数据拟合方法研究

数据拟合方法研究
数据拟合方法研究

数据拟合方法研究

中文摘要

在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。

本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的

关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法

Data Fitting Method

Abstract

In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model.

This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment

data processing more and more convenient. But also put forward the new subject, which is in the data processing method of choice should be more careful than ever before.Because carelessly a bit, it can be very easily according to the correct experimental data that not the exact and even the wrong conclusion. Therefore, to raise the fitting accuracy is very necessary

Key words:Data Fitting ; Least square method; Curve fitting; Polynomial swing; Residual method

目录

中文摘要..........................I Abstract .........................II 第一章绪论 (1)

1.1数据简介 (1)

1.1.1名词解释 (1)

1.1.2数据属性 (1)

1.2 曲线拟合简介 (2)

第二章数据拟合方法分类 (3)

2.1 线性拟合 (4)

2.2 二次函数拟合 (6)

2.3 数据的n次多项式拟合 (8)

2.4 点集{x

1,x

2

,……,x

m

}上的正交多项式系 (9)

2.5 用正交多项式系组成拟合函数的多项式拟合 (10)

2.6 指数函数的数据拟合 (11)

2.7 多元线性函数的数据拟合 (12)

第三章曲线拟合特性 (14)

3.1 线性模型的曲线拟合 (14)

3.1.1 最小二乘法及其计算 (14)

3.1.2 用正交多项式作最小二乘拟合 (20)

3.2 非线性模型的曲线拟合 (23)

3.2.1 牛顿迭代 (23)

3.2.2 常见非线性模型 (24)

第四章多项式的摆动 (29)

4.1 多项式摆动介绍 (29)

4.2 影响多项式拟合偏差的因素 (32)

4.2.1 实验数据的不均匀性 (32)

4.2.2 数据的密度 (33)

4.2.3 拟合曲线的适用区间 (33)

4.3 使用多项式拟合的注意事项 (33)

4.3.1尽量避免高阶多项式的拟合 (33)

4.3.2保持密度 (34)

4.3.3在实验数据走向比较明确的前提下,可以考虑其他的非线性拟

合方法 (34)

第五章残数法与最小二乘法结合 (36)

5.1 二项指数曲线原理与方法 (36)

5.2 资料与分析 (39)

5.3 残数法与最小二乘法结合总结 (42)

第六章总结 (44)

结束语 (44)

参考文献 (47)

附录1 英文原文 (51)

附录2 中文翻译 (65)

附录3 程序 (78)

第一章绪论

在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。

1.1数据简介

科学实验、检验、统计等所获得的和用于科学研究、技术设计、查证、决策等的数值。

1.1.1名词解释

研究数据就是对数据进行采集、分类、录入、储存、统计分析,统计检验等一系列活动的统称。

1.1.2数据属性

柯岩《奇异的书简·船长》:“贝汉廷分析着各个不同的数据,寻找着规律,终于抓住了矛盾的牛鼻子。”数据是载荷或记录信息的按一定规则排列组合的物理符号。可以是数字、文字、图像,也可以是计算机代码。对信息的接收始于对数据的接收,对信息的获取只能通过对数据背景的解读。数据背景是接收者针对特定数据的信息准备,即当接收者了解物理符号序列的规律,并知道每个符号和符号组合的指向性目标或含义时,便可以获得一组数据所载荷的信息。亦即数据转化为信息,可以用公式“数据+背景=信息”表示。

数据拟合在很多地方都有应用,主要用来处理实验或观测的原始离散数据。通过拟合可以更好的分析和解释数据。

1.2 曲线拟合简介

曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。

在科学实验或社会活动中,人们常常需要观测很多数据的规律, 通过实验或者观测得到量x与y的一组数据对()(i=1,2, …,N),其中是彼此不同的。人们希望用一类与数据本质规律相适应的解析表达

式,来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。常称作拟合模型,当c在中线性出现时,称为线性模型,否者称为非线性模型。线性模型是回归模型中最常见的一种,但在实际中,许多现象之间的关系往往并不是线性的,而是呈现某种曲线关系。如服药后血药浓度与时间的关系;病毒剂量与致死率的关系;化学反应的反应物浓度与反应速度的关系。这就产生的曲线拟合,用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。用解析表达式逼近离散数据的一种方法。

第二章数据拟合方法分类

在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10–3 g/cm3)与时间t (min)的关系如表所示

显然,

连续函数关系y(t)

是客观存在的。但是通过

表中的数据不可能确切

地得到这种关系。何况,

由于仪器和环境的影响,

测量数据难免有误差。因

此只能寻求一个近拟表

达式

y = (t)

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合

方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)

(t

作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。

数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方便,将例1的数据表写成一般的形式

2.1 线性拟合

假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数

y= a + b x

中系数a和b各等于多少?从几何背景来考虑,就是要以a和b作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即

a +

b x

k = y

k

如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为

k k y bx a -+的差异(残差)

。于是全部点处的总误差是 ∑=-+10

1

k k k

y bx

a

这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和

b 使得函数

∑=-+=10

12)(),(k k k y bx a b a F

达到极小。为了求该函数的极小值点,令

0=??a F ,0=??b

F , 得

0)(210

1

=-+∑=k k k

y bx

a , ∑==-+10

1

0)(2k k k k x y bx a

这是关于未知数a 和b 的线性方程组。它们被称为法方程,又可以写成

???????

=+=+∑∑∑∑∑=====10

11012101

101

10110k k k k k k k k k k k y x b x a x y b x a

求解这个二元线性方程组便得待定系数a和b,从而得线性拟合函数 y = a + b x

2.2 二次函数拟合

假设拟合函数不是线性函数,而是一个二次多项式函数。即拟合函数的图形是一条平面上的抛物线,而表中的数据点未能精确地落在这条抛物线上的原因是实验数据的误差。则下一步是确定函数

y = a

0 + a

1

x + a

2

x 2

中系数a0、a1和a2各等于多少?从几何背景来考虑,就是要以a0、a1和a2为待定系数,确定二次曲线使得表中数据所对应的10个点尽可能地靠近这条曲线。一般来讲,数据点将不会全部落在这条曲线上,如果第k个点的数据恰好落在曲线上,则这个点的坐标满足二次曲线的方程,即

a 0 + a

1

x

k

+ a

2

x

k

2 = y

k

如果这个点不在曲线上,则它的坐标不满足曲线方程,有一个误差(残差)。

于是全部点处的总误差用残差平方和表示

∑=-++=10

122

210210])[(),,(k k k k y x a x a a a a a F

这是关于a 0、a 1和a 2的一个三元函数,合理的做法是选取a 0、a 1和a 2 ,使得这个函数取极小值。为了求该函数的极小值点,令

00=??a F ,01=??a F ,02

=??a F

?????????=-++=-++=-++∑∑∑===10

1

2

22101012

2101012

2100])[(20])[(20])[(2k k k k k k k k k k k k k k x y x a x a a x y x a x a a y x a x a a 这是关于待定系数a 0、a 1和a 2的线性方程组,写成等价的形式为

??????

???=++=++=++∑∑∑∑∑∑∑∑∑∑∑===========1012

1012410113101

02

10

110110123

12101

010

1

10122

1101010k k

k k k k k k k k k k k k k k k k k k

k k k k y x a x a x a x y x a x a x a x y a x a x a

这就是法方程,求解这一方程组可得二次拟合函数中的三个待定系数。下

2.3 数据的n 次多项式拟合

已知函数在个离散点处的函数值,假设拟合函数是n 次多项式,则需要用所给数据来确定下面的函数

y = a 0 + a 1 x + a 2 x 2 + …… + a n x n

这里要做一个假设,即多项式的阶数n 应小于题目所给数据的数目m (例题中m = 10)。类似前面的推导,可得数据的n 次多项式拟合中拟合函数的系数应满足的正规方程组如下

???

?

??????

????????????=????????????

????

??

?

?

????????????????????∑∑∑∑∑∑∑∑∑∑∑=====+==+====m k k n k m

k k k m

k k n m

k n k

m

k n k

m

k n k m

k n k m

k k

m k k

m

k n k m

k k y x y x y a a a x x x x x

x

x x m 111

10121

1

1

1

1

12

11

1

从这一方程组可以看出,线性拟合方法和二次拟合方法是多项式拟合的特殊情况。从算法上看,数据最小二乘拟合的多项式方法是解一个超定方程组

??

????

?=++++=++++=++++m n m n m m n

n n n y

x a x a x a a y x a x a x a a y x a x a x a a 2210

2

22222101

1212110( m > n ) 的最小二乘解。而多项式拟合所引出的正规方程组恰好是用超定方程组的系数矩阵的转置矩阵去左乘超定方程组左、右两端所得。正规方程组的系数矩阵是一个病态矩阵,这类方程组被称为病态方程组。当系数矩阵或者是右端向量有微小的误差时,可能引起方程组准确解有很大的误差。为了避免求解这样的线性方程组,在做多项式拟合时可以将多项式中的各次幂函数做正交化变换,使得所推出的正规方程的系数矩阵是对角矩阵。

2.4 点集{x 1,x 2,……,x m }上的正交多项式系

多项式q 0(x ),q 1(x ),q 2(x ),……,q n (x )在点集{x 1,x 2,……,x m }上的

正交 ∑==m

i i j i k j k x q x q q q 1)()(),(

正交多项式系可以认为是幂函数系:1,x ,x 2,……,x n 通过正交变换而

得到的一组函数。正交多项式系构造的方法如下:

q 0(x )=1,q 0(x ) = x – a 1 ,(a 1 = n x m

i i /1

∑=),

q k (x ) = (x - a k ) q k -1(x ) - b k q k-2(x ) ,( k = 2,3,……,n ) 其中,

∑∑=-=-----==m

i i k m i i k i k k k k k x q x q x q q q xq a 1

2

11

2

11111)(/)(),/(),(

∑∑=-=-----==m

i i k m

i i k k k k k k x q x q q q q q b 1

2

21

2

12211)(/)(),/(),(

2.5 用正交多项式系组成拟合函数的多项式拟合

考虑拟合函数:)()()()(1100x q a x q a x q a x n n +++= ?,将数据表

中的数据代入,得超定方程

??

????

?=++++=++++=++++m

m n n m m m n n n n y x q a x q a x q a x q a y x q a x q a x q a x q a y x q a x q a x q a x q a )()()()()()()()()()()()(2211002

222221120011122111100 (m > n ) 其系数矩阵为

????

????????)()()()()()()()()()()()(21022221201121110m n m m m

n n x q x q x q x q x q x q x q x q x q x q x q x q

由于多项式q 0(x ),q 1(x ),q 2(x ),……,q n (x )在点集{x 1,x 2,……,x m }上的正交,所以超定方程组的系数矩阵中不同列的列向量是相互正交的向量组。于是用这一矩阵的转置矩阵去左乘超定方程组左、右两端得正规方程组

??????

?===),(),(),(),(),(),(11110000y q a q q y q a q q y q a q q n n n n => ???????===)

,/(),(),/(),(),/(),(1

1110000n n n n q q y q a q q y q a q q y q a 其中,∑==m i i k k k x q q q 1

2

)(),(,∑==m

i i i k k y x q y q 1

)(),(。因为正规方程组中每

一个方程都是一元一次方程可以直接写出原超方程组的最小二乘解,所以拟合函数为

)()

,(),()(),()

,()(),(),()(11110000x q q q y q x q q q y q x q q q y q x n n n n +++=

?

这一结果与用次多项式拟合所得结果在理论是完全一样的,只是形式上不同、算法实现上避免了解病态方程组。

2.6 指数函数的数据拟合

问题1:世界人中预测问题

下表给出了本世纪六十年代世界人口的统计数据(单位:亿)

有人根据表中数据,预测公元2000年世界人口会超过 60亿。这一结论在六十年代末令人难以置信,但现在已成为事实。试建立数学模型并根据表中数据推算出2000年世界人口的数量。

根据马尔萨斯人口理论,人口数量按指数递增的规律发展。记人口数为N(t),则有指数函数N e a bt

=+。现需要根据六十年代的人口数据确定函数表达式中两个常数a、b。为了计算方便,对表达式两边取对数,得ln N a bt

=+,令N

y ln

=。于是bt

a

t

y+

=

)(。

(1)计算出表中人口数据的对数值y k = ln N k ( k = 1,2, (9)

(2) 根据表中数据写出关于两个未知数a 、b的9个方程的超定方程组(方程数多于未知数个数的方程组)

a +

b t

k = y

k

( k = 1,2, (9)

其中,t1 =1960,t2 =1961,t3 =1962,……,t9 =1968;

y

1

= ln29.72,y2 = ln 30.61,……,y9 = ln34.83。

(3) 利用MATLAB解线性方程组Ax=c的命令A\c计算出a 、b的值,并写出人口增长函数。利用人口增长函数计算出2000年世界人口数据:N(2000)

2.7 多元线性函数的数据拟合

问题2 人的耗氧能力的数据拟合。

人的耗氧能力y (ml/min·kg)与下列变量有关

x 1 年龄 x 2 体重

x 3 1.5英里跑步所用时间 x 4 静止时心速 x 5 跑步时最大心速

某健身中心对31个自愿者进行测试,得到31组数据(每一组数据有6个数)

令耗氧能力为因变量,其它的指标为自变量,建立线性模型

为了确定6个系数,利用已记录的数据得超定方程组

这一方程组包含6个未知数

,但却有31个方程。写出

超定方程组的系数矩阵和右端向量如下

????

??

?

?????

??=31,531

,431,331,231

,15242

32

22

1251413121

11111x x x x x x x x x x x x x x x A

,????????????=312

1y y y y 由最小二乘法可得正规方程组

y A AX A T T =

其中,

T

第三章曲线拟合特性

在科学实验或社会活动中,人们常常需要观测很多数据的规律, 通过实验或者观测得到量x与y的一组数据对()(i=1,2, …,N),其中是彼此不同的。人们希望用一类与数据本质规律相适应的解析表达式,

来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。常称作拟合模型,当c在中线性出现时,称为线性模型,否者称为非线性模型。

3.1 线性模型的曲线拟合

已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λm), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合。下面介绍计算线性拟合的基本方法。

3.1.1 最小二乘法及其计算

在函数的最佳平方逼近中,如果只在一组离散点集{ }上给出,这就是科学实验中常见的实验数据

{}的曲线拟合,这里,要求

一个函数与所给数据{}拟合,若记

,设

是C[a,b]上线性无关函数族,在

中找一个函数,使误差平方和

这里

这就是一般的最小二乘逼近,用几何语言说,就称为曲线拟合的最小二乘法。

用最小二乘法求曲线时,首先要确定的形式。这部单纯三数学问

题,还与所研究问题的运动规律及所得观测数据有关;通常要从问题的运动规律或给定数据描图,确定的形式,并通过实际计算选

出较好的结果。的一般表达式为(3.2)式表示的线性形式。若

是k次多项式,就是n次多项式。为了使问题的提法更有一般性,通常在最小二乘法中都考虑为加权平方和

这里是[a,b]上的权函数,它表示不同点处的数据比重不同,用最小二乘法求拟合曲线的问题,就是在形如(2.2)式的中求一函数,使(3.3)式取得最小。它转化为求多元函数

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

第三章_曲线拟合算法的研究汇总

第三章 曲线拟合算法的研究 3.1 引言 随着航空、汽车等现代工业与计算机技术的发展,圆锥曲线与列表点曲线已经成为形状数学描述的常用方法,得到了广泛的应用。为了满足激光切割加工任务的需要,自动编程系统集成了多种曲线拟合算法,这样利用现有的激光切割机,即可实现特殊曲线的插补功能,极大地丰富系统的插补能力,满足复杂的生产要求。 3.2 圆锥曲线拟合算法的研究 在经济型数控系统中,对于圆锥曲线即平面二次曲线的加工是数控加工中经常遇到的问题,随着数控加工对圆锥曲线插补的需求,近年来有关各种圆锥曲线的插补算法应运而生[26]。常用的解决方法是先用低次的有理参数曲线拟合或将其离散,再用直线、圆弧逼近,然后才能进行数控加工[28]。本章从一个新的视角利用双圆弧方法,提出先对圆锥曲线进行标准化处理,再用双圆弧拟合逼近,然后再进行数控加工。这样的优点是:圆弧样条的等距曲线还是圆弧;双圆弧样条能达到C 1连续,基本上能满足要求;所有数控系统都具有直线插补和圆弧插补功能,无需增加额外负担。 由于工程应用不同,对曲线拟合的要求也不同。有的只要求拟合曲线光滑,有的要求光顺[9-10]。本章中开发的软件要求是:支持多种常用圆锥曲线的拟合;拟合曲线要求光滑;拟合曲线与函数曲线间的误差应控制在允许的范围之内,且拟合圆弧段数较少。 本章提出的对圆锥曲线的插补,是建立在对平面任意二次曲线可以进行分类的基础上,先将二次曲线进行分类,然后对各类曲线分别进行双圆弧拟合,这样就可以直接利用数控系统的圆弧插补功能进行插补。 3.2.1 圆锥曲线的一般理论[9] 在平面直角坐标系中,二元二次方程所表示的曲线称为二次曲线。其中系数A 、B 、 C 、 D 、 E 、 F 为实常数,且A 、B 、C 不同时为零。 022=+++++F Ey Dx Cy Bxy Ax (3.1) 式(3.1)称为圆锥曲线的隐式方程。令 AC B 42-=? (3.2) 称上式为二元二次方程(3.1)的判别式。 0

数据拟合文献综述

一、前言部分 本文首先指明了数据拟合的研究背景和意义,以及关于数据拟合问题所做的相关工作和当前的研究现状。二次拟合曲线由于有着良好的几何特性、较低的次数及灵活的控制参数,成为基本的体素模型之一,在计算机图形学和计算机辅助几何设计等领域中起着重要的作用。 解决数据拟合问题的基本思想是最小二乘法,本文中给出了最小二乘法的基本思想。分析解决数据拟合问题所采用的算法,并对典型性的算法进行了较为详细的求解。 关键词数据拟合;最小二乘法;多项式拟合; 二、主题部分 2.1 国内外研究动态,背景及意义 数学分有很多学科,而它主要的学科大致产生于商业计算的需要、了解数字间的关系、测量土地及预测天文事件。而在科技飞速发展的今天数学也早已成为众多研究的基础学科。尤其是在这个信息量巨大的时代,实际问题中国得到的中离散数据的处理也成为数学研究和应用领域中的重要的课题。 比如科学实验中,我们经常要从一组试验数据(,) i i x y,i = 0,1,...,n中来寻找自变量x和因变量y之间的函数关系,通常可以用一个近似函数y = f (x)表示。而函数y = f (x)的产生方法会因为观测数据和具体要求不同而不同,通常我们可以采用数据拟合和函数插值两种方法来实现。 数据拟合主要考虑到了观测数据会受到随机观测误差的影响,需要寻求整体误差最小、能够较好的反映出观测数据的近似函数y = f (x),这时并不要求得 到的近似函数y = f (x)必须满足y i = () i f x,i = 0,1,…,n。 函数插值则要求近似函数y = f (x)在每一个观测点 i x处一定要满足y i= () i f x,i = 0,1,…,n。在这种情况下,通常要求观测数据相对比较准确,即不考虑观测误差的影响。 所以,可以通过比如采样、实验等方法而得到若干的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。也就是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的逼近函数“最优的” 靠近那些数据点,按照误差最小的原则为最优标准来构造出函数。我们称这个函数为拟合函数。 2.1.1 国内外研究现状 在通过对国内外有关的学术刊物、国际国内有关学术会议和网站的论文进行参阅。数据拟合的研究和应用主要是面对各种工程问题,有着系统的研究和很大的发展。通过研究发展使得数据拟合有着一定的理论研究基础。尤其是关于数据

实验数据与曲线拟合

实验数据与曲线拟合 1. 曲线拟合 1. 曲线拟合的定义 2. 简单线性数据拟合的例子 2. 最小二乘法曲线拟合 1. 最小二乘法原理 2. 高斯消元法求解方程组 3. 最小二乘法解决速度与加速度实验 3. 三次样条曲线拟合 1. 插值函数 2. 样条函数的定义 3. 边界条件 4. 推导三次样条函数 5. 追赶法求解方程组 6. 三次样条曲线拟合算法实现 7. 三次样条曲线拟合的效果 4. 12.1 曲线拟合 5. 12.1.1 曲线拟合的定义 6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐 标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。 7. 12.1.2 简单线性数据拟合的例子 8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员 从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。 9. 表 12 – 1 物体速度和时间的测量关系表 10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。如图12–1所示,排除偏差明显 偏大的测量值后,可以看出测量结果呈现典型的线性特征。沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

计算方法_数据拟合回顾

第三章数据拟合回顾 keywords 最小二乘法 转化的思想

使误差的平方和为最小: 按最小二乘法, 作直线拟合应使 ∑=+-=N i i i x y b a b a Q 1 2 )]([),(为最小,极小值点一阶导数为0:0,0=??=??b Q a Q 最小二乘法(least squares method ) 2min, ()i i e e y a bx i i i =∑=-+2i i i i i i aN b x y a x b x x y ?+=??+=??∑∑∑∑∑得正规方程组: 2i i i i i i i i i i i i a b x y a x b x x y ωωωωωω?+=??+=??∑∑∑∑∑∑加权正规方程组: IF Y*=a0+a1X1+a2X2+a3X3+……+akXk (n>k ),THEN?

最小二乘法的几何意义(p51) y=a0x0+a1x1+a2x2+a3x3+……+akxk(n>k)其中x0=(1,1,1,.....1),x i=(xi1,xi2,xi3,.....,xin),i=1,2,3.....n

数据拟合方法一览表 线性关系直线拟合非线性关系曲线拟合 单变量直线拟合多 变 量 直 线 拟 合 多项式拟合非多项式拟合 变量 替换 转换 为直 线拟 合 多项 式拟 合的 最小 二乘 法 变量 替换 为多 变量 直线 拟合 方程 两边 取对 数转 换为 直线 拟合 正 交 多 项 式 拟 合 Y*=a0+a1X1+a2X2+a3X3+……+akXk(n>k)本

thank u

实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 实验数据曲线拟合方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研 究现状及研究意义;(第1、2周) 2、撰写开题报告;(第 3、4周) 3、应用最小二乘法进行曲线拟合;(第5、6周) 4、应用Matlab命令曲线拟合;(第7、8周) 5、应用Matlab图形用户界面曲线拟合;(第9、10周) 6、研究其他曲线拟合方法;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)(2)二稿;(第14周)

8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松,《自动控制原理》,科学出版社,2008,6 [3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]李桂成,《计算方法》,电子工业出版社,2013.8 [6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008 学生指导教师系主任

数据拟合法

第四章 数据拟合法 在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表 (,)(0,1, ,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关 系的一组数据表.而它们的解析表达式)(t f y =是不知道的。但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1, ,)i i x y i m =是由测量或观测得 到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个 线性无关函数系)(,),(),(10x x x n ??? ,以它们为基底构成的线性空间为 {}0span (), ,()n x x ??=Φ. 在此空间内选择函数 ()()n j j j x x ?α?==∑ 其中(0,1,,)j j n α=为待定常数。要求它逼近真实函数)(x f y =的误差尽可能小,这就是 数据拟合问题. §1 最小二乘法 一、最小二乘法 设有数据(,),0,1, ,i i x y i m =,令 ()(),0,1, ,n i i i i j j i j r y x y x i m ?α?==-=-=∑. 并称T m r r r r ),,,(10 =为残向量,用)(x ?去拟合)(x f y =的好坏问题变成残量的大小问题。 判断残量大小的标准,常用的有下面几种: (1) 确定参数(0,1, ,)j j n α=,使残量绝对值中最大的一个达到最小,即 i m i r ≤≤0max 为最小。 (2) 确定参数(0,1, ,)j j n α=,使残量绝对值之和达到最小,即 ∑=m i i r 为最小。 (3) 确定参数(0,1, ,)j j n α=,使残量的平方和达到最小,即

数据拟合方法研究气温变化规律

《数值计算》实验报告 学院:软件学院专业:软件工程班级:12级4班 实验名称 数据拟合方法研究气温变化规律 姓名罗光光学号1402120418 成绩 实验报告内容要求: 实验三:编写多项式拟合程序。并用该程序解决下列问题:假定某天的气温变化记录如下表,试用最小二乘方法找出这一天的气温变化规律。 h t/ 1 2 3 4 5 6 7 8 9 10 11 12 13 C T?/14 14 14 14 15 16 18 20 22 23 25 28 31 h t/14 15 16 17 18 19 20 21 22 23 24 C T?/32 31 29 27 25 24 22 20 18 17 16 考虑下列类型函数,计算误差平方和,并作图比较效果。 1.二次函数 2.三次函数 3.四次函数 4.函数 ) ) ( (2 c t b ae C- - =(提高:非线性拟合问题) 一.实验目的: 1.理解数据拟合的基本概念,基本方法; 2.掌握最小二乘法的基本原理,并学会通过计算机解决实际问题. 二.实验原理: 利用最小二乘法来解决实际遇到的问题,并解决问题 三.实验环境: PC机,MATLAB程序 四.实验过程(编写的程序) (1)二次函数 >> fun2=inline('c(1)*x.^2+c(2)*x+c(3)','c','x') fun2 = Inline function: fun2(c,x) = c(1)*x.^2+c(2)*x+c(3) >> x=0:24; >> y=[15 14 14 14 14 15 16 18 20 22 23 25 28 31 32 31 29 27 25 24 22 20 18 17 16];

数据拟合方法

第二讲 数据拟合方法 在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示 显然,连续函数关系 y (t )是客观存在的。但 是通过表中的数据不可能确切地得到这种关系。何况,由于仪器和环境的影响,测量数据难免有误差。因此只能寻求一个近拟表达式 y = (t )

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ?作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。 数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方 假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数 y= a + b x 中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即 a + b x k = y k 如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为 k k y bx a -+的差异(残差) 。于是全部点处的总误差是 ∑=-+10 1 k k k y bx a 这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函 数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 ∑=-+=10 12)(),(k k k y bx a b a F 达到极小。为了求该函数的极小值点,令 0=??a F ,0=??b F , 得

数据拟合方法研究

数据拟合方法研究 中文摘要 在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。 本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的 关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法

Data Fitting Method Abstract In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model. This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

数据拟合方法研究毕业论文

数据拟合方法研究毕业论文 目录 中文摘要.................................................... I Abstract ....................................................II 第一章绪论.. (1) 1.1数据简介 (1) 1.1.1名词解释 (1) 1.1.2数据属性 (1) 1.2 曲线拟合简介 (2) 第二章数据拟合方法分类 (3) 2.1 线性拟合 (4) 2.2 二次函数拟合 (6) 2.3 数据的n次多项式拟合 (8) 2.4 点集{x1,x2,......,x m}上的正交多项式系.. (9) 2.5 用正交多项式系组成拟合函数的多项式拟合 (10) 2.6 指数函数的数据拟合 (11) 2.7 多元线性函数的数据拟合 (12)

第三章曲线拟合特性 (14) 3.1 线性模型的曲线拟合 (14) 3.1.1 最小二乘法及其计算 (14) 3.1.2 用正交多项式作最小二乘拟合 (20) 3.2 非线性模型的曲线拟合 (23) 3.2.1 牛顿迭代 (23) 3.2.2 常见非线性模型 (24) 第四章多项式的摆动 (29) 4.1 多项式摆动介绍 (29) 4.2 影响多项式拟合偏差的因素 (32) 4.2.1 实验数据的不均匀性 (32) 4.2.2 数据的密度 (33) 4.2.3 拟合曲线的适用区间 (33) 4.3 使用多项式拟合的注意事项 (33) 4.3.1尽量避免高阶多项式的拟合 (33) 4.3.2保持密度 (34) 4.3.3在实验数据走向比较明确的前提下,可以考虑其他的非线性拟 合方法 (34)

在Matlab中数据拟合的研究应用

在Matlab 中数据拟合的研究应用 而解决数据拟合问题最重要的方法变是最小二乘法,矛盾方程组和回归分析。而本论文主要研究的就是最小二乘法。 在科学实验,统计研究以及一切日常应用中,人们常常需要从一组测定的数据(例如N 个点((,)(0,1,,)i i x y i m =)去求得自变量x 和因变量y 的一个近似解表达式()y x ?=,这就是由给定的N 个点(,)(0,1,,)i i x y i m =求数据拟合的问题. 插值法虽然是函数逼近的一种重要方法,但他还存在以下的缺陷:一是由于测量数据的往往不可避免地带有测试误差,而插值多项式又通过所有的点(,)i i x y ,这样就使插值多项式保留了这些误差,从而影响了逼近精度。此时显然插值效果是不理想的。二是如果由实验提供的数据较多,则必然得到次数较高的插值多项式,这样近似程度往往既不稳定又明显缺乏实用价值.因此,怎样从给定的一组实验数据出发,寻求已知函数的一个逼近函数()y x ?=,使得逼近函数从总体上来说与已知函数的偏差按某种方法度量能达到最小而又不一定过全部的点(,)i i x y ,这就需要介绍本论文主要研究的最小二乘法曲线拟合法。 一.数据拟合的原理及依据 1.最小二乘法的基本原理 从整体上考虑近似函数()p x 同所给数据点(,)i i x y (,)(0,1,,)i i x y i m =误差()(0,1, ,)i i i r p x y i m =-=的大小,常用的方法有以下三种:一是误差()(0,1,,)i i i r p x y i m =-=绝对值的最大值0max i i m r ≤≤,即误差向量01(,, ,)t m r r r r =的∞ -的范数;二是误差绝对值的和0m i i r =∑,即误差向量r 的1—范数;前两种方法简单,自然, 但不便于微分运算,后一种方法相当于考虑2-的范数的平方,因此在曲线拟合中常采用误 差平方和20m i i r =∑来度量误差01(,,,)m r r r r =的整体大小。 数据拟合的具体作法是:对给定的数据(,)(0,1, ,)i i x y i m =,在取定的函数类φ中,求

数据拟合

数据拟合 数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。根据一组二维数据,即平面上的若干点,要求确定一个一元函数()y f x =,即曲线,使这些点与曲线总体来说尽量接近,曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用Matlab 软件进行曲线拟合。 最小二乘法 给定平面上的点(,)i i x y ,(1,2,)i n =……,进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。最小二乘法的原理是: 求()f x ,使2 211[()]n n i i i i i f x y δδ====-∑∑达到最小。 如图1所示,其中i δ为点(,)i i x y 与曲线()y f x =的距离。曲线拟合的实际含义是寻求一个函数()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合得最好。最小二乘准则就是使所有散点到曲线的距离平方和最小。拟合时选用一定的拟合函数()f x 形式,设拟合函数可由一些简单的“基函数”(例如幂函数,三角函数等等)01(),(),()m x x x ???…… 来线性表示: 0011()()()()m m f x c x c x x ???=++……+c 图1 曲线拟合示意图 现在要确定系数01,,m c c c ……,,使δ达到极小。为此,将()f x 的表达式代入δ中,δ就成为01,,m c c c ……,的函数,求δ的极小,就可令δ对i c 的偏导数等于零,于是得到1m +个方程组,从中求解出i c 。通常取基函数为231,,,,,m x x x x ……,这时

曲线拟合的数值计算方法实验.

曲线拟合的数值计算方法实验 郑发进 2012042020022 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。

基于数据自然规律的不同拟合方法比较研究

基于数据自然规律的不同拟合方法比较研究 目的:寻找最优的数据拟合方法;方法:以数据为基础,分别用统计方法中的趋势法、分段法、AID法(Automatic Interaction Detection)进行拟合,通过比较拟合值与实际值,并计算各方法的均方误差,分析上述3种方法的拟合精度;结果:分段法所拟合的数据误差最小,拟合精度最高;结论:对于收集的可靠数据进行拟合时,须采用多个适用的拟合方法分别拟合,并进行比较后选择一个模型显著,精度高的作为最终决策模型,效果会更好。 标签:拟合方法比较;趋势法;分段法;AID法;应用条件;拟合精度 1 概述 拟合方法是统计预测的前提,拟合模型建立的不好,何谈预测效果?鉴于近30年来的各种规划涉及的预测方法应有尽有,但这些预测存在的一个严重问题是相差几百万、几千万都丝毫没有影响到“规划”的所谓科学性、合理性,这正是做课题人员的统计预测知识缺乏,而导致规划中预测结果的“宽范围”特殊性,使的规划检查执行进度时出现预测结果与后期实际结果相差得经过很长的时间才有可能,甚至永远不可能实现的困境。这里基于数据本身的特征进行拟合效果比较,进而达到拟合效果高精度实现。关于数据本身的规律大体上表现为两大类,一类是横截面数据的拟合,这一类大多涉及到多元回归问题,更多的是对所建模型利用样本区间以外的影响因素数据进行预测;另一类是时间序列数据的预测,更注重于趋势预测。本文主要研究时间序列数据的拟合问题。 在时间序列预测中,当序列存在明显的趋势成分时,需要使用趋势预测法[1]进行预测。然而有时候单一形式曲线的预测效果并不是很好。对此,李武选通过对旅游外汇收入数据采用分段拟合技术[2]建立模型进行预测,取得比单一形式曲线更好的拟合精度;方开泰使用AID法[3]将数据分区间进行拟合,发现AID 法在有异常数据的预测中比单一形式曲线有更好的效果。钱晓莉[4]将AID法应用于通过企业的广告费用预测销售收入的实例中,指出该法适宜于对含有特异值的样本进行预测。本文通过对某地的有关预报数据进行实证分析,用这3种拟合方法进行拟合,并比较三者的拟合效果。 2 研究方法及其应用条件 2.1 趋势拟合法 在趋势拟合法中主要有线性趋势和非线性趋势两种方法。线性趋势是指研究现象随着时间的推移而呈现出稳定增长或下降的线性变化规律,其线性拟合方程为yt=b1+b1t,其中待定系数和可根据最小二乘法求解。当所要研究现象呈现出某种非线性趋势,则需要拟合适当的趋势曲线。这种方法应用要求时间序列数据本身具有明显的趋势特征,如线性或者非线性特征。

计算方法离散数据曲线拟合

第三章 数据拟合 知识点:曲线拟合概念,最小二乘法。 1.背景 已知一些离散点值时,可以通过构造插值函数来近似描述这些离散点的运动规律或表现这些点的隐藏函数 曲线拟合方法也可以实现这个目标,不同的是构造拟合函数。两种方法的一个重要区别是:由插值方法构造的插值函数必须经过所有给定离散点,而曲线拟合方法则没有这个要求,只要求拟合函数(曲线)能“最好”靠近这些离散点就好。 2.曲线拟合概念 实践活动中,若能观测到函数y=f(x )的一组离散的实验数据(样点):(x i ,y i ), i =1,2…,n 。就可以采用插值的方法构造一个插值函数?(x),用?(x)逼近f(x )。插值方法要求满足插值原则 ?(x i )=y i ,蕴涵插值函数必须通过所有样点。另外一个解决

逼近问题的方法是考虑构造一个函数?(x )最优靠近样点,而不必通过所有样点。如图。 即向量T=(?(x 1), ?(x 2),…?(x n ))与Y=(y 1,y 2,。。。,y n )的某种误差达到最小。按T 和Y 之间误差最小的原则作为标准构造的逼近函数称拟合函数。 曲线拟合问题:如何为f(x )找到一个既简单又合理的逼近函数?(x)。 曲线拟合:构造近似函数?(x),在包含全部基节点x i (i =1,2…,n)的区间上能“最好”逼近f(x )(不必满足插值原则)。 逼近/近似函数y =?(x)称经验公式或拟合函数/曲线。 拟合法则:根据数据点或样点(x i ,y i ),i =1,2…,n ,构造出一条反映这些给定数据一般变化趋势的逼近函数y =?(x),不要求曲线?(x )经过所有样点,但要求曲线?(x)尽可能靠近这些样点,即各点误差δi =?(x i )-y i 按某种标准达到最小。 均方误差/误差平方和/误差的2-范数平方: 常用误差的2-范数平方作为总体误差的度量,以误差平方和达到最小作为最优标准构造拟合曲线的方法称为曲线拟合的最小二乘法(最小二乘原理)。 3.多项式拟合 2 4 4 2 ? ? ? ? ? ? ? ? -4 -2 样点 y =?(x) ?(x i ) y i =f(x i ) ∑==n i i 122 2 ||||δδ

相关文档
最新文档