专题二 相似三角形的存在性问题解题策略

专题二 相似三角形的存在性问题解题策略
专题二 相似三角形的存在性问题解题策略

三、例题讲解

,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD

图1 备用图

图1

图1

两点,与y轴交于点C,D为OC

的面积之比为3∶2.

图1

上的点(点D不与点B重合),作

的函数关系式,并写出函数的定义域;

相似?若存在,请求出线段图1 备用图备用图

图1

1所示,反比例函数(k

y k =

图1

图1

上方的抛物线是有一点D,使得△DCA的面积最大,求出点

图1

图1 备用图备用图

图1

学科组长审核签字:

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

相似三角形解题方法步骤(教师版)

相似三角形解题方法、技巧、步骤 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ①;②;③. 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角两角对应相等,两三角形相似 找夹边对应成比例两边对应成比例且夹角 相等,两三角形相似 找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应 成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似 找另一角两角对应相等,两三角形相似 找两边对应成比例判定定理1或判定定理 4 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3 e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3 五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证:BA AC AF AE = (判断“横定”还是“竖定”?) 例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 例1、 已知:如图,△ABC 中,∠ ACB=900 ,AB 的垂直平分线交AB 于D ,交BC 延长线于F 。 求证:CD 2 =DE ·DF 。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 六、过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. 1、 等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC 中,AD 平分∠BAC , AD 的垂直平分线FE 交BC 的延长线于E .求证:DE 2=BE·CE . 分析: 2、 等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。 例2:如图4,在△ABC 中,∠BAC=90°,AD ⊥BC ,E 是AC 的中点,ED 交AB 的延长线于点F . 求证:AB DF AC AF =. a)已知一对等b)己知两边对应成比 c)己知一个直d)有等腰关

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

相似三角形存在性探究精品

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】条件、速度、方向 相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ (2)要判断△ADB 与△(3)通过(1)(2)例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存 在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得 △AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 例2如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1)请问在x 轴上是 否存在点Q,使以P ,B,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标,若不存 在,请说明理由。 变式 如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1) (1)求过A 、B 、C 三点的抛物线解析式 (2)请问在x 轴下方的抛物线上是否存在点M ,过M 作M N ⊥x 轴于点N,使以A,M,N 为顶点的 三角形与△BCP 相似?若存在,求出点M 的坐标,若不存在,请说明理由。 做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负 方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上 以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若 存在试求出t 的值,若不存在,请说明理由。 B 42 3812+-=x x y O

相似三角形解题思路赏析

相似三角形解题思路赏析(3.29) 姓名_______ 评价 内容解读:人们在对两个物体或图形的形状和大小进行认识时,全等和相似的感知是伴生的.在数学上全等和相似是特殊与一般、共性与个性的关系,形状相同是二者的共性.全等形是相似比等于1时的相似形;同时我们应学会应用两个三角形相似的判定方法去解决问题。 例题讲解: 1、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、2 2 2 b a c =+ D 、22b a c == 2、已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的 1 9 ? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △ 相似?若存在,求t 的值;若不存在,请说明理由. 3、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△; (2)当O 为AC 边中点,2AC AB =时,如图2,求 OF OE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出 OF OE 的值. 4、已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB = (如图1所示). B A D E C O F 图2 B A C E D 图1 F

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

相似三角形的存在性问题解题策略

中考数学压轴题解题策略(2) 相似三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例? 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==.解得43t =(如图1-2).

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

相似三角形存在性问题

因动点产生得相似三角形问题 例1 2015年上海市宝山区嘉定区中考模拟第24题 如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m). (1)求k与m得值; (2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积; (3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、 图1 动感体验 请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到, △ACE与△ACD相似,存在两种情况。 思路点拨 1、直线AD//BC,与坐标轴得夹角为45°. 2.求△ABC得面积,一般用割补法. 3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程. 满分解答 (1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4). 将点A(2, 4)代入,得k=8。 (2)将点B(n, 2),代入,得n=4。 所以点B得坐标为(4, 2)、 设直线BC为y=x+b,代入点B(4, 2),得b=—2. 所以点C得坐标为(0,—2). 由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离 与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4. 所以AB=,BC=,∠ABC=90°.

图2 所以S△ABC===8、 (3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、 由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。 所以△ACE与△ACD相似,分两种情况: ①如图3,当时,CE=AD=. 此时△ACD≌△CAE,相似比为1. ②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、 图3 图4 考点伸展 第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、 一般情况下,在坐标平面内计算图形得面积,用割补法、 如图5,作△ABC得外接矩形HCNM,MN//y轴. 由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8. 图5 例22014年武汉市中考第24题 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

初中数学相似三角形的存在性问题(word版+详解答案)

相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

最新九年级数学专题复习 相似三角形解题技巧及口诀

F 相似三角形解题技巧及口诀 A 字形,A ’形,8 旋转形 双垂直结论:射影定理:①直角三角形中, 斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD ?BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD ?AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD ?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB ?CD=AC ?BC →比例式 证明等积式(比例式)策略 直接法:找同一三角形两条边 变化:等号同侧两边同一三角形 三点定形法 2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若是四条线段,欲证,可先证得 ( 是两 条线段)然后证,这 里把叫做中间比。 ①∠ABC=∠ADE .求证:AB ·AE=AC ·AD ②△ABC 中,AB=AC ,△DEF 是等边三角形 求证: BD?CN=BM?CE . ③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。 求证:BP ?PC=BM ?CN ?有射影,或平行,等比传递我看行 ①在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 为AC 的中点,求证:AB ?AF=AC ?DF

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

初中数学专题03相似三角形的存在性问题(原卷版)

专题三 相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

(完整版)相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

相似三角形存在性探究

相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ABC 相似, 添加一个条件是 (2)要判断△ADB 与△ABC 相似,AB =4、AD =2. 则AC = (3)通过(1)(2)的解答,你能说出相似三角形哪些知识? 例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得△AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 C A D B C E F B E F

例2如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1)请问在x轴上是 否存在点Q,使以P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标,若不存在,请说明理由。 变式如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1) (1)求过A、B、C三点的抛物线解析式 (2)请问在x轴下方的抛物线上是否存在点M,过M作 M N⊥x轴于点N,使以A,M,N为顶点的 三角形与△BCP相似?若存在,求出点M的坐标,若不存在,请说明理由。

做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若存在试求出t 的值,若不存在,请说明理由。 42 3812+-=x x y

相关文档
最新文档