锁相环电路中压控振荡器的分析与设计

锁相环电路中压控振荡器的分析与设计
锁相环电路中压控振荡器的分析与设计

高频压控振荡器设计

前言 (1) 1高频压控振荡器设计原理压控振荡器 (2) 1.1工作原理 (2) 1.2变容二极管压控振荡器的基本工作原理 (2) 2高频压控振荡器电路设计 (4) 2.1设计的资料及设备 (4) 2.2变容二极管压控振荡器电路的设计思路 (4) 2.3变容二极管压控振荡器的电路设计 (4) 2.4实验电路的基本参数 (5) 2.5实验电路原理图 (6) 3高频压控振荡器电路的仿真 (7) 3.1M ULTISIM软件简介 (7) 3.2M ULTISIM界面介绍 (8) 3.2.1电路仿真图 (9) 3.2.2压控振荡器的主要技术指标 (9) 3.3典型点的频谱图 (9) 4高频压控振荡器电路实现与分析 (16) 4.1实验电路连接 (16) 4.2实验步骤 (16) 4.3实验注意事项 (18) 4.4硬件测试 (19) 5心得体会 (21) 参考文献 (22)

压控振荡器广泛应用于通信系统和其他电子系统中,在LC振荡器决定振荡器的LC 回路中,使用电压控制电容器(变容管),可以在一定的频率范围内构成电调谐振荡器。这种包含有压控元件作为频率控制器件的振荡器就称为压控振荡器。它广泛应用与频率调制器、锁相环路以及无线电发射机和接收机中。 压控振荡器是锁相环频率合成器的重要组成单元,在很大程度上决定了锁相环的性能。在多种射频工艺中,COMS工艺以高集成度、低成本得到广泛的应用。 压控振荡器(VCO)在无线系统和其他必须在一个范围的频率内进行调谐的通信系统中是十分常见的组成部分。许多厂商都提供VCO产品,他们的封装形式和性能水平也是多种多样。现代表面的贴装的射频集成电路(RFIC)VCO继承了近百来工程研究成果。在这段历史当中。VCO技术一直在不断地改进中,产品外形越来越小而相位噪声和调谐线性度越来越好。 对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 压控振荡器可分为环路振荡器和LC振荡器。环路振荡器易于集成,但其相位噪声性能比LC振荡器差。为了使相位噪声满足通信标准的要求,这里对负阻RC压控振荡器进行了分析。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

集成电路(锁相环)构成的频率解调器_集成电路(压控振荡器)构成的频率调制器

实验十 集成电路(压控振荡器)构成的频率调制器 一、实验目的 1.进一步了解压控振荡器和用它构成频率调制的原理 2.掌握集成电路频率调制器的工作原理。 二、预习要求 1.查阅有关集成电路压控振荡器资料。 2.认真阅读指导书,了解566(VOC 的单片集成电路)的内部电路及原理。 3.高清566外接元件的作用。 三、实验仪器设备 1.双踪示波器 2.频率计 3.万用表 4.电容表 5.实验板G5 四、实验电路说明 图9-1为566型单片集成VCO 的框图及管脚排列 图9-1中幅度鉴别器,其正向触发电平定义为Vsp ,反向触发电平定义为VSM ,当电容C 充电使其电压V7(566管脚⑦对地的电压)上升至VSP ,此时幅度鉴别器翻转,输出为高电平,从而使内部的控制电压形成电路的输出电压,该电压Vo 为高电平;当电容C 放电时,其电压V7下降,降至VSM 时高度鉴别器再次翻转,输出为低电平而使Vo 也变为低电平,用Vo 的高、低电平控制S1和S2两开关的闭合与断开。Vo 为低电平时S1闭合,S2断开,这时I6=I7=0,Io 全部给电容C 充电,使V7上升,由于Io 为恒流源,V7线性斜升,升至VSP 时,Vo 跳变高电平,Vo 高电平时控制S2闭合,S1断开,恒流源Io 全部流入A 支路,即I6=Io ,由于电流转发器的特性,B 支路电流I7应等于I6,所以I7=Io ,该电流由C 放电电流提供,因此V7线性斜降,V7降至VSM 时Vo 跳变为低电平,如此周而复始循环下去,I7及Vo 波形如图9-2。 图9-1 图9-2

566输出的方波及三角波的载波频率(或称中心频率)可用外加电阻R 和外加电容C 来确定。 )(858Hz V C R V V f ??-= 其中:R 为时基电阻 C 为时基电容 V8是566管脚⑧至地的电压 V5是566管脚⑤至地的电压 五、实验内容及步骤 实验电路见图9-3 图9-3 566构成的调频器 图9-4 输入信号电路 1.按图接线,观察R 、C1对频率的影响(其中R=R3+RP1)。 ① 将C1接入566管脚⑦,Rp2及C2接至566管脚⑤;接通电源(±5V )。 ② 调Rp2使V5=3.5V ,将频率计接至566管脚③,改变RP1观察方波输出信号频率,记录当R 为最大和最小值时的输出频率。当R 分别为Rmax 和Rmin 及C1=2200时,计算这二种情况下的频率,并与实际测量值进行比较。用双踪示波器观察并记录R=Rmin 时方波及三角波的输出波形。 当R 最小时,理论值)(8 58max Hz V C R V V f ??-= =45.45KHz 测量值KHz V C R V V f 608.388 58max =??-= 当R 最大时,理论值KHz V C R V V f 09.348 58min =??-= 测量值KHz V C R V V f 368.29858min =??-= 误差分析:实验室中有的器件老化了,接线柱上两个距离近的接口用了一根很长的导线等,都会导致精确度不高,还有测量时电压不稳定,也会导致测量时候数据的不准确。 2.观察输入电压对输出频率的影响 ①直流电压控制:先调RP1至最大,然后改变RP2调整输入电压,测当V5在2.2V~4.2V 变化时输出频率f 的变化,V5按0.2V 递增。将测得的结果填入表9.1。 表9.1 V5(V ) 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 f (KHz ) 60.1 57.0 53.1 48.7 43.5 37.4 30.8 24.1 17.5 10.8 4.0

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

锁相环电路

手机射频部分的关键电路----锁相环电路 锁相坏电路是一种用来消除频率误差为目的反馈控制电路,目前市场销售的手机基本上都是采用这种电路来控制射频电路中的压控振荡器。使其输出准确稳定的振荡频率。如锁相坏(PLL)电路出现故障将导致本振的频率输出不准确,则导致手机无信号。 目前通信终端设备中对频率的稳定采用的是频率合成CSYN技术。频率合成的基本方法有三种:第一种直接频率合成;第二种锁相频率合成(PLL);第三种直接数字频率合成(DDS)。由于锁相频率合成技术在电路设计方面(简单),成本方面控制灵敏度方面,频谱纯净度方面等。都要胜于直接频率合成,与直接数字频率合成。所以被移动通信终端设备广范采用。它在手机电路中的作用是控制压控振荡器输出的频率,相位与基准信号的频率,相位保持同步。 锁相坏电路的构成与工作原理: 1、构成:它是由鉴相器(PD)低通滤波器(LPF) 压控振荡器(VCO)三部分组成。 鉴相器:它是一个相位比较器。基准频率信号和压控振荡器输出的取样频率在其内部 进行相位比较,输出误差电压。 低通滤波器:是将鉴相器输出的锁相电压进行滤波,滤除电流中的干扰和高频成分。得到一个纯净的直流控制电压。 压控振荡器:产生手机所要的某一高频频率。 (注:SYNEN、SYNCLK、SYNDATA来自CPU控制分频器,对本振信号进行N次分频)。 当VCO产生手机所须的某一高频频率。一路去混频管,另一路反馈给锁相环,中的分频器进行N次分频。在这里为什么要进行N次分频呢?首先要说明一下基准频率与VCO振荡取样频率在鉴相要满足3个条件。 ①频率相同。②幅度相同。③相位不同。为了满足鉴相条件,所以在电路中设置了分 频器。VCO振荡频率取样信号送入分频器完成N次分频后,得到一个与基准频率相位不同,但频率

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

压控振荡器原理和应用说明

压控振荡器(VCO) 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。图1为变容二极管的V-C特性曲线。 (V) T 图1变容二极管的V-C特性曲线 三压控振荡器的基本参数 1 工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或 “GHz”。 2 输出功率:在工作频段内输出功率标称值,用Po表示。通常单位为“dBmw”。 3 输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常 单位为“dBmw”。 4 调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/ △VT 表示,在线性区,灵敏度最高,在非线性区灵敏度降低。 5 谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。 6 推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。 7 相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm 的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪 声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定

基于Matlab的数字锁相环的仿真设计金佳琪

基于Matlab的数字锁相环的仿真设计 1115101021 金佳琪 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环能达到的各项功能要求。 关键词:锁相环,MATLAB,锁定,Simulink,频率合成 全数字锁相环 随着最近几年数字电路技术的发展,锁相环路在数字领域获得了越来越多的使用。与模拟锁相环相比,全数字锁相环不含无源器件、面积小、具有较强的抗噪声能力,锁定时间短,可以很方便地在各个工艺之间转换,重用性高,设计周期短。 方案介绍 全数字锁相环包括数字鉴相鉴频器(PDF)、数字滤波器(LPF)、数字振荡器(NCO)三部分,如下图12所示: 图1 全数字锁相环的仿真框图 由图12和图11的比较可以看出,全数字锁相环实际上是通过将模拟锁相环路替换成数字电路得到的。这意味着鉴相鉴频器(PDF)、环路低通滤波器(LPF)需要转换到离散系统。环路低通滤波器(LPF)可以通过一个希望的传输函数的拉普拉斯变换的z变换而得到。压控振荡器需要转换成数控振荡器(Numerically Controlled Oscilaator)。下面详细讨论鉴相鉴频器(PDF)、环路低通滤波器(LPF)以及数控振荡器(Numerically Controlled Oscilaator)模型的建立。 模型的建立 正和上述基于频率合成的模拟锁相环的仿真模型的建立相似,全数字锁相环仿真模型的建立也基于相同的算法: 锁相环闭环系统状态的变化依赖于PFD输出的相位误差。相位误差输出一次,锁相环状态改变一次;PFD不输出相位误差,锁相环里的所有信号均不改变状态。根据上

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

晶体振荡器与压控振荡器

晶体振荡器与压控振荡器 一、实验目的: 1.掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。 2.比较LC振荡器和晶体振荡器的频率稳定度。 二、实验内容: 1.熟悉振荡器模块各元件及其作用。 2.分析与比较LC振荡器与晶体振荡器的频率稳定度。 3.改变变容二极管的偏置电压,观察振荡器输出频率的变化。 三、基本原理: 1.下图是石英晶体谐振器的等效电路: 图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。L q、C q、r q是对应于机械共振经压电转换而呈现的电参数。r q是机械摩擦和空气阻尼引起的损耗。由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率f q和并联谐振频率f0分别为 f q=1/2πLqCq,f0= f q Co 1 Cq/ 图1 晶体振荡器的等效电路 当W<W q或W> W o时,晶体谐振器显容性;当W在W q和W o之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。由于Lq很大,即使在W q处其电抗变化率也很大。其电抗特性曲线如图所示。实际应用中晶体工作于W q~W o之间的频率,因而呈现感性。

图2 晶体的电抗特性曲线 设计内容及要求 2 并联型晶体振荡器 图3 c-b型并联晶体振荡器电路 图 4 皮尔斯原理电路图 5 交流等效电路

C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为 C L=C1C2C3/(C1C2+C2C3+C1C3) C q/ (C0+C L)<<1 3.电路的选择: 晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据实际常用的两种类型,电感三点式和电容三点式。由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。因此选用c-b型皮尔斯电路进行制作。 图 6 工作电路 4.选择晶体管和石英晶体 根据设计要求,

模电课设方波三角波压控振荡器

第一章模电课设概述 1.1设计背景 人们通常把压控振荡器称为调频器,用以产生调频信号。在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 1.2 设计目的及意义 1)培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。 2)锻炼学生自学软件的能力及分析问题、解决问题的能力。 3)通过课程设计,使学生在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范的运用和计算机应用方面的能力得到训练和提高。 4)巩固、深化和扩展学生的理论知识与初步的专业技能。 5)为今后从事电子技术领域的工程设计打好基础基本要求。 1.3设计时间 课程设计时间:一周 1.4 开发环境proteus简介 PROTEUS软件是由英国LabCenter Electronics公司开发的EDA工具软件,由ISIS和ARES两个软件构成,其中ISIS是一款便捷的电子系统仿真平台软件,

ARES是一款高级的布线编辑器,它集成了高级原理布线图、混合模式SPICE电路仿真、PCB设计以及自动布线来实现一个完整的电子设计。 通过PROTEUS ISIS软件的VSM(虚拟仿真技术),用户可以对模拟电路、数字电路、模数混合电路,以及基于微控制器的系统连同所有外围接口电子元器件一起仿真。 在原理图中,电路激励源、虚拟仪器、图表以及直接布置在线路上的探针一起出现在电路中。任何时候都能通过“运行”按钮或“空格”键对电路进行仿真。 PROTEUS有两种截然不同的仿真方式:交互式仿真和基于图表的仿真。其中交互式仿真可实时观测电路的输出,因此可用于检验设计的电路是否能正常工作。 而基于图表的仿真能够在仿真过程中放大一些特别的部分,进行一些细节上的分析,因此基于图表的仿真可用于研究电路的工作状态和进行细节的测量。 PROTEUS软件的模拟仿真直接兼容厂商的SPICE模型,采用了扩充的SPICE3F5电路仿真模型,能够记录基于图表的频率特性、直流电的传输特性、参数的扫描、噪声的分析、傅里叶分析等,具有超过8000种的电路仿真模型。 PROTEUS软件的数字仿真支持JDEC文件的物理器件仿真,有全系列的TTL和CMOS数字电路仿真模型,同时一致性分析易于系统的自动测试。 PROTEUS软件支持许多通用的微控制器,如PIC、A VR、HC11以及8051;包含强大的调试工具,可对寄存器、存储器实时监测;具有断点调试功能及单步调试功能;具有对显示器、按钮、键盘等外设进行交互可视化仿真的功能。此外,PROTEUS可对IAR C-SPY、KEIL等开发工具的源程序进行调试。 此外,在PROTEUS中配置了各种虚拟仪器,如示波器、逻辑分析仪、频率计,便于测量和记录仿真的波形、数据。

PLL(锁相环)电路原理及设计 [收藏]

PLL(锁相环)电路原理及设计[收藏] PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。

时基电路构成的压控振荡器

555时基电路构成的压控振荡器 摘要:555电路是集模拟电路和数字电路于一体的集成电路,是在上世纪70年代,为制作定时器而被设计制造的。该电路具有灵活的引出端脚,使用者尽用其能,将其广泛运用于电子行业的各个领域内,并且该电路在科研、仪表、测量、控制等诸多领域内也得到了广泛的应用。本文主要从原理和应用两个方面讲述由555无稳态多谐振荡器电路构成的压控振荡器。 关键词: 1、引言 如今,555时基电路得到如此广泛的应用,这得益于该电路本身独特的优越性。按照555电路的应用特点,以数字电路的分类方法作为基本方式,可将其分为:多谐振荡器的应用方式、单稳态电路的应用方式、双稳态(R-S触发器)电路的应用方式以及施密特电路的应用方式。本文要讨论的压控振荡器是一种结构特殊的多谐振荡器,全称为电压控制的多谐振荡器,简称VCO。由555电路构成的压控振荡器具有电路简单、成本低、产生脉冲波形的线性度好等特点,因此压控振荡器电路在锁相技术、A/D转换、脉冲调制及遥测技术中有广泛的用途,是一种十分重要的电路。. 2、555电路原理图]1[ 图1、原理电路图

整个原理电路图有5个部分组成,这5个部分可以分为三大部分进行解释:(1)分压器与比较器 三个等值电阻(每个5KΩ)串联进行分压,将电源电压分别分压为U CC/3和2U CC/3。其中2U CC/3加至电压比较器A1的同相输入端,作为它的参考电压;U CC/加之电压比较器A2的反相输入端,作为它的参考电压。A1、A2是由两个差分电路组成的电压比较器,相当于两个运算放大器的输入电路。这两个参考电压决定了555电路的输入特性。 上述原理电路图有两个输入端,分别称为触发端(TR、2脚)和阀值端(TH、6脚),它们分别是A2的同相输入端和A1的反相输入端。根据电压比较器的工作原理:当对输入端2脚上加上低于U CC/3的输入电压时,比较器A2输出低电平;当加上高于U CC/3的输入电压时,A2输出高电平。对于输入端6脚,当对其加上低于2U CC/3的输入电压时,A1输出高电平;当对其加上高于2U CC/3的输入电压时,A1输出低电平。 (2)基本R-S触发器]1[ 在数字电路中,触发器分为同步R-S触发器和基本R-S触发器,555电路中使用 是基本R-S触发器。这种触发器由两个非门交叉连接组成,它的特点是需要低电平触发,即只有在输入端加以低电平或负脉冲,触发器才能翻转。 它的逻辑功能是:当R=0,S=1时,不管触发器原来是什么状态,都会被置成低电平0的状态;当R=1,S=0时,触发器被置成高电平1的状态;当R=1,S=1时,触发器保持原状态不变;当R=0,S=0时,触发器的状态不定,不过这种状态是不允许出现的,也是不可能出现的。 (3)输出级]2[ 为了提高555电路带负载的能力,使其能够直接驱动一定功率的负载,并且隔离负载对定时器的影响,在它的R-S触发器之后加入了一级输出级G3。该输出级G3将R-S 触发器的输出电平进行反相,并同时给予一定的功率放大后输出,这就使得555电路可以直接驱动小型继电器、扬声器等。 (4)放电电子开关]3[ 在由555电路组成的定时定路及各类触发器和振荡器中,它们的工作状态都和电容器的充、放电有关。例如在定时电路中,通常把上比较器的输入端TH(6脚)接到只电容C的正极。这个电容又通过一只串联电阻R接到电源的正极。工作时,电源通过电阻R向电容C充电,当电容充电使其电压达到阀值电平后,比较器A1输出低电平,触发器R-S翻转,它的输出端变为高电平,经过一级反相器反相为低电平后作为一种控制信号输出,实现对电路的一种工作状态的控制。 ( 5 ) 555定时器的基本功能]4[ ①R=0,无论其他输入为何值(用×表示),必有Q=1,U O为低电平0,T D饱和导通,故R端称为置0端或复位端。 ②R=1,U TH>2U CC/3、U TR>U CC/3时,U O1为低电平,U O2为高电平,使Q=1、

基于Multisim11的压控振荡电路仿真设计

分类号 密级 基于Multisim11的压控振荡电路仿真设计 所在学院机械与电气工程学院 专业电气工程及其自动化 班级 姓名 学号 指导老师 年月日 诚信承诺

我谨在此承诺:本人所写的毕业论文《基于Multisim11的压控振荡电路仿真设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 Multisim是美国国家仪器有限公司推出的以Windows为基础的仿真工具,适用于初级的模拟及数字电路板的设计工作,Multisim不仅具有丰富的仿真分析能力,而且还包含了电路原理图的图形输入及电路硬件描述语言的输入方式。有了Multisim软件就相当于有了一个电子实验室,可以非常方便的从事各种电路设计及仿真分析工作。 随着无线通信技术的快速发展,使得市场对压控振荡电路产生了巨大的需求。压控振荡器是通过调节可变电阻或电容可以改变波形的振荡频率,一般是通过人工来调节的。而在自动控制场合往往要求能自动地调节振荡频率。常见的情况是给出一个控制电压,要求输出波形的振荡频率与控制电压成正比。这种电路称为压控振荡器。 本次设计的内容是基于Multisim11的压控振荡电路仿真设计,阐述了压控振荡器的电路原理以及组成结构。本次设计是采用集成运算放大器741芯片组成的滞回电压比较器和反向积分电路,利用二极管1N4148相当于电子开关的功能,控制电容的充放电时间,构成的压控振荡电路,从而实现输入电压对输出频率变化的控制。只要改变输入端的电压,就可以改变输出端的输出频率。并在电路设计与仿真平台Multisim11仿真环境中创建集成压控振荡器电路模块,进而使用Multisim仿真工具对其进行仿真从而达到设计的目的和要求。 关键词:Multisim,压控振荡器,1N4148

基于MATLAB的数字锁相环的仿真设计讲解

本科生毕业设计(申请学士学位) 论文题目基于Matlab的 数字锁相环的仿真设计 作者姓名 专业名称电子信息工程 指导教师 2014年5月

学生:(签字)学号: 答辩日期:2014 年 5 月24 日指导教师:(签字)

目录 摘要 (1) Abstract (1) 1 绪论 (2) 1.1 本文研究背景 (2) 1.2 本文研究意义 (2) 1.3 锁相环和仿真方式 (2) 1.3.1 锁相环 (2) 1.3.2 仿真方式 (2) 1.4 本文研究内容 (3) 2 模拟锁相环Matlab仿真 (3) 2.1 模拟锁相环方案 (3) 2.1.1 模拟鉴相器 (3) 2.1.2 模拟低通滤波器 (6) 2.1.3 模拟压控振荡器 (7) 2.2 模拟锁相环仿真 (8) 2.3 本章小结 (9) 3 数字锁相环Matlab仿真 (10) 3.1 数字锁相环方案 (10) 3.1.1 数字鉴相器 (10) 3.1.2 数字滤波器 (12) 3.1.3 数字压控振荡器 (13) 3.2 数字锁相环仿真 (14) 3.3 本章小结 (15) 4 总结与展望 (15) 参考文献 (16) 致谢 (18)

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一种能够自动跟踪信号相位并达到锁频目的的闭环负反馈系统。数字锁相环在无线电领域得到较广泛的应用和发展。而且已经成为雷达、通信、导航等各类电子信号产品不可替代的元器件之一。锁相环的窄带跟踪性能使其得到较广泛应用。因为锁相技术在实际应用中较为复杂,所以锁相环的设计通常采用仿真设计这种方式。本次设计采用Matlab这一软件进行辅助仿真设计,完全能达到设计预期的目标。Matlab中的Simulink仿真软件,具有很强的灵活性和直观性。本次设计所采用的方法是在simulink中搭建模拟锁相的模型,并对模拟锁相环的组成、结构、设计进行不断的分析和改进。然后根据模拟锁相环的原理进行改进,并搭建数字锁相环。 关键词:锁相环;自动跟踪;matlab;simulink Simulative design of digital phase-locked loop based on Matlab Abstract:PLL is the automatic tracking system of close loop atracking signal phase. It is widely used in various fields of radio. It has become an irreplaceable part of radar, communication, navigation and all kinds of electronicsignal device. PLL is able to be widely used. Because, it has unique narrow-band tracking performance. However, because of the complexity of phase lock technique, for the design of PLL have brought great difficulty. This design uses Matlab, the simulative software for design assistance, can completely meet the design expectations. Simulink simulative software on Matlab, has strong flexibility and intuitive. Methods used by this project is to build the analog phase locked in the Simulink model, and the composition, structure, design of analog phase-locked loop of continuous improvement and analysis. It improved according to the principle of analog PLL, build digital phase-locked loop in Simulink, and then reach the simulation design of digitalphase-locked loop based on Matlab the design objective . Key words: PLL, Automatic tracking, Matlab, simulink

相关文档
最新文档