ=0时ax2+bx+c=a(x-x1)(x-x2)=a(x-x1)2(a≠0),所以此时可以说它是完全平方式。五、判定二次三项式为完全平方式。 例6、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例7、当m为何值时,代数式(5m-1)x2-(5m+2)+3m—2是完全平方式。 六、利用判别式构造一元二次方程。 例8、已知:(z-x)2-4(x-y)(y-z)=0(x≠y) 求证:2y=x+z

公式法与根的判别式

八 年级 数学 学科 总计 20 课时 第 5 课时 课题 求根公式与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程20(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0)的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样?能不能用已知数a 、b 、c 来表示呢?我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式 注:在我们以前学过的一元二次方程中,会碰到有的方程没有实数解。 因此对上面这个方程要进行讨论 因为2 040a a ≠>所以

专题一元二次方程根的判别式含复习资料

一元二次方程根的判别式姓名 ◆课前预习 1.一元二次方程20(a≠0)的根的情况可用b2-4?来判定,?b2-4?叫做,通常用符号“△”为表示.(1)b2-4>0方程;(2)b2-4=0方程;(3)b2-4<0方程. 2.使用根的判别式之前应先把方程化为一元二次方程的形式. ◆互动课堂 【例1】不解方程,判别下列方程根的情况: (1)x2-53=0;(2)x2+22=0;(3)3x2+2=4x;(4)2+()0(m≠0,m≠n). 【例2】若关于x的方程(m2-1)x2-2(2)1=0有实数根,求m的取值范围. 【例3】已知关于x的一元二次方程x2-(21)4(k-)=0.(1)求证: 无论k取什么实数值,这个方程总有实数根;(2)如果等腰△有一边长4,另两条边长b,c恰好是这个方程的两个实数根,求△的周长. 【例4】已知关于x的方程x-2(1)2=0.(1)当m取何值时,方程有两个实数根? (2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ◆跟进课堂 1.方程2x2+3x-4=0的根的判别式△. 2.已知关于x的一元二次方程2-105=0有实数根,则m的取值范围是.

3.如果方程x2-2x-3=0有两个相等的实数根,则m的值为,此时方程的根为. 4.若关于x的一元二次方程2+2x-1=0没有实数根,则k的取值范围是.5.若关于x的一元二次方程2-2(3m-1)9m-1=0有两个实数根,则实数m?的取值范围是. 6.下列一元二次方程中,没有实数根的是(). A.x2+2x-1=0 B.x2+23=0 C.x21=0 D.-x22=0 7.如果方程2x(-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.2 8.下列一元二次方程中,有实数根的方程是(). A.x2-1=0 B.x2-23=0 C.x2-1=0 D.x2+4=0 9.如果关于x的一元二次方程2-69=0有两个不相等的实数根,那么k的取值范围是(). A.k<1 B.k≠0 C.k<1且k≠0 D.k>1 10.关于x的方程x2+(3m-1)2m2-0的根的情况是(). A.有两个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根 ◆课外作业 1.在下列方程中,有实数根的是() (A)x2+31=0 (B) 1 (C)x2+23=0 (D)= 2.关于x的一元二次方程x2+-1=0的根的情况是 A、有两个不相等的同号实数根 B、有两个不相等的异号实数根 C、有两个相等的实数根 D、没有实数根 3.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为().

相关文档
最新文档