用空间向量证明线线垂直与线面垂直

用空间向量证明线线垂直与线面垂直
用空间向量证明线线垂直与线面垂直

第二节 用空间向量证明线线垂直与线面垂直

一、空间向量及其数量积

1、 在空间,既有大小又有方向的量称为空间向量。用AB 或表示,其中向量的大小称为向量的长度或

或a

。正如平面向量a 可用坐标(x,y.)表示,空间向量a 也可用坐标(x,y,z)表示。若已知点A 坐标为(x 1,y 1,z 1),点B 坐标为(x 2,y 2,z 2) 则向量AB =(x 2 -x 1,y 2- y 1,z 2 -z 1)即是终点坐标减起点坐标。 在空间,知道向量a =(x ,y ,z

222z y x 2、 空间向量数量积

① 已知两个非零向量、,在空间任取一点O ,作=,=,则角∠AOB 叫向量与的

夹角,记作<,>规定,若0≤<,>≤ ,若<,>=2

,称与垂直,记作⊥。

② 已知空间两个向量、

COS <,>叫向量、的数量积,记作a

COS

<a ,b >若a ⊥b b a

=0

③ 若已知空间向量=(x 1,y 1,z 1), =(x 2,y 2,z 2) 则?=x 1x 2+y 1y 2+z 1z 2 , COS <a ,

2

2

2

22

22

12

12

12

12121z y x z y x z z y y x x

例1 如图,已知直三棱柱ABC-A 1B 1C 1中,∠BCA=900,D 1、E 1分别为A 1B 1、A 1C 1中点,若BC=CA=CC 1,求向量1BD 与1AE 所成角的余弦值。

C 1

B 1 A1

B D 1 E 1

E

D A 1

F D 1 A

B 1

C

B

C 1

1111D C B A 中,11E B =11F D =

4

1

1B A ,求向量1BE 与1DF 所成角的余弦值。

二 、利用向量证线线垂直与线面垂直

例2 在正方体ABCD —1111D C B A 中,求证A 1C ⊥平面AB 1D 1

练习:在正方体ABCD —1111D C B A 中,O 为底面ABCD 的中心,P 为DD 1的中点, 求证:B 1O ⊥平面PAC 。

例3 如图,PA ⊥矩形ABCD 所在平面,M, N 分别是AB ,PC 中点 (1)求证:M N ⊥CD

(2)若∠PDA=450

,求证:MN ⊥平面PCD

B

A D C

B A

C D B 1 A 1 D C B A C 1

D 1 O P C

D

P

N

练习:正方体ABCD —1111D C B A 中,M 是棱D 1D 中点,N 是AD 中点, P 为棱A 1B 1上任一点。求证:NP ⊥AM

作业:

1.如图,正方体ABCD —1111D C B A 中,E 是BB 1中点,O 是底面ABCD 中心,

求证:O E ⊥平面D 1AC.

2.如图,正方体ABCD —1111D C B A 中,O ,M 分别是BD 1, AA 1中点,求证:OM 是异面直线AA 1和BD 1的公垂线.

3、如图,直三棱柱ABC-—A 1B 1C 1中,∠ACB=900

,AC=1,CB=2,侧棱AA 1=1,,侧面AA 1B 1B 的两

条对角线交点为D ,B 1C 1的中点为M 。求证:CD ⊥平面BDM

D

A 1

A

B

N A

C

D A 1

B 1

D 1

M P C 1

E

O

B 1 A 1 D

C B A

C 1

D 1

O

M

B 1

A 1

D

C

B

A

C 1

D 1

4在棱长为a 的正方体ABCD —1111D C B A 中,E , F 分别为棱AB 和BC 的中点,M 为棱B 1B

上任一点,当

MB

M

B 1值为多少时能使D 1M ⊥平面EFB 1

5、如图, ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE=AB=2a , CD=a ,F 为BE 中点,求证:A F ⊥BD

6、如图,已知直三棱柱ABC-A 1B 1C 1中B 1C 1=A 1C 1,A 1B ⊥AC 1。 求证:A 1B ⊥B 1C

第三节 利用空间向量求二面角及证明面面垂直

一、二面角

A A

M

C

B

B

C

D 1

E

F D F

E D C B A

C 1

A1 A

二面角 l ,若 的一个法向量为m , 的一个法向量为n ,则|

|||,cos n m n m

,二面角的

大小为 n m ,或 n m ,

例1.如图,正三棱柱111C B A ABC 中,E 为1BB 的中点,111B A AA ,求平面EC A 1与平面111C B A 所成锐角的大小。

例2.(05年全国)如图,在四棱锥V-ABCD

V AD 是正三角形,平面V AD ⊥底面ABCD . (1)证明AB ⊥平面V AD ;

(2)求面V AD 与面VBD 所成的二面角的大小.

练习:如图,棱长为1的正方体

1111D C B A ABCD 中,E 是1CC 的中点,

求二面角D E

B B 1的余弦值。

二.证面面垂直

若平面 的一个法向量为m ,平面 的一个法向量为n ,且n m ,则 。

例3.在四棱锥P-ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知底面是面积为32的菱形,

060 ADC ,M 是PB 的中点。

(1)求证:CD PA

(2)求二面角D AB P 的度数; (3)求证:平面 PAB 平面CDM 。

练习:(04年辽宁)已知四棱锥P-ABCD 中,底面ABCD 是菱形, PD DAB ,60平面ABCD ,PD=AD ,点E 为AB 的中点,点F 为 PD 的中点。

(1)证明平面PED ⊥平面PAB ;

(2)求二面角P-AB-F 的平面角的余弦值.

作业:

1.(04年广东)如图,在长方体1111D C B A ABCD 中,

已知F E AA AD AB ,,2,3,41 分别是线段BC AB ,上的点,且1 FB EB 。 (Ⅰ)求二面角C-DE-C 1的正切值;

(Ⅱ)求直线EC 1与FD 1所成角的余弦值。

D

A

A

C

A

M

A

B

P

A

F E

P

D

C

B

A

2.(05年全国)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC , PA DAB ,90

底面ABCD ,且PA=AD=DC=

2

1

AB=1,M 是PB 的中点。 (1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;

(3)求面AMC 与面BMC 所成二面角的大小。

3.已知四棱锥P-ABCD 的底面是边长为2的正方形,侧棱 PA 底面ABCD ,PA =2,M 、N 分别是AD 、BC 的中点,PD MQ 于Q

(1)求证:平面PMN 平面PAD ;

(2)求PM 与平面PCD 所成角的正弦值; (3)求二面角Q MN P 的余弦值。

4.(06年全国)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC , D 、E 分别为BB 1、AC 1的中点.

(1)证明:ED 为异面直线BB 1与AC 1的公垂线; (2)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小.

A

B

C

D

E

A 1

B 1

C 1

N N

M

Q

A

P

D

C

B

5. (04年浙江)如图,已知正方形ABCD 和矩形ACEF 所在的平面互

相垂直,AB =2,AF =1,M 是线段EF 的中点。

(1)求证:AM //平面BDE ; (2)求二面角A DF B 的大小;

(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60 。

6.(05年湖南)如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2.

(1)证明:AC ⊥BO 1;

(2)求二面角O-AC-O 1的大小。

7.(06年山东)如图,已知四棱锥P-ABCD 的底面ABCD 为 等腰梯形,AB ∥DC,AC ⊥BD,AC 与BD 相交于点O ,且顶点 P 在底面上的射影恰为点O ,又BO=2,PO=2,PB ⊥PD. (1)求异面直线PD 与BC 所成角的余弦值; (2)求二面角P -A B-C 的大小;

A

D

E

F

M

B

C

B A 图1 O O 1 D C

O 1

C

O

D

A

B

图2 M

(3)设点M 在棱PC 上,且,PM

MC

问为何值时, PC ⊥平面BMD.

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

线面平行与垂直的证明题

线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1; (2)求三棱锥B-ACB1体积. 2:如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE. D1 C1 B1 A1 C D B A

3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1 AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .

5:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是P C的中点,作EF⊥PB交PB于点F. (1)证明PA//平面EDB;(2)证明PB⊥平面EFD; 6:已知正方形ABCD和正方形ABEF所在的平面相交于AB,点M,N分别在AC和BF上,且 AM=FN. C

求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;

8:如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1) FD∥平面ABC (2) AF⊥平面EDB. 9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.

用空间向量证明线线垂直与线面垂直

第二节 用空间向量证明线线垂直与线面垂直 一、空间向量及其数量积 1、 在空间,既有大小又有方向的量称为空间向量。用或a 表示,其中向量的大小称为向量的长度或模, 或a 。正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。若已知点A坐标为(x 1,y1,z1),点B 坐标为(x2,y 2,z 2) 则向量=(x 2 -x1,y 2- y 1,z 2 -z 1)即是终点坐标减起点坐标。 在空间,知道向量=(x,y ,z) 222z y x ++ 2、 空间向量数量积 ① 已知两个非零向量a 、b ,在空间任取一点O,作OA =a ,OB =b ,则角∠A OB 叫向量a 与b 的 夹角,记作<,>规定,若0≤<,>≤π,若<,>= 2 π ,称与垂直,记作⊥。 ② 已知空间两个向量、, 则 COS <,>叫向量、的数量积,记作a ? COS <,>若⊥?a ? =0 ③ 若已知空间向量=(x1,y 1,z 1), =(x 2,y2,z 2) 则a ?b =x 1x 2+y 1y2+z 1z 2 , COS<,> 2 2 2 22 22 12 12 12 12121z y x z y x z z y y x x ++?++++= 例1 如图,已知直三棱柱ABC -A 1B 1C 1中,∠B CA=900,D 1、E 1分别为A1B 1、A 1C 1中点,若BC=CA =C C1,求向量1BD 与1AE 所成角的余弦值。 C 1 B 1 A1 A C B D 1 E 1

E D A 1 F D 1 A B 1 C B C 1

1111D C B A 中,11E B =11F D = 4 1 1B A ,求向量1BE 与1DF 所成角的余弦值。 二 、利用向量证线线垂直与线面垂直 例2 在正方体AB CD —1111D C B A 中,求证A1C ⊥平面AB 1D 1 练习:在正方体ABCD —1111D C B A 中,O为底面ABCD 的中心,P为DD1的中点, 求证:B1O ⊥平面PAC 。 例3 如图,PA ⊥矩形ABCD 所在平面,M, N分别是AB ,P C中点 (1)求证:M N ⊥CD (2)若∠P DA=450 ,求证:MN ⊥平面P CD B A D C B A C D B 1 A 1 D C B A C 1 D 1 O P C D P N

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

线线平行线面平行面面平行的练习题

线线平行、线面平行、面面平行部分的练习题 1.如图2-3-3所示,已知α∩β=CD,α∩γ=EF,β∩γ=AB,AB ∥α.求证:CD∥EF. 2.已知直线a ∥平面α,直线a ∥平面β,平面αI 平面β=b , 求证//a b . 3. 正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。求证:MN //平面BCE 4.如图2-3-7所示,正三棱柱ABC —A1B1C1中,D 是BC 的中点,试判断A1B 与平面ADC1的位置关系,并证明你的结论. 5.、已知⊥PA 矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点, 求证:MN//平面PAD. 6.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,设M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点.求证:(1)E 、F 、B 、D 四点共面;(2)面AMN ∥面EFBD. 7.已知在正方体ABCD -1111D C B A 中,M 、N 分别是11D A 、11B A 的中点,在该正方体中作出与平面AMN 平行的平面,并证 明你的结论。

8.已知点 是△ 所在平面外一点,点 , , 分 别是△ ,△ ,△ 的重心,求证:平面 平 面 . 9. 已知三棱锥P—ABC,A′,B ′C ′是△PBC,△PCA,△PAB 的重心. (1)求证:面A′B′C′∥面ABC; (2)求S △A ′B ′C ′: S △ABC . . 10. 如图所示11 1 ABC A B C -中,平面ABC//平面A 1B 1C 1 , 若D 是棱1 CC 的中点,在棱AB 上是否存在一点E ,使 11//C AB DE 证明你的结论 答案与提示: 1.证明:∵AB β,AB α,又∵AB ∥α,α∩β =CD,∴AB ∥CD,同理AB∥EF,∴CD∥EF. 2. 证明:经过a 作两个平面γ和δ,与平面α和β分别相交于直线c 和d , ∵a ∥平面α,a ∥平面β, ∴a ∥c ,a ∥d ,∴c ∥d , 又∵d ?平面β,c ?平面β, ∴c ∥平面β, d c b a δ γ β α

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

利用空间向量证明线线垂直

利用空间向量证明线线垂直 1.如图,在四棱锥S?ABCD中,SA⊥底面ABCD,四边形ABCD 是边长为1的正方形,且SA=1,点M是SD的中点. 求证:SC⊥AM 2.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC, AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上, 且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 3.如图,正三棱柱ABC?A1B1C1中,底面边长为√2.设侧棱长为1, 求证:AB1⊥BC1

4.如图,在四棱锥中,底面,,, ,,点E为棱PC的中点.证明: 5.如图,在三棱柱ABC?A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3, 点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点. 求证:C1M⊥B1D 6.如图所示,直三棱柱ABC?A′B′C′的侧棱长为4,AB⊥BC,且AB=BC=4,点D, E分别是棱AB,BC上的动点,且AD=BE. 求证:无论D在何处,总有B′C⊥C′D

答案和解析 1.解:证明:以A 为原点,AB 为x 轴,AD 为y 轴,AS 为z 轴,建立如图所示的空间直角坐标系, 则S(0,0,1),C(1,1,0),A(0,0,0),M(0,12,12),∴SC ????? =(1,1,?1),AM ?????? =(0,12,1 2 ), ∴SC ????? ?AM ?????? =12?12=0,∴SC ⊥AM . 2.解:根据题意,以C 为原点,CA ????? ,CB ????? ,CC 1??????? 的方向为x 轴,y 轴,z 轴的正方向建立 空间直角坐标系,如图所示, 则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1), E(0,0,2),M(1,1,3),证明:依题意,C 1M ???????? =(1,1,0),B 1D ???????? =(2,?2,?2), ∴C 1M ???????? ·B 1D ???????? =2?2+0=0,∴C 1M ???????? ⊥B 1D ???????? ,即C 1M ⊥B 1D ; 3.证明:(1)AB 1??????? =AB ????? +BB 1??????? ,BC 1??????? =BB 1??????? +BC ????? .因为BB 1⊥平面ABC , 所以BB 1??????? ?AB ????? =0,BB 1??????? ?BC ????? =0.又△ABC 为正三角形, 所以=π?=π?π3=2π3.因为AB 1??????? ?BC 1??????? =(AB ????? +BB 1??????? )?(BB 1??????? + BC ????? )=AB ????? ?BB 1??????? +AB ????? ?BC ????? +BB 1??????? 2 +BB 1??????? ?BC ????? =|AB ????? |?|BC ????? |?cos +BB 1??????? 2=?1+1=0,所以AB 1⊥BC 1. 4.证明:(1)依题意,以点A 为原点建立空间直角坐 标系(如图), 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E 为棱PC 的中点,得E(1,1,1) 向量BE ????? =(0,1,1),DC ????? =(2,0,0),

立体几何线面、面面平行的证明

Q D C B A P C 1 B 1 A 1D 1 D C B A D A 1 C 1 C B 1 B 理科数学复习专题 立体几何 线面平行与面面平行专题复习 【题型总结】 题型一 小题:判断正误 1. a 、b 、c 是直线,,,αβγ是平面,下列命题正确的是_____________ α αβ βααβαβαγαγββααα////a ,//a //a //,//a ////a ,//a ////,////a //,//a //a //,//a b b b b c c b b 则⑥则⑤则④则③则②则① 归纳:_______________________________________ 题型二 线面平行的判定 1、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,E 、F 分别是PB,PC的中点,求证:EF 归纳: 3、在正方体中,E,F分别为C1D1和BC 的中点, 求证: FE 1111111//. ABCD A B C D AB D C BC -在正方体中,求证:平面平面11111111111,,:(1)//;(2)//. ABC A B C D AC BC AB D D AC B DA BC D -2、如图已知正三棱柱中,点为的中点求证平面为的中点,求证:平面平面111ABC A B C -AB AC =,,M N P 11,,BC CC BB 1//A N AMP

【综合练习】 一、选择题 1、直线和平面平行是指该直线与平面内的( ) (A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交(D)任意一条直线都不相交 2、已知a b ||,αα?,则必有( ) ()||(),A a b B a b 异面 (),C a b 相交 (),D a b 平行或异面 3、若直线a,b 都与平面?平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线 4.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( ) A .①④ B .①⑤ C .②⑤ D .③⑤ 5.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行 B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行 C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行 D 一直线与平面平行,则平面内任意直线都与已知直线异面 6. 以下命题(其中a ,b 表示直线,?表示平面) ①若a ∥b ,b ??,则a ∥? ②若a ∥?,b ∥?,则a ∥b ③若a ∥b ,b ∥?,则a ∥? ④若a ∥?,b ??,则a ∥b 其中正确命题的个数是 ( ) 个 个 个 个 二、解答题 1.如图,E D ,分别是正三棱柱111ABC A B C -的棱1AA 、11B C 的中点, 求证:1//A E 平面1BDC ; 2、如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=1,点E 是PC 的中点,作EF PB 交PB 于点

考点二 用空间向量求线面角

考点二 用空间向量求线面角 【例2】 (2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2, 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12 AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB . 由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz . 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB →=(2,0,0). 设M (a ,2-a ,0)(0

设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得 ? ??2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2 . 由已知可得|cos 〈OB →,n 〉|=32 , 所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去),a =43, 所以n =? ????-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34 . 所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角. 【训练2】 (2019·郑州测试)在如图所示的多面体中,四边形ABCD 是平行四边 形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ; (2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.

用向量方法证明直线垂直,求两直线夹角

3.2.2用向量运算证明两条直线垂直或求两条直线所成的角 学习目标: 1、进一步理解向量的坐标表示和坐标运算 2、能建立适应的空间直角坐标系并利用坐标方法求空间两个向量的夹角 3、利用向量的数量积解决与立体几何有关的问题 复习回顾 1、 向量数量积的运算及其性质? 2、 向量夹角与线线夹角的联系与区别? 3、 如何求向量的夹角? 一、课前达标: 1、异面直线所成的角: 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示), 则 .||||| |cos b a b a ??=θ 2、预习检测 (1)如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证EF ⊥DA 1 . (2)如图,在正方体ABCDA ′B ′C ′D ′中,E `1 、F 1分别是A 1B `1、C 1D 1的四等分点,求BE 1与DF 1所成的角.

二、典例分析: 1、建立坐标系证明线线垂直,求夹角 例3 在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值;⑶求FH 的长。 注意思考: (1) 如何建立坐标系、把已知条件转化为向量表示? (2) 如何对已经表示出来的向量进行运算才可获得所需结论? 巩固练习:练习A 1 练习B 1 2、选取基向量求解线线夹角:例4、(见课本100页) O -A B C ,O A =4,O B =5,O C =3; A O B =B O C = C O A =90,M ,N O A ,B C M N ,B C ∠∠∠三棱锥分别是中点,求直线所成角 注意:基向量的选取;如何用基向量来表示未知向量。 巩固练习:练习B 3 三:作业:如下图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

线面平行证明常用方法

线面平行证明的常用方法 方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平 行线使它们与已知平面相交,关键:找平行线,使得所作平面与已知平面的交线。 (08浙江卷)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=?90,AD=3,EF=2。求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 与平面DCF 的交线,那么只要证明AE//DG 证明:过点E 作EG CF ⊥交CF 于G ,连结DG 可得四边形BCGE 为矩形, 又ABCD 为矩形, 所以AD EG ∥,从而四边形ADGE 故AE DG ∥. 因为AE ?平面DCF ,DG ?平面DCF , 所以AE ∥平面DCF . 方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点, 使得所作平面与已知平面的交线。 (06北京卷)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.求证://PB 平面AEC . 分析:由D 、P 、B 三点的平面与已知平面AEC 的交线最易找,第三个点选其它的点均不好找交线. 证明:连接BD ,与 AC 相交于 O ,连接 ∵ABCD 是平行四边形, ∴O 是 BD 的中点 又 E 是 PD 的中点 ∴EO ∥PB. 又 PB ?平面 AEC ,EO ?平面 AEC , ∴PB ∥平面 AEC.

方法三:两个平面是平行, 其中一个平面内的直线和另一个平面平行, 关键:作平行平面,使得过所证直线作与已知平面平行的平面 (08安徽卷)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析:M 为OA 的中点,找OA(或AD)中点,再连线。 证明:取OB 中点E ,连接ME ,NE ME CD ME CD ∴,‖AB,AB ‖‖ 又,NE OC MNE OCD ∴平面平面‖‖ MN OCD ∴平面‖

利用空间向量证明面面平行垂直

利用空间向量证明面面平行垂直 1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证 明:平面ADE⊥平面A1D1F. 2.如图,在直三棱柱ABC?A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1 上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD 3.如图,在四棱锥P?ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD, PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD

4.如图,四边形是矩形,平面,,为中点. 证明:平面平面 5.如图,在底面是矩形的四棱锥P?ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4, E是PD的中点.求证:平面PDC⊥平面PAD 6.如图,在正方体ABCD?A1B1C1D1中,E为棱DD1的中点. 求证:平面EAC⊥平面AB1C

7.如图,正三棱柱ABC?A1B1C1的所有棱长都为2,D为CC1中点. 求证:平面ABB1A1⊥平面A1BD PD。 8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=1 2证明:平面PQC⊥平面DCQ

答案和解析 1.解:以D 为原点,向量DA ????? ,DC ????? ,DD 1???????? 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图, 设正方体的棱长为1. 则D(0,0,0),A(1,0,0),E (1,1,1 2),C 1(0,1,1),M (1,0,1 2), DA ????? =(1,0,0),DE ?????? =(1,1,12),C 1M ???????? =(1,?1,?1 2 ). 设平面ADE 的法向量为m ??? =(a,b ,c), 则{DA ????? ·m ??? =0 DE ?????? ·m ??? =0?{a =0,a +b +12 c =0.令c =2,得m ??? =(0,?1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1?????????? =(1,0,0),D 1F ??????? =(0,1 2 ,?1), 设平面A 1D 1F 的法向量为n ? =(x,y ,z),则{D 1A 1?????????? ·n ? =0D 1F ??????? ·n ? =0?{x =0,12y ?z =0. 令y =2,则n ? =(0,2,1).∵m ??? ·n ? =(0,?1,2)·(0,2,1)=0?2+2=0, ∴m ??? ⊥n ? .∴平面ADE ⊥平面A 1D 1F . 2.证明:如图所示建立空间直角坐标系, 设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a 2,1,0). 所以B 1D ???????? =(0,2,2),AB ????? =(?a,0,0),BD ?????? =(0,2,?2). AB ????? =(?a,0,0),BD ?????? =(0,2,?2),GF ????? =(?a 2,0,0),EF ????? =(0,1,?1),所以AB ????? =2GF ????? ,BD ?????? =2EF ????? ,所以GF ????? //AB ????? ,EF ????? //BD ?????? ?所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .

向量法证明线面平行及垂直问题教案

龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法证明线面平行及垂直 掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离. 二、授课内容及过程: 考点1.利用空间向量证明空间垂直问题 例1:已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC ,PA=AC=12 AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.证明:CM ⊥SN ; 证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空 间直角坐标系如图,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0, 12),N (12,0,0),S (1,12,0)111(1,1,),(,,0)222 CM SN =-=--, 因为110022 CM SN ?=-++=, 所以CM ⊥SN . 【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通 过证明所证直线的方向向量的数量积为0证明两直线垂直. 例2:在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,CF =AB =2CE , 1::AB AD AA = 1:2:4.证明AF ⊥平面1A ED 解析:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得 (0,2,0)D ,(1,2,1)F , 1(0,0,4)A ,31,,02E ?? ??? 已知(1,2,1)AF =,131,,42EA ? ?=-- ???,11,,02ED ??=- ?? ?于是AF ·1EA =0,AF ·ED =0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ?= 所以AF ⊥平面1A ED 【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法 向量和直线的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量 法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可. 例3:在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD , //PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. 求证:平面EFG ⊥平面PDC . 解析:以A 为原点,向量DA ,AB ,AM 分别为x 轴、y 轴、z 轴的正方向,如

高中立体几何证明线面平行的常见方法

D E B 1 A 1 C 1 C A B M 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证: AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P ABCD 底面是直角梯形, E F B A C D P (第

,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC A B C D E F G M

P E D C B A 的中点. 求证:AB 12 1中点为PD E 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、 BD 上的点,且SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面,90BCA ∠=o ,PB=BC=CA , 为的中点,为的中点,点在上,且2AF FP =. (1)求证:BE ⊥平面; (2)求证://CM 平面;

高中立体几何证明线面平行的常见方法

D A 1 A F 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、 BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE (第1题图) A B C D E F G M

6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; (3) 利用平行四边形的性质 7.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为 BB 1的中点,求证: D 1O//平面A 1BC 1; 8、在四棱锥P-ABCD 中,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA , E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1 )求证:BE ⊥ 平面PAC ; (2)求证://CM 平面BEF ;

相关文档
最新文档