可溶性转铁蛋白受体sTfR

可溶性转铁蛋白受体sTfR
可溶性转铁蛋白受体sTfR

可溶性转铁蛋白受体(sTfR)

转铁蛋白受体(TfR)介导含铁的铁蛋白从细胞外进入细胞内。TfR存在于许多细胞的表面,通过细胞表面受体的蛋白水解作用衍生过来的。在血清中sTfR 和不同的转铁蛋白以复合物的形式存在,其与组织转铁蛋白受体总量成正比。血清中的sTfR是膜表面受体的酶切形式,膜表面受体主要表达于各阶段骨髓幼红细胞膜表面,以中、晚红细胞和网织红细胞表达最为明显,在调节细胞铁摄取和维持机体铁稳态机制中发挥重要作用。血sTfR水平反映了体内铁状态。

铁蛋白是一种急性期反应物质,sTfR是功能性铁状态的一项特异性检测指标,不受各种干扰因素的影响,例如急性、慢性炎症反应,怀孕等。因此,在炎症、慢性疾病、肿瘤等多种炎性细胞因子活跃的状态,sTfR更能准确反映机体内的铁缺乏状态。

临床意义

可溶性转铁蛋白受体水平升高:

见于溶血性贫血、β-珠蛋白生成障碍性贫血、红细胞增多症;

可溶性转铁蛋白受体水平下降:

慢性肾功能衰竭、再生障碍性贫血、移植后贫血、慢性病贫血。

?红细胞生成增多时升高.

?不受炎症影响.

?铁过剩时减少.

?区别IDA 和ACD.

图1 转铁蛋白受体(sTfR)介导细胞吸收铁蛋白

图2 Ferritin和sTfR通过铁调素参与机体铁代谢平衡

参考文献:

1、S Kolias, H Nikolaou, P Eleftheriadi, N Sakarelou, A Fortis, M Laskou, N Maguina

Crit Care. Measurement of serum transferrin receptor (sTfR) in critically ill patients. 2001; 5(Suppl 1): P108.

2、A Zoli, L Altomonte, L Mirone, M Magaró, B M Ricerca, S Storti, A Candido, M Bizzi. Serum transferrin receptors in rheumatoid arthritis. Ann Rheum Dis. 1994 October; 53(10): 699–701

3、杨文睿,熊媛媛,张莉等. 血清可溶性转铁蛋白受体在重型再生障碍性贫血免疫抑制治疗早期疗效预测中的意义. 中华血液学杂志2013年8月第34卷第8期

人可溶性转铁蛋白受体(sTfR)1000ng 中文说明书

人可溶性转铁蛋白受体(sTfR)定量检测试剂盒(ELISA) 使用说明书 仅供科研使用,不得用于医学诊断。 使用前仔细阅读本说明书。 用途:用于定量检测人血清、血浆及相关液体样本中可溶性转铁蛋白受体(sTfR)的含量。 工作原理 本试剂盒采用双位点夹心酶联免疫吸附法(ELISA),测定样品中人可溶性 转铁蛋白受体(sTfR)的水平。向预先包被人可溶性转铁蛋白受体(sTfR)抗体的酶 标孔中加入标准品、待测样本和HRP标记的可溶性转铁蛋白受体(sTfR)抗体, 经过温育和洗涤,去除未结合的组分,然后再加入底物A、B,产生蓝色,并在 酸的作用下转化成最终的黄色。颜色的深浅与样品中人可溶性转铁蛋白受体(sTfR)的浓度呈正相关。 试剂盒组成 1标准品(1000ng/ml)0.5ml7显色剂A液6ml 2标准品稀释液6mL8显色剂B液6ml 3酶标包被板12孔×8条9终止液6ml 4酶标试剂6ml10说明书1份520×浓缩洗涤液25ml11封板膜2张6样品稀释液6ml12密封袋1个注:标准品用标准品稀释液依次稀释为:1000、500、250、125、62.5、0ng/ml 需要而未提供的试剂和器材 1.37℃恒温箱。 2.标准规格酶标仪。 3.精密移液器及一次性吸头 4.蒸馏水, 5.一次性试管 6.吸水纸 注意事项 1.从2-8℃取出的试剂盒,在开启试剂盒之前要室温平衡至少30分钟。酶标包被板开封后如未用完,板条应装入密封袋中保存。

2.各步加样均应使用加样器,并经常校对其准确性,以避免试验误差 3.建议所有标准品、样本都做双份检测。 4.严格按照说明书的操作进行,试验结果判定必须以酶标仪读数为准. 5.为避免交叉污染,要避免重复使用手中的吸头和封板膜。 6.不用的其它试剂应包装好或盖好。不同批号的试剂不要混用。保质前使用。7.底物B对光敏感,避免长时间暴露于光下。 洗板方法 手工洗板方法:甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将稀释后的洗涤液至少0.35ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中 标本要求 1.不能检测含NaN3的样品,因NaN3抑制辣根过氧化物酶的(HRP)活性。 2.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融 操作程序 1.分别设空白孔(空白对照孔不加样品及酶标试剂,其余各步操作相同)、标准品孔、待测样品孔。在酶标包被板上标准品孔中加入标准品50μl;在酶标包被板上待测样品孔中先加样品稀释液40μl,然后再加待测样品10μl(样品最终稀释度为5倍)。每孔加入酶标试剂50μl,空白孔除外。轻轻晃动混匀,37℃温育60分钟。 2.弃去液体,甩干,每孔加满稀释后洗涤液,振荡30秒,甩去洗涤液,用吸水纸拍干。如此重复5次,拍干。 3.每孔先加入显色剂A50μl,再加入显色剂B50μl,轻轻震荡混匀,37℃避光显色15分钟. 4.取出酶标板,每孔加终止液50μl,终止反应(此时蓝色立转黄色)。 5.测定:以空白孔调零,在450nm波长下测量各孔的吸光度值(OD值)。测定应在加终止液后15分钟以内进行。 6.根据标准品的浓度及对应的OD值计算出标准曲线的直线回归方程,再根据样品的OD值在回归方程上计算出对应的样品浓度。也可以使用各种应用软件来计算。应记住由于样品稀释了的,其实际浓度应该乘以总稀释倍数。 操作程序总结:

肿瘤医治论文:肿瘤铁蛋白研发趋向探讨

肿瘤医治论文:肿瘤铁蛋白研发趋向探讨 肿瘤细胞铁代谢 (一)转铁蛋白及转铁蛋白受体TfR1是N端胞浆域含有61个氨基酸的2型膜受体,是细胞摄取转铁蛋白结合铁的主要途径。转铁蛋白对细胞的生长、细胞铁代谢包括DNA合成、电子转移和有丝分裂信号通路都有非常重要的功能。Jian等研究发现,TfR1不但具有摄取铁的功能,而且是一个信号分子,具有Src酪氨酸磷酸化位点,能够增强乳腺癌细胞生存和抗凋亡水平。Vyhlidal等报道转铁蛋白受体能够被雌激素调控,并且高表达转铁蛋白受体的ER阳性乳腺癌细胞会对他莫苷芬(tamoxifen)表现出耐药性。转铁蛋白受体的高表达还与较差的神经精神量表(neuropsychiatricinventory,NPI)得分、肿瘤增殖、乳腺癌病人生存期的缩短相关。所以能够作为R+/luminal-like乳腺癌中具有tamox-ifen抗性和较差预后的亚型的标记物。转铁蛋白受体有两种亚型。TfR11在细胞表面普遍表达;TfR2正常情况下主要在肝脏表达,在肿瘤中却常常表达。TfR2与TfR1有45%同源性,也能够与转铁蛋白结合,但与TfR1不同的是,TfR2没有IRE,当其与饱和转铁蛋白结合后结构变得稳定。 Johnson等发现在有Fe2Tf的条件下,能够使更多的TfR2定位于循环内体,而输送到于晚期溶酶体降解的TfR2则减少,从而延长了TfR2的半衰期。在很多肿瘤组织中,转铁蛋白受体呈高表达,特别是在铁缺乏的状态下,所以能够作为药物靶向治疗的靶点。将抗肿瘤药物与转铁蛋白或转铁蛋白受体抗体连接,药物便可与肿瘤细胞表面的转铁蛋白受体结合,一方面阻断转铁蛋白受体的天然功能从而直接导致肿瘤细胞死亡;另一方面,通过形成内吞囊泡而进入肿瘤细胞内,从而更准确更高效的杀灭肿瘤细胞,并可克服P-糖蛋白介导的药物外排而导致的耐药。研究显示,此类药物在细胞实验和活体实验中都对肿瘤细胞显示出较高的细胞毒性。

血清可溶性转铁蛋白受体(sTfR)检测的临床意义

血清可溶性转铁蛋白受体(sTfR)检测的临床意义 发布时间:2009-3-9 被阅览数:40 次作者:检验科免疫室 血清可溶性转铁蛋白受体(sTfR)检测的临床意义 功能性缺铁的最灵敏的标志物 大多数的化验室如今用血清中的铁来评价铁的状态,包括总铁结合能力、转铁蛋白饱和度和铁蛋白。然而,这些参数有一些局限性:在紧张状态或受感染的情况下,血清中铁的水平就会降低。并且血清中铁的波动也非常大,在几天间,甚至一天之内的差别也会很大,这会影响总铁结合力和转铁蛋白饱和度的值。总铁结合力的特异性较高,但是灵敏度较差。转铁蛋白饱和度不能区分缺铁性贫血和其他慢性疾病引起的贫血。测定铁蛋白的主要缺点是,在炎症状态下铁蛋白的量也会升高。因此,在这样的情况下,即使缺铁,铁蛋白水平也会表现为正常,甚至稍高于正常。所有的这些局限性都可以在改用测定可溶性转铁蛋白受体来评价铁水平时被克服。 转铁蛋白受体是一穿膜的糖蛋白,它倾向于结合已经结合了2价铁的转铁蛋白,并且通过受体介导的内吞作用进入细胞。所有的体细胞都在其表面表达转铁蛋白受体,但75-80%的转铁蛋白受体存在于骨髓的红细胞样细胞的前体中。肝和胎盘的组织中转铁蛋白受体的密度也很高。转铁蛋白受体的细胞外部分经剪切后成为可溶性转铁蛋白受体,它与细胞上的受体的浓度成一定的比例。 测定可溶性转铁蛋白受体的主要目的是诊断是否缺铁。由于它是一个极为灵敏的标志物,诊断结果可与慢性疾病引起的贫血相区别。又由于它与红细胞生成的量有关,因此它可作为监测红细胞生成治疗效果的最早的标志物。 在缺铁性贫血发生时(此时的临床症状还不明显),铁的消耗尽首先表现为铁蛋白水平的降低,但此时可溶性转铁蛋白受体的水平仍然正常。在第二阶段,缺铁造成了血红蛋白生成障碍,此时的贫血就伴有小红细胞和血红蛋白的量不足。随着这些参与正常生理功能的铁的缺乏,可溶性转铁蛋白受体在血清中的浓度就增加了。用铁蛋白水平诊断贫血有一定的局限性,是因为它只能用来表征贫血初期短时间内的行为,不能区分缺铁性贫血和其他慢性疾病引起的贫血。另外,缺铁性贫血和其他慢性疾病引起的贫血可同时存在(复合性贫血)。区分缺铁性贫血和慢性贫血的金标准是测定骨髓中的可染铁。但这是一项创伤性检查,会令病人感到紧张。如果改为测定可溶性转铁蛋白受体就可很方便地区分缺铁性贫血和慢性贫血。 患有由慢性疾病引起的贫血的病人不一定缺铁。贫血是一个伴随性的症状,尤其在慢性炎症疾病中,例如风湿病和恶性肿瘤。慢性疾病引起的贫血的机制还未完全搞清,可能是将铁从储存地运出不足(铁分配不足),减少了红细胞生成素的刺激作用,同时缩短了红细胞的半衰期。由慢性疾病引起的贫血的患者,铁蛋白的水平不成比例地增加,引起的血红蛋白量不足和形成小红细胞的症状与缺铁性贫血的症状相似。相反,可溶性转铁蛋白受体的浓度只在缺铁的情况下才会变化,其他的因素不会影响它。在1997年发表的在Punnonen进行的一项血液诊

植物源性重组人血清转铁蛋白的多功能性介绍

植物源性重组人血清转铁蛋白的多功能性 概述 人血清转铁蛋白(htf)是人血清中主要的结合铁蛋白质,在铁转运中有重要作用。另外,htf还有许多其他的作用,包括抗菌功能和对哺乳动物细胞增殖、分化中的生长因子效用。其多功能性使其在不同疗法和商业应用中有巨大价值。然而,htf的这些成功应用很大程度上取决于大量的高质量的htf的应用。本研究中,我们将植物作为获得重组htf的一种新平台。我们的研究表明转基因植物是一种获得rhtf的有效系统,最大积累量达到了全部可溶蛋白的0.25%(或高达33.5ug/g的叶子鲜重)。此外,植物源性rhtf保持了许多与天然htf相同的生物活性。尤其是rhtf在体外可逆性的结合铁作用,表明了其抑菌活性、在无血清培养基中的支持细胞增值的作用,和在体外内化进入哺乳动物细胞的性质。本研究的成功使得未来多领域应用植物源性rhtf成为可能。植物源性rhtf突出的应用就是作为特定细胞的一种新的载体或者作为蛋白质/肽段药物的口服递送以治疗人类疾病例如糖尿病。为证明此假说,我们在植物中又额外地表达了一种包含胰高血糖素样肽段-1(GLP-1)或其衍生物的htf融合蛋白。在此,我们展示植物源性htf-GLP-1融合蛋白保持了体外培养基中内化进入哺乳动物细胞的能力。 简介 转铁蛋白Tf包含了所有脊椎动物体内发现的一系列同源性的铁结合蛋白糖蛋白(Aisen and Harris, 1989),主要功能是铁的螯合和转运。Tf是一种单分子蛋白,分子量范围为76-81 kDa,取决于糖基化程度。每种TF蛋白包含两种相似的裂片,分别叫做N-末端和C-末端,每一裂片包含单一的铁结合位点(Aisen and Harris, 1989; Baker et al., 2002)。hTf是转铁蛋白Tf家族的主要成员。hTf蛋白由679个氨基酸组成,主要在肝脏合成并分泌入血(MacGillivray et al., 1983)。hTf的主要功能是络合血中的游离铁并将之转运到全身各处(MacGillivray et al., 1983)。放射示踪研究显示至少80%的络合至tHf的铁转运至骨髓并组成新生的红细胞(Finch and Huebers, 1982)。除其众所周知的铁转运功能外,hTf还有许多额外的功能,许多与其携铁能力无关。例如,研究显示HTF可促进体外无血清培养基条件下鼠粒性白细胞和巨噬细胞前体细胞的克隆生长(Iizuka and Murphy, 1986)。另外,HTF的存在对于大多数哺乳动物细胞的培养有重要作用,例如体外受精培养(Holst et al., 1990)和肝细胞群体的维护和扩展(Suzuki et al., 2006)。当增殖细胞高表达HTF受体以允许HTF包裹并可能引发和维持细胞DNA合成时,HTF常常作为一种生长因子(Gomme et al., 2005)。HTF的其他作用包括抵抗细菌、酵母菌、病毒和真菌的抗菌活性((Artis et al., 1983; Salamah and al-Obaidi, 1995),降低细胞粘附的能力(Ardehali et al.,2002)。HTF的多功能性可以作为潜在的治疗和非治疗应用。例如,HTf已被用来治疗人类转铁蛋白缺乏症(一种以贫血、铁超载、生长迟缓和感染发生率增加为特点的状况)(Hayashi et al., 1993),局部贫血-再灌注损伤(促进氧化应激导致炎症、最终因凋亡和坏死而导致细胞死亡的一种情况)(Hayashi et al., 1993)和心血管疾病(Hayashi et al., 1993)。HTF的治疗送递也降低了放射疗法的副作用(Koterov et al., 2003),有助于为骨髓移植患者提供抗微生物活性的作用(von Bonsdorff et al., 2003)。此外,HTF已用来作为一种新的载体系统,在体内运载药物入癌细胞(Laske et al., 1997)。近来,HTF被证实作为一种高效的载体,以送服口服蛋白质和氨基酸药物入内脏以实现全身治疗效果(Widera et al.,2004; Bai et al., 2005)。HTF蛋白也有许多巨大的潜在非治疗应用。例如,许多无血清培养基以HTF作为血清代用品,支持哺乳动物细胞生长(Barnes and Sato, 1980a,b)。为了使HTF的这些商业和治疗应用具备可行性和得到实现,大量HTF的可靠、廉价的供应是很重要的,取决于一种高效、性价比合算的重组生产系统。 迄今为止,已有数种表达系统报道获得重组HTF。描述的RHTF的细菌表达,仅允许生产蛋白质的氨基末端和羧基末端领域(半分子)(Ikeda et al., 1992; Steinlein and Ikeda, 1993;

可溶性转铁蛋白受体sTfR

可溶性转铁蛋白受体(sTfR) 转铁蛋白受体(TfR)介导含铁的铁蛋白从细胞外进入细胞内。TfR存在于许多细胞的表面,通过细胞表面受体的蛋白水解作用衍生过来的。在血清中sTfR 和不同的转铁蛋白以复合物的形式存在,其与组织转铁蛋白受体总量成正比。血清中的sTfR是膜表面受体的酶切形式,膜表面受体主要表达于各阶段骨髓幼红细胞膜表面,以中、晚红细胞和网织红细胞表达最为明显,在调节细胞铁摄取和维持机体铁稳态机制中发挥重要作用。血sTfR水平反映了体内铁状态。 铁蛋白是一种急性期反应物质,sTfR是功能性铁状态的一项特异性检测指标,不受各种干扰因素的影响,例如急性、慢性炎症反应,怀孕等。因此,在炎症、慢性疾病、肿瘤等多种炎性细胞因子活跃的状态,sTfR更能准确反映机体内的铁缺乏状态。 临床意义 可溶性转铁蛋白受体水平升高: 见于溶血性贫血、β-珠蛋白生成障碍性贫血、红细胞增多症; 可溶性转铁蛋白受体水平下降: 慢性肾功能衰竭、再生障碍性贫血、移植后贫血、慢性病贫血。 ?红细胞生成增多时升高. ?不受炎症影响. ?铁过剩时减少. ?区别IDA 和ACD. 图1 转铁蛋白受体(sTfR)介导细胞吸收铁蛋白

图2 Ferritin和sTfR通过铁调素参与机体铁代谢平衡

参考文献: 1、S Kolias, H Nikolaou, P Eleftheriadi, N Sakarelou, A Fortis, M Laskou, N Maguina Crit Care. Measurement of serum transferrin receptor (sTfR) in critically ill patients. 2001; 5(Suppl 1): P108. 2、A Zoli, L Altomonte, L Mirone, M Magaró, B M Ricerca, S Storti, A Candido, M Bizzi. Serum transferrin receptors in rheumatoid arthritis. Ann Rheum Dis. 1994 October; 53(10): 699–701 3、杨文睿,熊媛媛,张莉等. 血清可溶性转铁蛋白受体在重型再生障碍性贫血免疫抑制治疗早期疗效预测中的意义. 中华血液学杂志2013年8月第34卷第8期

肿瘤标志物铁蛋白指标解读

一、铁蛋白简介 铁蛋白是一种结合铁的高分子蛋白,其具有一个含45000个铁原子的内核,因而具有重要的储铁和调节铁吸收的生理功能。铁胆边在人体肝脏、脾脏及骨髓等组织中广泛存在,在其他组织中也有分布。铁蛋白能反映肌体的营养状态,因而对缺铁性贫血的诊断具有重要提示作用。正常状态下,人体血清中具有稳定微量的铁蛋白。进来研究显示,某些恶性肿瘤细胞能合成并分泌铁蛋白,因而血清铁蛋白浓度相应升高。 二、血清铁蛋白与原发性肝癌 血清铁蛋白指标异常与原发性肝癌的发生以及肝硬化等密切相关。在原发性肝癌中,SF水平显著升高,故可作为原发性肝癌的特异性肿瘤标志物。引起SF水平升高的机制大致为:一、肝细胞的损伤降低了铁存储量和铁的转移能力;二、癌细胞自身合成的肿瘤特异性的酸性铁蛋白,加速分泌释放。大量文献报道了SF作为HCC肿瘤标志物的有效应用。如Kew 等在58例的原发性肝癌中检出76.3%的SF阳性。张景等的研究中,肝癌的SF阳性率也达到了66.6%。 在原发性肝癌的诊断中,血清铁蛋白是对AFP很好的补充。原因在于:虽然AFP是用于原发性肝癌诊断最常被使用的指标,然而AFP对HCC检出的灵敏度为50%-95%不等,因此存在着一部分AFP阴性的HCC患者。梁仁等对AFP阴性的原发性肝癌患者的SF进行了测定,结果阳性率为76%(cutoff值为100 ng/ml)。张满达等的研究显示,肝癌组中铁蛋白和AFP均阳性占47.5%,均阴性为9.9%,单一阳性为42.6%,故铁蛋白和AFP阳性率分离,呈交叉覆盖现象,联合检测阳性率达90%以上。可见SF在原发性肝癌的诊断,尤其是AFP 阴性的疑似病例中具有重要的作用,对于增加结果的准确性、减少漏诊率效果显著。 在孟宪镛等的研究中,其他活动性肝病中也有半数SF水平超出正常,但与HCC具有显著性差异。Chapman等的研究中,肝癌组和肝硬化组的SF阳性分别为63%和33%。通过联合转氨酶的检测可进一步提高SF对肝癌的检出特异性。在活动性肝炎中,SF和转氨酶水平的增长具有同步性,而在HCC中则无明显相关,因而通过测定转氨酶和SF比值可提高SF的诊断价值。 三、血清铁蛋白的其他应用 血清铁蛋白指标异常还与其他疾病相关,临床上也常见被应用于以下几类疾病的诊断: 1.缺铁性贫血 SF浓度也是临床上诊断缺铁性贫血常用的手段之一。缺铁性贫血是临床上较常见的贫血,缺铁是这类贫血的主要原因。在早期并未表现出血红蛋白减少,因而此阶段为隐性缺铁性贫血。此时主要表现为铁缺乏,因此SF水平低于正常值。欧阳富维的研究中,SF对缺铁性贫血的敏感性为85.1%,特异性为80.2%,阳性和阴性预测值分别为为71.2%和 90.4%。在王彦华等的研究中,SF的灵敏度和特异性最高分别达到84.6%和96%。 2.白血病

转铁蛋白受体的结构及功能

龙源期刊网 https://www.360docs.net/doc/561934196.html, 转铁蛋白受体的结构及功能 作者:文雪 来源:《科技视界》2016年第15期 【摘要】人体细胞的正常代谢需要铁,其中转铁蛋白受体(TfR)参与铁的吸收和调节。TfR在所有细胞都呈低表达,在增殖活跃的细胞高表达。与正常组织相比,肿瘤组织TfR的表达显著增高,因此,TfR成为肿瘤靶向治疗的研究热点。 【关键词】转铁蛋白受体;结构;功能 0 前言 铁是人体细胞进行代谢不可缺少的重要元素,在运送氧、传递电子、DNA合成等过程中起着非常重要的作用。细胞内铁的转运主要通过转铁蛋白(Tf)和转铁蛋白受体(TfR)来进行调控。由于转铁蛋白受体在所有细胞都呈低表达,而在增殖活跃的细胞如肿瘤细胞高表达,使得转铁蛋白受体在临床和药物转运上得到越来越广泛的研究。本文主要对转铁蛋白受体的结构及功能进行综述。 1 转铁蛋白受体的结构 转铁蛋白受体是由两个大小约为90KDa的亚单位通过两条二硫键交联而成的一种II型跨膜糖蛋白[1]。每个亚单位包括一个胞外C端区域,一个单跨膜区域和一个N端区域。C端区域也称外功能区,又分为蛋白酶样区、顶区和螺旋区[2],其中包含Tf的结合位点。TfR对不同的Tf均有较高的亲和力。科学家通过X线晶体衍射发现Tf通过其C片段和N片段与TfR 的螺旋区和蛋白酶样区相互作用从而导致Tf和TfR的结合。此外,Tf与铁结合的饱和度对Tf 识别TfR也有明显影响[3]。TfR共有两个家族成员,分别是TfR1和TfR2。与TfR1不同,TfR2没有铁反应元件,其表达不受胞内铁水平的调节,而且对Tf的亲和力很低,起作用还不是很清楚,可能与调节和维持铁在内环境的稳定有关[4]。 2 转铁蛋白受体的表达 TfR在机体的所有细胞中低表达,在增殖活跃的细胞高表达。尤其是肿瘤细胞,由于肿瘤细胞中铁代谢发生了很多改变,导致TfR表达显著增高,尤其是TfR1的表达增高。肿瘤细胞为更加快速的摄取铁因此高表达TfR1,其高表达与肿瘤细胞快速增殖相关。体外实验研究发现使用抗TfR1单克隆抗体可有效抑制血液系统恶性肿瘤细胞增殖[5]。研究证实在人类B淋巴细胞中TfR1是可诱导的癌基因c-myc位于下游区的重要靶位。Lepelletier等人研究发现,非霍奇金淋巴瘤中5例弥漫性大B细胞淋巴瘤全部高度表达TfR1,而滤泡性淋巴瘤和小淋巴细胞性淋巴瘤则低表达TfR1。在对脑肿瘤及正常脑组织TfR1表达研究中发现,TfR1mRNA在海马和延髓中表达最高,在丘脑、皮质及和小脑中的表达明显降低。TfR1在脑肿瘤组织中表达显

细菌内依赖TonB的外膜铁转运体的进展

·综述与专论· 2012年第1期 生物技术通报 BIOTECHNOLOGY BULLETIN 收稿日期: 2011-06-07 基金项目:湖北省教育厅科学研究项目(B20114606),武汉市教育局科学研究项目(2010084)作者简介:董妍玲,女,博士,讲师,研究方向:微生物工程; E -mail: shoongyanlihg@https://www.360docs.net/doc/561934196.html, 通讯作者:潘学武,男,博士,讲师,研究方向:微生物工程; E -mail: whswwz@https://www.360docs.net/doc/561934196.html, 细菌内依赖TonB 的外膜铁转运体的研究进展 董妍玲 潘学武 (武汉生物工程学院生物技术系,武汉 430415) 摘 要: 铁是细菌所必需的微量营养元素,但由于易被氧化溶解性低,生物体的利用率大大降低。细菌在进化过程中形成多种策略来吸收环境中低浓度的铁,不同类型铁的吸收通过外膜上依赖TonB 的转运体(TonB -dependent transporters, TBDTs )完成,TBDTs 结合不同形式的铁复合物,通过内膜上的TonB -ExbB -ExbD 复合物提供能量完成转运,对其机制的研究一直是微生物基础生命活动研究中的热点问题。近年来新鉴定了一些TBDTs 的结构,并对其功能和转运机制有了更深入的研究,对此进行了综述,不 仅有助于进一步揭示细菌的铁转运机制,而且有助于寻找新的靶位点以开发新的治疗药物。 关键词: 铁转运 外膜蛋白 依赖TonB 的转运体 嗜铁素 Progress of TonB -Dependent Transporters for Iron on Outer Membrane in Bacteria Dong Yanling Pan Xuewu (Biotechnology Department of Wuhan Bioengineering Institute, Wuhan 430415) Abstract: Although iron is the necessary nutrient element for bacteria, its availability is greatly reduced by its low solubility. To acquire iron, bacteria have evolved a range of strategies mechanism. Iron absorbing is performed through the TonB -dependent transporters (TBDTs) on outer membrane of bacteria. TBDTs bind and transport ferric chelates coupled with energy providing by a complex of three inner membrane proteins, TonB -ExbB -ExbD. The mechanism has been the hot spot study on based life activities of microorganism. In recent years, structures of some new TBDTs have been identified, and researches has been done on these TBDTs’ function and transport mechanism. Key words: Iron transport Outer membrane proteins TBDTs Siderophore 铁是所有有机体所必需的营养元素之一,它是细胞内重要蛋白或酶的重要组分,在氧代谢、电子传递、RNA 合成及其他细胞代谢中起重要作用。尽管铁是地壳第四大元素,但因其在生理pH 下的溶解性低而降低了利用率,在有氧条件下,Fe 2+能被迅速氧化成Fe 3+,形成不溶的氢氧化物沉淀下来,导致环境中自由的Fe 3+浓度小于10-17 M [1],远远低于微生物正常生长所需的铁浓度(10-8-10-6 mol/L)。 细菌在进化中形成了许多策略来获取铁,厌氧条件下,有足够可溶的Fe 2+可供厌氧菌吸收利用;在好氧条件下,细菌和真菌可合成多种低分子量的铁螯合物,称为嗜铁素(siderophore);低铁条件下, 细胞合成嗜铁素并分泌到细胞外,嗜铁素以高亲和力结合环境中的Fe 3+,Fe 3+-嗜铁素复合物随即被相应的转运体转运到细胞内。嗜铁素介导的铁吸收机制是细菌获得Fe 3+最常见的形式,此外还存在其他机制:(1)一些细菌病原体直接识别血红素或含有血红素的蛋白如血红蛋白(haemoglobin)、血红素结合蛋白(haemopexin)及结合珠蛋白(haptoglobin)等,从血红素中获得Fe 3+[2];(2)分泌20 kD 的haemophores,与自由的血红素或含有血红素的蛋白结合,通过特定的外膜转运体吸收[3];(3)直接从铁传递蛋白或乳铁传递蛋白中获得Fe 3+[4]。 无论何种转运机制,含有铁的底物都与特定

可溶性转铁蛋白受体(sTfR)测定标准操作程序SOP文件

可溶性转铁蛋白受体(sTfR)测定 标准操作程序SOP文件 1 测定方法 颗粒增强的免疫比浊法。 2 测定原理 标本中的可溶性转铁蛋白受体(sTfR)与试剂中包被有抗sTfR抗体的胶乳颗粒相遇,发生特异性的抗原-抗体反应,形成抗原-抗体复合物,使溶液的浊度发生改变。该浊度的高低在一定抗体存在时与抗原的含量成正比,待反应完成后测定其浊度,从而使sTfR得以测定。 3 标本 血清及肝素-Li/Na抗凝血浆,处理方法见标本处理程序。 稳定性:15 - 25℃ 3天 2 - 8℃ 7天 -20℃ 4周(允许冻融1次) 4 试剂 4.1 试剂 来源:ROCHE配套试剂(详见试剂说明书)。 贮存条件及稳定性:未打开试剂盒:2-8℃储存至效期末 R1:打开后机上稳定90天 R2:打开后机上稳定90天 准备:直接使用。 4.2 校准物 来源:S1: 0.9%的NaCl S2-6: ROCHE配套sTfR专用校准品 贮存条件:校准物在2-8℃保存至效期末。 准备: 直接使用。 定标频率:A 试剂批号更换 B 由质控结果决定 4.3 质控物 来源:ROCHE sTfR专用质控品

其它适合的质控品 贮存条件:置2-8℃冰箱至有效期。 准备:直接使用。 质控间隔时间及限制:应视不同地区及各自实验室情况而定。质控结果应在限定的范围之内,如果超出范围,实验室应根据情况采取措施。 5 仪器 ROCHE MODULAR P或日立7060生化分析仪。 6 操作 见ROCHE MODULAR P生化分析仪作业指导书。参数设置见附表。 7 参考范围 男性:2.16-4.54mg/l 女性:1.79-4.63mg/l 8 线性范围 本法线性范围为0.5-40mg/l,不准确度允许范围X±3SD,不精密度CV=3.06%,灵敏度为0.068mg/l。 9 注意事项 9.1 血清标本出现溶血、脂血或黄疸的干扰情况参见抗干扰能力。 9.2 换算公式:mg/dl × 10=mg/l 9.3 仅应用于体外诊断。 10抗干扰能力: 10.1 标准:回收率在90%-110%之间。 10.2 黄疸:黄胆指数达到60时不会有明显干扰。(直接和间接胆红素浓度约为60mg/dl)。 10.3 溶血:溶血指数在1000mg/dl以下时不会有明显干扰。(血红素浓度约为1000mg/dl)。 10.4 乳糜:甘油三酯的浓度在1000mg/dl以下不会受到明显干扰。 10.5 RF < 750Iu/ml时不会受到明显干扰。 10.6 sTfR的浓度低于80mg/l时不会有HOOK效应。 11 临床意义:

铁代谢和可溶性转铁蛋白受体(sTfR)

铁代谢和可溶性转铁蛋白受体(sTfR) ??功能性缺铁的最灵敏的标志物 铁以三种不同的方式分布于人体:大多数的铁(~80%)参与转运氧的血红蛋白和储存氧的肌红蛋白,还有几种存在于细胞氧化和呼吸链的酶中。过剩的铁与铁蛋白和含铁血黄素结合以备使用,因为游离的铁对细胞是有毒性的。只有相当少的铁(~0.1%)在血液循环中被运输,它们与转铁蛋白结合,从“产地”??与具有生理功能的铁结合的蛋白(例如:在骨髓中合成的血红蛋白)被运往“储存地”(例如:肝中的铁蛋白)。在健康的人体中,每天从食物中摄取大约1mg的铁,并且有等量的铁丢失。红细胞含有大多数的铁(~2500mg),另外有少部分但是必不可少的(~500mg)铁提供给肌肉和酶,使它们进行正常活动。过剩的铁与铁蛋白结合,储存在不同的细胞中。 体内铁的平衡可被一些情况破坏,例如,铁需求量的增多(生长发育、怀孕);铁供应的不足(营养不良/素食、吸收功能紊乱)或是体内铁过度丢失(急慢性出血,如月经过多、胃溃疡出血):大多数(70%或更多)的缺铁都是由贫血造成的,这种贫血的特征是红细胞变小和血红蛋白的量过少。缺铁会影响几项生理功能:肌肉功能减退、对于神经系统来说就是注意力不集中和学习能力下降、温度调节功能受影响、细胞介导的免疫反应缺陷以及对孕妇来说缺铁会引起早产。 然而,由不同原因造成的贫血应采用不同的治疗方法。血红蛋白或红细胞生 )、慢性炎症或原发性骨髓病成的不足可由营养缺陷(缺铁、叶酸盐或维生素B 12 造成。另外,还有一些原因,如溶血、脾机能亢进、血丢失增加和血浆扩容剂的增容作用。 另一方面,铁不能过量补充,过量补充铁也会造成损害。铁过多负荷的最常见的病有:血色素沉着症,它是常染色体隐性遗传病。这种病的患者,由于肠对铁的过量吸收并以与铁蛋白结合的形式储存在肝、心脏和胰中,损害该脏器的功能。治疗方法包括周期性静脉放血,以增加铁丢失,直到储存铁(铁蛋白的量)以及补充到组织的铁量(转铁蛋白饱和度或可溶性转铁蛋白受体)都达到正常。对评价铁代谢来说,测定不同的参数以了解不同状态的铁的情况是必不可少的。铁蛋白反映了储存铁的情况,它在血浆中的浓度与细胞内总的铁蛋白储存量成一定的比例关系。转铁蛋白在“储存地”和“吸收地”之间运输铁,还将铁运往骨

铁蛋白与肿瘤

铁蛋白与肿瘤 【摘要】铁蛋白,作为重要的铁贮存蛋白,对于铁内环境的稳定非常重要,并参与许多生理和病理过程。过量的铁负荷可以破坏机体对肿瘤细胞的免疫监视。多种实体恶性肿瘤的细胞可以合成或分泌铁蛋白,所以铁蛋白不仅是贮铁指标,而且也是恶性肿瘤的标志物之一。铁蛋白和铁蛋白受体蛋白水平在乳腺癌组织中含量较高。血清铁近来被认为是异基因骨髓移植患者预后的标志物。过多的铁负荷将降低移植的存活率。过多的铁负荷似乎可以增加治疗相关的死亡率,而不是增加疾病的侵袭性和复发率。 【关键词】铁蛋白;铁;恶性肿瘤 【中图分类号】R73 【文献标识码】A 【文章编

号】1005-0019(2014)03-0501-01 铁是人体重要的不可或缺的金属元素,它广泛参与许多重要的生命代谢过程,例如在氧的运送、电子的传递、DNA的合成等过程中均有铁的参与。另外,参与三羧酸循环的酶和辅酶中有半数均需要铁的存在。铁含量的增加,即铁的超负荷也是肿瘤形成的危险因素。 1 铁 几乎所有细胞都需要铁作为基本生化活动的辅助因子,然而,铁也有潜在的毒性,它能够催化ROS (活性氧簇)并产生高反应基团。铁的摄入、利用和解毒对细胞和组织非常重要。 人体铁的大部分分布于血红蛋白和红系细胞并作为氧的载体,哺乳动物通过出血等丢失铁,但是没有任何释放铁的调解机制。因此平衡的维持需要十二指

肠对于铁吸收的严密控制。营养铁的摄取包括小肠通过还原酶对于三价铁的还原,以及随之在肠上皮细胞的顶膜通过二价金属载体进行的二价铁的转运。 2 铁蛋白(Ferritin) 2.1 铁蛋白的结构:铁蛋白是广泛存在于动植物体内的一类贮存铁的蛋白,主要存在于肝脏和脾脏中。铁蛋白的外径约12~14nm,其外壳(即脱铁铁蛋白)由24个亚基组成,每个亚基约含有163个氨基酸残基,每个分子最多结合4500个铁原子。其分子量比较大,约为450kd。结合铁的铁蛋白是可“溶”于水的,血浆铁蛋白的浓度与体内储存的铁量成正比。 2.2 铁蛋白的生理作用:铁蛋白为机体内一种贮存铁的可溶性的组织蛋白,正常人群血清中含有少量的铁蛋白,在正常条件下,其含量稳定。它的主要的生理功能是储存铁元素,同时在机体合成含铁的物质

转铁蛋白受体在肿瘤靶向治疗中的研究进展

转铁蛋白受体在肿瘤靶向治疗中的研究进展 转铁蛋白受体(Transferrin receptor,TfR)是参与体内铁代谢过程的重要蛋白质。研究表明,TfR在肿瘤细胞表面高度表达,因此以其作为靶点与药物结合可应用于肿瘤治疗。现对TfR的结构功能以及在肿瘤靶向治疗中的研究进展进行概述。 标签:转铁蛋白受体;肿瘤 铁是细胞增殖和能量代谢的重要元素,与氧气运输和呼吸链电子传递过程有着密切关系。TfR是体内铁代谢所必需的重要蛋白成分,在其介导下,机体的铁代谢、免疫功能和细胞调节得以正常运行。因此,TfR对于快速增殖的肿瘤细胞的代谢活动有一定作用,与肿瘤疾病的发生存在一定关系,可与相关药物结合应用于肿瘤疾病的靶向治疗。 1 转铁蛋白受体 转铁蛋白受体(Transferrin receptor,TfR)是跨膜糖蛋白,是由双同源二聚体的亚基通过二硫键交联形成。每个单体由一个大的胞外C端区域,一个短的N 端区域和一个单跨膜区域组成[1]。C端区域包含与Tf结合的位点,是外功能区。TfR与Tf互相作用介导体内铁的摄取吸收。增殖加快的肿瘤细胞对Fe的需量大,其表面TfR呈高密度分布。目前已经发现两种TfR,TfR1和TfR2。TfR1在一般细胞中均可表达,可以根据机体PH的变化而改变其构象,并凭借构象改变来改变与转铁蛋白的亲和性。TfR2常在肝细胞内表达,调控并维持机体内的铁离子动态平衡[2]。 2 转铁蛋白受体的功能 2.1 参与铁离子转运 大部分TfR在血清中与Tf结合形成复合体。细胞表面的TfR优先选择有两个铁离子的Tf结合,TfR-Tf复合体通过内吞方式进入细胞,PH下降促使Tf构象改变,Tf释放Fe2+,提高了TfR对脱铁转铁蛋白(apo Tf)的亲和性。Tf的346组氨基酸残基与TfR的641位色氨酸和760位苯丙氨酸的残基之间的相互作用,导致构象改变进而使Fe2+从C端释放。在正常生理PH下,带有两个Fe2+的Tf对TfR的亲和性通常是apo Tf的10~100倍。 2.2 参与细胞的免疫调节 Moura等的研究表明,在人的肾小球系膜上TfR能够与IgA结合,在肾小球系膜细胞上高度表达。因此,TfR与IgA结合后可以调节免疫,参与细胞的凋亡与增生过程。TfR能够提供激活T细胞的第二信号。

锌离子跨膜转运机制

锌离子跨膜转运机制 锌是地球上所有生命必需的营养元素,也是重金属污染元素之一。在许多 生理生化反应中,锌都起着重要的作用,可以作为六大类功能酶中300 多种不 同的辅助因子成分而调节酶的活性。锌在植物细胞的不同部位和细胞中含量分 布不一,保内区室化分隔有利于保证缺锌和高锌胁迫下植物维持正常生理代谢[1]。细胞壁在控制自由态锌浓度上具有重要的作用。液泡是植物主要的分离储 藏重金属的部位,液泡的区室化作用起到解毒效果,与超富集重金属特性密切 相关[2]。 锌在植物中存在的形式常为自由态离子、低分子量有机物配合态复合物、 贮存金属蛋白以及与细胞壁结合的非溶形式;自由态锌离子的浓度一般较低。 植物体内可溶性锌占到58%~91%,具有较强的生理活性[3]。 目前研究表明,参与植物体内锌离子的跨膜运输蛋白至少有5类:锌铁控制运转相关蛋白(ZIP)、自然抵抗相关巨噬细胞蛋白(NRAMP)、重金属ATPase酶(HMA)、阳离子扩散协助蛋白(CDF)、镁离子/H+反向转运蛋白(MHX)[4]。这些运输蛋白对于植物锌吸收、体内分配以及细胞内锌离子的稳态平衡具有重要作用。 严格控制金属离子的体内平衡网络系统,对于调节所有器官锌的利用率是非常必要的。膜转运蛋白在此过程中起重要作用,并且最近的研究已经证明许多基因家族都涉及植物中锌的吸收、转运和体内平衡。目前,已经在拟南芥、苜蓿、番茄、大豆、水稻和大麦等植物中发现了100多个ZIP基因家族。多数ZIP基因被锌缺乏所诱导,有时铁和锰的缺乏也会诱导ZIP高表达。ZIP基因家族的功能分析表明,该基因家族在从胞外向胞内转运并在胞内进行锌运输过程中起重要作用[5]。另外,其转运对象也包括其他二价阳离子,如:Fe2+、Mn2+及Cd2+等。ZIP蛋白长度为309--476个氨基酸,氨基酸数目不同主要是因为蛋白的第III、IV跨膜区间的“可变区”长度不同所致[6]。通常认为,可变区位于胞内,并富含组氨酸残基,可能与金属离子的结合、转运有关,使得阳离子底物能够通过。这个区域位于质膜外表面,在转运过程中可能是底物结合位点[7]。 阳离子扩散协助蛋白(cation diffusion facilitator,CDF)家族的许多成员专一性地将锌或其它金属离子从细胞内转运到胞外或细胞器内。因此,CDF蛋白对锌离子的转运方向与ZIP转运体相反。CDF家族分为3个亚家族,即亚家族I、II和III。亚家族I的成员绝大多数来源于真细菌和古细菌,而亚家族II和III的成员在真核生物中所占的比例相当。CDF家族蛋白最大的保守性体现在跨膜域I、II和V[8]。这3个区域的极性或带电荷氨基酸是最保守的.因此它们在底物转运过程中可能起着重要的作用。可能的转运机制与Zn/H+或K+的反向运输有关,酵母ZRCl蛋白就是一种Zn/H+逆向转运体。锌的溢出是一个依赖能量的过程,但由于在该蛋白上不存在由锌介导的核酸结构域,因此推测该转运过程可能与另一种转运激活机制相耦联[9]。 重金属ATPase酶家族(HMA)根据其底物特异性可以分为5个重要的家族,其中HMA4可以赋予细胞对锌的耐受性。P-ATPase酶是一种通过水解ATP进行跨膜运输的转运蛋白,在细胞膜系统上起离子泵的作用,所有P-ATPase的合

铁吸收转运分子研究进展

铁吸收转运分子研究进展1 郭文峰,陈蔚文 广州中医药大学中药学院, (510405) 摘要:铁是生物体重要的微量元素之一,维持机体铁平衡主要依赖于对铁的吸收的调控,而由于十二指肠是铁吸收的主要部位,因此十二指肠中铁吸收的调控对于机体铁平衡的维持具有至关重要的作用。本文对于综合近年国内外的研究,主要讨论了十二指肠内非血红素铁吸收转运过程中起关键作用的十二指肠细胞色素B、二价阳离子转运体、基底侧膜转运体及hephaestin等的研究进展。 关键词:铁 吸收 Dcytb DMT1IREG1Hephaestin 1.引言 铁是众多生物体不可缺少的微量元素之一,在机体氧转运、细胞生物氧化、DNA复制及电子转移等方面都有重要作用。但生物体内过量的铁会形成大量自由基,产生氧化损伤(Aisen, Enns et al. 2001; Conrad and Umbreit 2002; McCord 2004),因此,需要有严密的调节机制以确保机体铁的吸收、在不同部位(组织、器官)的聚集、还原-氧化状态,以维持机体的铁稳态。正常人体体内铁的储备、吸收、排泄量如图1所示。以体重70kg的男性为例,体内含铁总量约为4.0g,其中大部分(2.5g)以血红蛋白的形式存在于红细胞中,大约1.0g 以铁蛋白及含铁血黄素的形式作为体内储备铁,另有约0.3g结合于肌红蛋白及呼吸酶中。机体每天从含10~20mg铁的饮食中只吸收铁1~2mg以维持体内的铁需求平衡,与每天通过体液分泌、皮肤脱屑以及消化道上皮损耗的铁的量相当。人体大部分的铁用于血红蛋白的合成,由于红细胞的平均寿命约为120天,因此循环血中每天大约有0.8%的红细胞被破坏并有相当量的重新生成(Conrad and Umbreit 2000; Conrad and Umbreit 2002)。 由于铁的损耗方面没有相关的生理调节机制,因此,机体内铁的平衡主要通过肠内铁的吸收来调控,而肠道铁的吸收量与体内铁的需求量紧密相关(Hentze, Muckenthaler et al. 2004)。影响铁吸收的因素主要包括体内铁的储备量、骨髓红细胞生成活性、血液中血红蛋白浓度、血氧含量以及全身性炎症的存在等(Miret, Simpson et al. 2003; Hentze, Muckenthaler et al. 2004)。一般认为,在机体储铁下降、红细胞生成活性增加、贫血或者低氧血症时,铁摄入会显著提高,而机体存在炎症导致炎症性贫血或者机体储铁增加时又将下调铁的摄入。铁的吸收增加导致体内铁过度蓄积是遗传性血色病的特点(Pietrangelo 2004)。 十二指肠是铁吸收的主要部位,整个机体铁稳态的焦点即在十二指肠对铁吸收率的控制。十二指肠对铁的吸收不外乎非血红素铁和血红素铁两种途径,两种途径各不相同且其所占比重随不同饮食习惯而有所变化,在西方国家饮食中的铁超过半数来自血红素,而对全世 1本课题得到广东省自然科学基金(No. 530048)资助. - 1 -

相关文档
最新文档